Articles | Volume 16, issue 8
https://doi.org/10.5194/essd-16-3547-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-3547-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Demersal fishery Impacts on Sedimentary Organic Matter (DISOM): a global harmonized database of studies assessing the impacts of demersal fisheries on sediment biogeochemistry
Geological Institute, ETH Zürich, Zurich, Switzerland
Justin Tiano
Wageningen Marine Research, Wageningen University and Research, P.O. Box 68, 1970 AB, IJmuiden, the Netherlands
Emil De Borger
Royal Netherlands Institute for Sea Research (NIOZ), Department of Estuarine and Delta Systems, P.O. Box 140, 4400 AC, Yerseke, the Netherlands
Department of Biology, Marine Biology Research group, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
Antonio Pusceddu
Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli, 1, 09126 Cagliari, Italy
Clare Bradshaw
Department of Environment, Ecology and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
Claudia Ennas
Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli, 1, 09126 Cagliari, Italy
Claudia Morys
Department of Environment, Ecology and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
Marija Sciberras
The Lyell Centre, Heriot-Watt University, Edinburgh, EH14 4AP, UK
Related authors
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Sarah Paradis, Antonio Pusceddu, Pere Masqué, Pere Puig, Davide Moccia, Tommaso Russo, and Claudio Lo Iacono
Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, https://doi.org/10.5194/bg-16-4307-2019, 2019
Short summary
Short summary
Chronic deep bottom trawling in the Gulf of Castellammare (SW Mediterranean) erodes large volumes of sediment, exposing over-century-old sediment depleted in organic matter. Nevertheless, the arrival of fresh and nutritious sediment recovers superficial organic matter in trawling grounds and leads to high turnover rates, partially and temporarily mitigating the impacts of bottom trawling. However, this deposition is ephemeral and it will be swiftly eroded by the passage of the next trawler.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Eleonora Fossile, Maria Pia Nardelli, Arbia Jouini, Bruno Lansard, Antonio Pusceddu, Davide Moccia, Elisabeth Michel, Olivier Péron, Hélène Howa, and Meryem Mojtahid
Biogeosciences, 17, 1933–1953, https://doi.org/10.5194/bg-17-1933-2020, https://doi.org/10.5194/bg-17-1933-2020, 2020
Short summary
Short summary
This study focuses on benthic foraminiferal distribution in an Arctic fjord characterised by continuous sea ice production during winter and the consequent cascading of salty and corrosive waters (brine) to the seabed. The inner fjord is dominated by calcareous species (C). In the central deep basins, where brines are persistent, calcareous foraminifera are dissolved and agglutinated (A) dominate. The high A/C ratio is suggested as a proxy for brine persistence and sea ice production.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary
Short summary
By applying a novel technique to quantify organism-induced sediment–water column fluid exchange (bioirrigation), we show that organisms in subtidal (permanently submerged) areas have similar bioirrigation rates as those that inhabit intertidal areas (not permanently submerged), but organisms in the latter irrigate deeper burrows in this study. Our results expand on traditional methods to quantify bioirrigation rates and broaden the pool of field measurements of bioirrigation rates.
Sarah Paradis, Antonio Pusceddu, Pere Masqué, Pere Puig, Davide Moccia, Tommaso Russo, and Claudio Lo Iacono
Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, https://doi.org/10.5194/bg-16-4307-2019, 2019
Short summary
Short summary
Chronic deep bottom trawling in the Gulf of Castellammare (SW Mediterranean) erodes large volumes of sediment, exposing over-century-old sediment depleted in organic matter. Nevertheless, the arrival of fresh and nutritious sediment recovers superficial organic matter in trawling grounds and leads to high turnover rates, partially and temporarily mitigating the impacts of bottom trawling. However, this deposition is ephemeral and it will be swiftly eroded by the passage of the next trawler.
Related subject area
Domain: ESSD – Ocean | Subject: Marine geology
Predictive mapping of organic carbon stocks in surficial sediments of the Canadian continental margin
The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: Contribution of ICESat-2 laser altimetry
SCShores: a comprehensive shoreline dataset of Spanish sandy beaches from a citizen-science monitoring programme
The Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC): version 2.0
Large freshwater-influx-induced salinity gradient and diagenetic changes in the northern Indian Ocean dominate the stable oxygen isotopic variation in Globigerinoides ruber
Graham Epstein, Susanna D. Fuller, Dipti Hingmire, Paul G. Myers, Angelica Peña, Clark Pennelly, and Julia K. Baum
Earth Syst. Sci. Data, 16, 2165–2195, https://doi.org/10.5194/essd-16-2165-2024, https://doi.org/10.5194/essd-16-2165-2024, 2024
Short summary
Short summary
Improved mapping of surficial seabed sediment organic carbon is vital for best-practice marine management. Here, using systematic data review, data unification process and machine learning techniques, the first national predictive maps were produced for Canada at 200 m resolution. We show fine-scale spatial variation of organic carbon across the continental margin and estimate the total standing stock in the top 30 cm of the sediment to be 10.9 Gt.
Zhen Li, Jinyun Guo, Chengcheng Zhu, Xin Liu, Cheinway Hwang, Sergey Lebedev, Xiaotao Chang, Anatoly Soloviev, and Heping Sun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-484, https://doi.org/10.5194/essd-2023-484, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
A new global marine gravity model, SDUST2022GRA, is recovered from radar and laser altimeter data. The accuracy of SDUST2022GRA is 4.43 mGal on a global scale, which is at least 0.22 mGal better than that of others models. The spatial resolution of SDUST2022GRA is approximately 20 km in a certain region, slightly better superior others models. These assessments suggests that SDUST2022GRA is a reliable global marine gravity anomaly model.
Rita González-Villanueva, Jesús Soriano-González, Irene Alejo, Francisco Criado-Sudau, Theocharis Plomaritis, Àngels Fernàndez-Mora, Javier Benavente, Laura Del Río, Miguel Ángel Nombela, and Elena Sánchez-García
Earth Syst. Sci. Data, 15, 4613–4629, https://doi.org/10.5194/essd-15-4613-2023, https://doi.org/10.5194/essd-15-4613-2023, 2023
Short summary
Short summary
Sandy beaches, shaped by tides, waves, and winds, constantly change. Studying these changes is crucial for coastal management, but obtaining detailed shoreline data is difficult and costly. Our paper introduces a unique dataset of high-resolution shorelines from five Spanish beaches collected through the CoastSnap citizen-science program. With 1721 shorelines, our dataset provides valuable information for coastal studies.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Rajeev Saraswat, Thejasino Suokhrie, Dinesh K. Naik, Dharmendra P. Singh, Syed M. Saalim, Mohd Salman, Gavendra Kumar, Sudhira R. Bhadra, Mahyar Mohtadi, Sujata R. Kurtarkar, and Abhayanand S. Maurya
Earth Syst. Sci. Data, 15, 171–187, https://doi.org/10.5194/essd-15-171-2023, https://doi.org/10.5194/essd-15-171-2023, 2023
Short summary
Short summary
Much effort is made to project monsoon changes by reconstructing the past. The stable oxygen isotopic ratio of marine calcareous organisms is frequently used to reconstruct past monsoons. Here, we use the published and new stable oxygen isotopic data to demonstrate a diagenetic effect and a strong salinity influence on the oxygen isotopic ratio of foraminifera in the northern Indian Ocean. We also provide updated calibration equations to deduce monsoons from the oxygen isotopic ratio.
Cited articles
Amoroso, R. O., Pitcher, C. R., Rijnsdorp, A. D., McConnaughey, R. A., Parma, A. M., Suuronen, P., Eigaard, O. R., Bastardie, F., Hintzen, N. T., Althaus, F., Baird, S. J., Black, J., Buhl-Mortensen, L., Campbell, A. B., Catarino, R., Collie, J., Cowan, J. H., Durholtz, D., Engstrom, N., Fairweather, T. P., Fock, H. O., Ford, R., Gálvez, P. A., Gerritsen, H., Góngora, M. E., González, J. A., Hiddink, J. G., Hughes, K. M., Intelmann, S. S., Jenkins, C., Jonsson, P., Kainge, P., Kangas, M., Kathena, J. N., Kavadas, S., Leslie, R. W., Lewis, S. G., Lundy, M., Makin, D., Martin, J., Mazor, T., Gonzalez-Mirelis, G., Newman, S. J., Papadopoulou, N., Posen, P. E., Rochester, W., Russo, T., Sala, A., Semmens, J. M., Silva, C., Tsolos, A., Vanelslander, B., Wakefield, C. B., Wood, B. A., Hilborn, R., Kaiser, M. J., and Jennings, S.: Bottom trawl fishing footprints on the world's continental shelves., P. Natl. Acad. Sci. USA, 115(43), E10275–E10282, https://doi.org/10.1073/pnas.1802379115, 2018.
Arjona-Camas, M., Puig, P., Palanques, A., Durán, R., White, M., Paradis, S., and Emelianov, M.: Natural vs. trawling-induced water turbidity and suspended sediment transport variability within the Palamós Canyon (NW Mediterranean), Mar. Geophys. Res., 42, 38, https://doi.org/10.1007/s11001-021-09457-7, 2021.
Arjona-Camas, M., Puig, P., De Leo, F. C., Garner, G., Paradis, S., Durán, R., and Palanques, A.: Influence of Natural Processes and Bottom Trawling in the Nepheloid Layer Structure Off Vancouver Island (British Columbia, Canada, NE Pacific), Front. Mar. Sci., 8, 770280, https://doi.org/10.3389/fmars.2021.770280, 2022.
Atkinson, L., Field, J., and Hutchings, L.: Effects of demersal trawling along the west coast of southern Africa: multivariate analysis of benthic assemblages, Mar. Ecol. Prog. Ser., 430, 241–255, https://doi.org/10.3354/meps08956, 2011.
Bhagirathan, U., Meenakumari, B., Jayalakshmy, K. V., Panda, S. K., Madhu, V. R., and Vaghela, D. T.: Impact of bottom trawling on sediment characteristics-a study along inshore waters off Veraval coast, India, Environ. Monit. Assess., 160, 355–369, https://doi.org/10.1007/s10661-008-0700-0, 2010.
Black, K. E., Smeaton, C., Turrell, W. R., and Austin, W. E. N.: Assessing the potential vulnerability of sedimentary carbon stores to bottom trawling disturbance within the UK EEZ, Front. Mar. Sci., 9, 892892, https://doi.org/10.3389/fmars.2022.892892, 2022.
Brown, E. J., Finney, B., Dommisse, M., and Hills, S.: Effects of commercial otter trawling on the physical environment of the southeastern Bering Sea, Cont. Shelf Res., 25, 1281–1301, https://doi.org/10.1016/j.csr.2004.12.005, 2005.
Brylinsky, M., Gibson, J., and Gordon Jr., D. C.: Impacts of Flounder Trawls on the Intertidal Habitat and Community of the Minas Basin, Bay of Fundy, Can. J. Fish. Aquat. Sci., 51, 650–661, https://doi.org/10.1139/f94-066, 1994.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?, Chem. Rev., 107, 467–485, https://doi.org/10.1021/CR050347Q, 2007.
Cartes, J. E., Papiol, V., Palanques, A., Guillén, J., and Demestre, M.: Dynamics of suprabenthos off the Ebro Delta (Catalan Sea: western Mediterranean): Spatial 13 and temporal patterns and relationships with environmental factors, Estuar. Coast. Shelf Sci., 75, 501–515, https://doi.org/10.1016/j.ecss.2007.05.047, 2007.
Costa, K. G. and Netto, S. A.: Effects of small-scale trawling on benthic communities of estuarine vegetated and non-vegetated habitats, Biodivers. Conserv., 23, 1041–1055, https://doi.org/10.1007/s10531-014-0652-3, 2014.
Daly, E., Johnson, M. P., Wilson, A. M., Gerritsen, H. D., Kiriakoulakis, K., Allcock, A. L., and White, M.: Bottom trawling at Whittard Canyon: Evidence for seabed modification, trawl plumes and food source heterogeneity, Prog. Oceanogr., 169, 227–240, https://doi.org/10.1016/j.pocean.2017.12.010, 2018.
Dannheim, J., Brey, T., Schröder, A., Mintenbeck, K., Knust, R., and Arntz, W. E.: Trophic look at soft-bottom communities – Short-term effects of trawling cessation on benthos, J. Sea Res., 85, 18–28, https://doi.org/10.1016/j.seares.2013.09.005, 2014.
De Borger, E., Tiano, J., Braeckman, U., Rijnsdorp, A. D., and Soetaert, K.: Impact of bottom trawling on sediment biogeochemistry: a modelling approach, Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, 2021.
De Juan, S. and Cartes, J. E.: Influence of environmental factors on the dynamics of macrobenthic crustaceans on soft-bottoms of the Ebro Delta continental shelf (northwestern Mediterranean), Sci. Mar., 75, 691–700, https://doi.org/10.3989/scimar.2011.75n4691, 2011.
Depestele, J., Degrendele, K., Esmaeili, M., Ivanović, A., Kröger, S., O'Neill, F. G., Parker, R., Polet, H., Roche, M., Teal, L. R., Vanelslander, B., and Rijnsdorp, A. D.: Comparison of mechanical disturbance in soft sediments due to tickler-chain SumWing trawl vs. electro-fitted PulseWing trawl, edited by: M. Pol, ICES J. Mar. Sci., 76, 312–329, https://doi.org/10.1093/icesjms/fsy124, 2019.
Dolmer, P., Kristensen, T., Christiansen, M. L., Petersen, M. F., Kristensen, P. S., and Hoffmann, E.: Short-term impact of blue mussel dredging (Mytilus edulis L.) on a benthic community, Hydrobiologia, 465, 115–127, https://doi.org/10.1023/A:1014549026157, 2001.
Durrieu de Madron, X., Ferré, B., Le Corre, G., Grenz, C., Conan, P., Pujo-Pay, M., Buscail, R., and Bodiot, O.: Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean), Cont. Shelf Res., 25, 2387–2409, https://doi.org/10.1016/j.csr.2005.08.002, 2005.
Eleftheriou, A. and Robertson, M. R.: The effects of experimental scallop dredging on the fauna and physical environment of a shallow sandy community, Netherlands J. Sea Res., 30, 289–299, https://doi.org/10.1016/0077-7579(92)90067-O, 1992.
Epstein, G. and Roberts, C. M.: Identifying priority areas to manage mobile bottom fishing on seabed carbon in the UK, edited by: Nagai, R. H., PLOS Clim., 1, e0000059, https://doi.org/10.1371/journal.pclm.0000059, 2022.
Epstein, G., Middelburg, J. J., Hawkins, J. P., Norris, C. R., and Roberts, C. M.: The impact of mobile demersal fishing on carbon storage in seabed sediments, Glob. Chang. Biol., 28, 2875–2894, https://doi.org/10.1111/gcb.16105, 2022.
Falcão, M., Gaspar, M., Caetano, M., Santos, M., and Vale, C.: Short-term environmental impact of clam dredging in coastal waters (south of Portugal): chemical disturbance and subsequent recovery of seabed, Mar. Environ. Res., 56, 649–664, https://doi.org/10.1016/S0141-1136(03)00069-2, 2003.
Ferguson, A. J. P., Oakes, J., and Eyre, B. D.: Bottom trawling reduces benthic denitrification and has the potential to influence the global nitrogen cycle, Limnol. Oceanogr. Lett., 5, lol2.10150, https://doi.org/10.1002/lol2.10150, 2020.
Ferré, B., Durrieu de Madron, X., Estournel, C., Ulses, C., and Le Corre, G.: Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean, Cont. Shelf Res., 28, 2071–2091, https://doi.org/10.1016/j.csr.2008.02.002, 2008.
Fiordelmondo, C., Manini, E., Gambi, C., and Pusceddu, A.: Short-Term Impact of Clam Harvesting on Sediment Chemistry, Benthic Microbes and Meiofauna in the Goro Lagoon (Italy), Chem. Ecol., 19, 173–187, https://doi.org/10.1080/0275754031000119924, 2003.
Goldberg, R., Rose, J. M., Mercaldo-Allen, R., Meseck, S. L., Clark, P., Kuropat, C., and Pereira, J. J.: Effects of hydraulic dredging on the benthic ecology and sediment chemistry on a cultivated bed of the Northern quahog, Mercenaria mercenaria, Aquaculture, 428–429, 150–157, https://doi.org/10.1016/j.aquaculture.2014.03.012, 2014.
Hale, R., Godbold, J. A., Sciberras, M., Dwight, J., Wood, C., Hiddink, J. G., and Solan, M.: Mediation of macronutrients and carbon by post-disturbance shelf sea sediment communities, Biogeochemistry, 135, 121–133, https://doi.org/10.1007/s10533-017-0350-9, 2017.
Hiddink, J. G., Jennings, S., Sciberras, M., Szostek, C. L., Hughes, K. M., Ellis, N., Rijnsdorp, A. D., McConnaughey, R. A., Mazor, T., Hilborn, R., Collie, J. S., Pitcher, C. R., Amoroso, R. O., Parma, A. M., Suuronen, P., and Kaiser, M. J.: Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance, P. Natl. Acad. Sci. USA, 114, 8301–8306, https://doi.org/10.1073/pnas.1618858114, 2017.
Hiddink, J. G., Jennings, S., Sciberras, M., Bolam, S. G., Cambiè, G., McConnaughey, R. A., Mazor, T., Hilborn, R., Collie, J. S., Pitcher, C. R., Parma, A. M., Suuronen, P., Kaiser, M. J., and Rijnsdorp, A. D.: Assessing bottom trawling impacts based on the longevity of benthic invertebrates, edited by V. Trenkel, J. Appl. Ecol., 56, 1075–1084, https://doi.org/10.1111/1365-2664.13278, 2019.
Hiddink, J. G., van de Velde, S. J., McConnaughey, R. A., De Borger, E., Tiano, J., Kaiser, M. J., Sweetman, A. K., and Sciberras, M.: Quantifying the carbon benefits of ending bottom trawling, Nature, 617, E1–E2, https://doi.org/10.1038/s41586-023-06014-7, 2023.
Huettel, M., Berg, P., and Kostka, J. E.: Benthic Exchange and Biogeochemical Cycling in Permeable Sediments, Ann. Rev. Mar. Sci., 6, 23–51, https://doi.org/10.1146/annurev-marine-051413-012706, 2014.
Keil, R. G., Tsamakis, E., Giddings, J. C., and Hedges, J. I.: Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washington coast, Geochim. Cosmochim. Ac., 62, 1347–1364, https://doi.org/10.1016/S0016-7037(98)00080-5, 1998.
Kroodsma, D. A., Mayorga, J., Hochberg, T., Miller, N. A., Boerder, K., Ferretti, F., Wilson, A., Bergman, B., White, T. D., Block, B. A., Woods, P., Sullivan, B., Costello, C., and Worm, B.: Tracking the global footprint of fisheries, Science, 359, 904–908, https://doi.org/10.1126/science.aao5646, 2018.
Lamarque, B., Deflandre, B., Galindo Dalto, A., Schmidt, S., Romero-Ramirez, A., Garabetian, F., Dubosq, N., Diaz, M., Grasso, F., Sottolichio, A., Bernard, G., Gillet, H., Cordier, M.-A., Poirier, D., Lebleu, P., Derriennic, H., Danilo, M., Murilo Barboza Tenório, M., and Grémare, A.: Spatial Distributions of Surface Sedimentary Organics and Sediment Profile Image Characteristics in a High-Energy Temperate Marine RiOMar: The West Gironde Mud Patch, J. Mar. Sci. Eng., 9, 242, https://doi.org/10.3390/jmse9030242, 2021.
Legge, O., Johnson, M., Hicks, N., Jickells, T., Diesing, M., Aldridge, J., Andrews, J., Artioli, Y., Bakker, D. C. E., Burrows, M. T., Carr, N., Cripps, G., Felgate, S. L., Fernand, L., Greenwood, N., Hartman, S., Kröger, S., Lessin, G., Mahaffey, C., Mayor, D. J., Parker, R., Queirós, A. M., Shutler, J. D., Silva, T., Stahl, H., Tinker, J., Underwood, G. J. C., Van Der Molen, J., Wakelin, S., Weston, K., and Williamson, P.: Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences, Front. Mar. Sci., 7, 143, https://doi.org/10.3389/fmars.2020.00143, 2020.
Liu, X.-S., Xu, W.-Z., Cheung, S. G., and Shin, P. K. S.: Response of meiofaunal community with special reference to nematodes upon deployment of artificial reefs and cessation of bottom trawling in subtropical waters, Hong Kong, Mar. Pollut. Bull., 63, 376–384, https://doi.org/10.1016/j.marpolbul.2010.11.019, 2011.
Martín, J., Puig, P., Masqué, P., Palanques, A., and Sánchez-Gómez, A.: Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon, PLoS One, 9, e104536, https://doi.org/10.1371/journal.pone.0104536, 2014a.
Martín, J., Puig, P., Palanques, A., and Giamportone, A.: Commercial bottom trawling as a driver of sediment dynamics and deep seascape evolution in the Anthropocene, Anthropocene, 7, 1–15, https://doi.org/10.1016/j.ancene.2015.01.002, 2014b.
Mayer, L. M.: Surface area control of organic carbon accumulation in continental shelf sediments, Geochim. Cosmochim. Ac., 58, 1271–1284, https://doi.org/10.1016/0016-7037(94)90381-6, 1994.
Mayer, L. M., Schick, D. F., Findlay, R. H., and Rice, D. L.: Effects of commercial dragging on sedimentary organic matter, Mar. Environ. Res., 31, 249–261, https://doi.org/10.1016/0141-1136(91)90015-Z, 1991.
McLaverty, C., Eigaard, O., Dinesen, G., Gislason, H., Kokkalis, A., Erichsen, A., and Petersen, J.: High-resolution fisheries data reveal effects of bivalve dredging on benthic communities in stressed coastal systems, Mar. Ecol. Prog. Ser., 642, 21–38, https://doi.org/10.3354/meps13330, 2020a.
McLaverty, C., Eigaard, O. R., Gislason, H., Bastardie, F., Brooks, M. E., Jonsson, P., Lehmann, A., and Dinesen, G. E.: Using large benthic macrofauna to refine and improve ecological indicators of bottom trawling disturbance, Ecol. Indic., 110, 105811, https://doi.org/10.1016/j.ecolind.2019.105811, 2020b.
Mengual, B., Cayocca, F., Le Hir, P., Draye, R., Laffargue, P., Vincent, B., and Garlan, T.: Influence of bottom trawling on sediment resuspension in the `Grande-Vasière' area (Bay of Biscay, France), Ocean Dynam., 66, 1181–1207, https://doi.org/10.1007/s10236-016-0974-7, 2016.
Meseck, S. L., Mercaldo-Allen, R., Rose, J. M., Clark, P., Kuropat, C., Pereira, J. J., and Goldberg, R.: Effects of Hydraulic Dredging for Mercenaria mercenaria, Northern Quahog, on Sediment Biogeochemistry, J. World Aquac. Soc., 45, 301–311, https://doi.org/10.1111/jwas.12114, 2014.
Morys, C., Brüchert, V., and Bradshaw, C.: Impacts of bottom trawling on benthic biogeochemistry in muddy sediments: Removal of surface sediment using an experimental field study, Mar. Environ. Res., 169, 105384, https://doi.org/10.1016/j.marenvres.2021.105384, 2021.
Muntadas, A., de Juan, S., and Demestre, M.: Integrating the provision of ecosystem services and trawl fisheries for the management of the marine environment, Sci. Total Environ., 506–507, 594–603, https://doi.org/10.1016/j.scitotenv.2014.11.042, 2015.
Norse, E. A., Brooke, S., Cheung, W. W. L., Clark, M. R., Ekeland, I., Froese, R., Gjerde, K. M., Haedrich, R. L., Heppell, S. S., Morato, T., Morgan, L. E., Pauly, D., Sumaila, R., and Watson, R.: Sustainability of deep-sea fisheries, Mar. Policy, 36, 307–320, https://doi.org/10.1016/J.MARPOL.2011.06.008, 2012.
Oberle, F. K. J., Puig, P., and Martín, J.: Fishing Activities, in Submarine Geomorphology, edited by: Micallef, A., Krastel, S., and Savini, A., 503–534, Springer, Cham., 2018.
Palanques, A., Puig, P., Guillén, J., Demestre, M., and Martín, J.: Effects of bottom trawling on the Ebro continental shelf sedimentary system (NW Mediterranean), Cont. Shelf Res., 72, 83–98, https://doi.org/10.1016/j.csr.2013.10.008, 2014.
Paradis, S.: Demersal fishery Impacts on Sedimentary Organic Matter (DISOM), ETH Zürich [data set], https://doi.org/10.3929/ethz-b-000634336, 2023.
Paradis, S., Pusceddu, A., Masqué, P., Puig, P., Moccia, D., Russo, T., and Lo Iacono, C.: Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean), Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, 2019.
Paradis, S., Goñi, M., Masqué, P., Durán, R., Arjona-Camas, M., Palanques, A., and Puig, P.: Persistence of Biogeochemical Alterations of Deep-Sea Sediments by Bottom Trawling, Geophys. Res. Lett., 48, e2020GL091279, https://doi.org/10.1029/2020GL091279, 2021.
Paradis, S., Arjona-Camas, M., Goñi, M., Palanques, A., Masqué, P., and Puig, P.: Contrasting particle fluxes and composition in a submarine canyon affected by natural sediment transport events and bottom trawling, Front. Mar. Sci., 9, 1017052, https://doi.org/10.3389/fmars.2022.1017052, 2022.
Polymenakou, P. N., Pusceddu, A., Tselepides, A., Polychronaki, T., Giannakourou, A., Fiordelmondo, C., Hatziyanni, E., and Danovaro, R.: Benthic microbial abundance and activities in an intensively trawled ecosystem (Thermaikos Gulf, Aegean Sea), Cont. Shelf Res., 25, 2570–2584, https://doi.org/10.1016/J.CSR.2005.08.018, 2005.
Pusceddu, A., Fiordelmondo, C., Polymenakou, P., Polychronaki, T., Tselepides, A., and Danovaro, R.: Effects of bottom trawling on the quantity and biochemical composition of organic matter in coastal marine sediments (Thermaikos Gulf, northwestern Aegean Sea), Cont. Shelf Res., 25, 2491–2505, https://doi.org/10.1016/j.csr.2005.08.013, 2005a.
Pusceddu, A., Grémare, A., Escoubeyrou, K., Amouroux, J. M., Fiordelmondo, C., and Danovaro, R.: Impact of natural (storm) and anthropogenic (trawling) sediment resuspension on particulate organic matter in coastal environments, Cont. Shelf Res., 25, 2506–2520, https://doi.org/10.1016/j.csr.2005.08.012, 2005b.
Pusceddu, A., Dell'Anno, A., Fabiano, M., and Danovaro, R.: Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status, Mar. Ecol. Prog. Ser., 375, 41–52, https://doi.org/10.3354/meps07735, 2009.
Pusceddu, A., Bianchelli, S., Martin, J., Puig, P., Palanques, A., Masque, P., and Danovaro, R.: Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning, P. Natl. Acad. Sci. USA, 111, 8861–8866, https://doi.org/10.1073/pnas.1405454111, 2014.
Pusceddu, A., Bianchelli, S., and Danovaro, R.: Quantity and biochemical composition of particulate organic matter in a highly trawled area (Thermaikos Gulf, Eastern Mediterranean Sea), Adv. Oceanogr. Limnol., 6, 21–32, https://doi.org/10.4081/aiol.2015.5448, 2015.
Ragnarsson, S. and Steingrimsson, S. A.: Spatial distribution of otter trawl effort in Icelandic waters: comparison of measures of effort and implications for benthic community effects of trawling activities, ICES J. Mar. Sci., 60, 1200–1215, https://doi.org/10.1016/S1054-3139(03)00143-7, 2003.
Rajesh, N., Muthuvelu, S., Mahadevan, G., and Murugesan, P.: Impact of bottom trawling on water and sediment characteristics of Cuddalore and Parangipettai coastal waters, Indian J. Geo-Marine Sci., 48, 639–646, 2019.
Ramalho, S. P., Almeida, M., Esquete, P., Génio, L., Ravara, A., Rodrigues, C. F., Lampadariou, N., Vanreusel, A., and Cunha, M. R.: Bottom-trawling fisheries influence on standing stocks, composition, diversity and trophic redundancy of macrofaunal assemblages from the West Iberian Margin, Deep-Sea Res. Pt. I, 138, 131–145, https://doi.org/10.1016/j.dsr.2018.06.004, 2018.
Ramalho, S. P., Lins, L., Soetaert, K., Lampadariou, N., Cunha, M. R., Vanreusel, A., and Pape, E.: Ecosystem Functioning Under the Influence of Bottom-Trawling Disturbance: An Experimental Approach and Field Observations From a Continental Slope Area in the West Iberian Margin, Front. Mar. Sci., 7, 457, https://doi.org/10.3389/fmars.2020.00457, 2020.
Rohatgi, A.: Webplotdigitizer, https://automeris.io/WebPlotDigitizer (last access: 16 March 2022), 2022.
Rosli, N., Leduc, D., Rowden, A. A., Clark, M. R., Probert, P. K., Berkenbusch, K., and Neira, C.: Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance, PeerJ, 4, e2154, https://doi.org/10.7717/peerj.2154, 2016.
Sala, E., Mayorga, J., Bradley, D., Cabral, R. B., Atwood, T. B., Auber, A., Cheung, W., Costello, C., Ferretti, F., Friedlander, A. M., Gaines, S. D., Garilao, C., Goodell, W., Halpern, B. S., Hinson, A., Kaschner, K., Kesner-Reyes, K., Leprieur, F., McGowan, J., Morgan, L. E., Mouillot, D., Palacios-Abrantes, J., Possingham, H. P., Rechberger, K. D., Worm, B., and Lubchenco, J.: Protecting the global ocean for biodiversity, food and climate, Nature, 592, 397–402, https://doi.org/10.1038/s41586-021-03371-z, 2021.
Sánchez, A., Aguíñiga, S., Lluch-Belda, D., Camalich-Carpizo, J., Del Monte-Luna, P., Ponce-Díaz, G., and Arreguín-Sánchez, F.: Geoquímica sedimentaria en áreas de pesca de arrastre y no arrastre de fondo en la costa de Sinaloa-Sonora, Golfo de California, Boletín la Soc. Geológica Mex., 61, 25–30, http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-33222009000100004&lng=es&nrm=iso&tlng=es (last access: 23 November 2022), 2009.
Sañé, E., Martín, J., Puig, P., and Palanques, A.: Organic biomarkers in deep-sea regions affected by bottom trawling: pigments, fatty acids, amino acids and carbohydrates in surface sediments from the La Fonera (Palamós) Canyon, NW Mediterranean Sea, Biogeosciences, 10, 8093–8108, https://doi.org/10.5194/bg-10-8093-2013, 2013.
Sciberras, M., Parker, R., Powell, C., Robertson, C., Kröger, S., Bolam, S., and Geert Hiddink, J.: Impacts of bottom fishing on the sediment infaunal community and biogeochemistry of cohesive and non-cohesive sediments, Limnol. Oceanogr., 61, 2076–2089, https://doi.org/10.1002/lno.10354, 2016.
Sciberras, M., Tait, K., Brochain, G., Hiddink, J. G., Hale, R., Godbold, J. A., and Solan, M.: Mediation of nitrogen by post-disturbance shelf communities experiencing organic matter enrichment, Biogeochemistry, 135, 135–153, https://doi.org/10.1007/s10533-017-0370-5, 2017.
Sciberras, M., Hiddink, J. G., Jennings, S., Szostek, C. L., Hughes, K. M., Kneafsey, B., Clarke, L. J., Ellis, N., Rijnsdorp, A. D., McConnaughey, R. A., Hilborn, R., Collie, J. S., Pitcher, C. R., Amoroso, R. O., Parma, A. M., Suuronen, P., and Kaiser, M. J.: Response of benthic fauna to experimental bottom fishing: A global meta-analysis, Fish Fish., 19, 698–715, https://doi.org/10.1111/faf.12283, 2018.
Sheridan, P. and Doerr, J.: Short-Term Effects of the Cessation of Shrimp Trawling on Texas Benthic Habitats, Am. Fish. Soc. Symp., 41, 571–578, 2005.
Silveira, S., Ortega, I., and Dumont, L. F. C.: Artisanal trawling impact over prey availability and diet of estuarine megabenthic organisms in southern Brazil, Estuar. Coast. Shelf Sci., 237, 106682, https://doi.org/10.1016/j.ecss.2020.106682, 2020.
Simboura, N., Zenetos, A., Pancucci-Papadopoulou, M.-A., Thessalou-Legaki, M., and Papaspyrou, S.: A Baseline Study on Benthic Species Distribution in Two Neighbouring Gulfs, With and Without Access to Bottom Trawling, Mar. Ecol., 19, 293–309, https://doi.org/10.1111/j.1439-0485.1998.tb00469.x, 2008.
Smith, C., Papadopoulou, K. N., and Diliberto, S.: Impact of otter trawling on an eastern Mediterranean commercial trawl fishing ground, ICES J. Mar. Sci., 57, 1340–1351, https://doi.org/10.1006/jmsc.2000.0927, 2000.
Sparks-McConkey, P. J. and Watling, L.: Effects on the ecological integrity of a soft-bottom habitat from a trawling disturbance, Hydrobiologia, 456, 73–85, https://doi.org/10.1023/A:1013071629591, 2001.
Stone, R. P., Masuda, M., and Baldwin, A. P.: Characteristics of Benthic Sediments From Areas Open and Closed to Bottom Trawling in the Gulf of Alaska, U.S. Department of Commerce, NOAA technical memorandum NMFS-AFSC, 140, https://repository.library.noaa.gov/view/noaa/22851 (last access: 21 May 2022), 2003.
Tiano, J. C., Witbaard, R., Bergman, M. J. N., van Rijswijk, P., Tramper, A., van Oevelen, D., and Soetaert, K.: Acute impacts of bottom trawl gears on benthic metabolism and nutrient cycling, edited by S. Degraer, ICES J. Mar. Sci., 76, 1917–1930, https://doi.org/10.1093/icesjms/fsz060, 2019.
Tiano, J. C., De Borger, E., O'Flynn, S., Cheng, C. H., van Oevelen, D., and Soetaert, K.: Physical and electrical disturbance experiments uncover potential bottom fishing impacts on benthic ecosystem functioning, J. Exp. Mar. Bio. Ecol., 545, 151628, https://doi.org/10.1016/j.jembe.2021.151628, 2021.
Tiano, J. C., Depestele, J., Van Hoey, G., Fernandes, J., van Rijswijk, P., and Soetaert, K.: Trawling effects on biogeochemical processes are mediated by fauna in high-energy biogenic-reef-inhabited coastal sediments, Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, 2022.
Tiano, J. C., De Borger, E., Paradis, S., Bradshaw, C., Morys, C., Pusceddu, A., Ennas, C., Soetaert, K., Puig, P., Masqué, P., and Sciberras, M.: Global meta-analysis of demersal fishing impacts on organic carbon and associated biogeochemistry, Fish Fish., accepted, https://doi.org/10.1111/faf.12855, 2024.
Trimmer, M., Petersen, J., Sivyer, D., Mills, C., Young, E., and Parker, E.: Impact of long-term benthic trawl disturbance on sediment sorting and biogeochemistry in the southern North Sea, Mar. Ecol. Prog. Ser., 298, 79–94, https://doi.org/10.3354/meps298079, 2005.
Tsikopoulou, I., Smith, C. J., Papadopoulou, K. N., and Austen, M. C.: Linking species functional traits to specific biogeochemical processes under trawling pressure, Biology, 11, 1378, https://doi.org/10.3390/biology11101378, 2022.
Tuck, I. D., Hall, S. J., Robertson, M. R., Armstrong, E., and Basford, D. J.: Effects of physical trawling disturbance in a previously unfished sheltered Scottish sea loch, Mar. Ecol. Prog. Ser., 162, 227–242, https://doi.org/10.3354/meps162227, 1998.
van de Velde, S., Van Lancker, V., Hidalgo-Martinez, S., Berelson, W. M., and Meysman, F. J. R.: Anthropogenic disturbance keeps the coastal seafloor biogeochemistry in a transient state, Sci. Rep., 8, 5582, https://doi.org/10.1038/s41598-018-23925-y, 2018.
Warnken, K. W., Gill, G. A., Dellapenna, T. M., Lehman, R. D., Harper, D. E., and Allison, M. A.: The effects of shrimp trawling on sediment oxygen consumption and the fluxes of trace metals and nutrients from estuarine sediments, Estuar. Coast. Shelf Sci., 57, 25–42, https://doi.org/10.1016/S0272-7714(02)00316-5, 2003.
Watling, L., Findlay, R. H., Mayer, L. M., and Schick, D. F.: Impact of a scallop drag on the sediment chemistry, microbiota, and faunal assemblages of a shallow subtidal marine benthic community, J. Sea Res., 46, 309–324, https://doi.org/10.1016/S1385-1101(01)00083-1, 2001.
Watson, R. A. and Morato, T.: Fishing down the deep: Accounting for within-species changes in depth of fishing, Fish. Res., 140, 63–65, https://doi.org/10.1016/J.FISHRES.2012.12.004, 2013.
Watson, R. A. and Tidd, A.: Mapping nearly a century and a half of global marine fishing: 1869–2015, Mar. Policy, 93, 171–177, https://doi.org/10.1016/j.marpol.2018.04.023, 2018.
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
DISOM is a database that compiles data of 71 independent studies that assess the effect of...
Altmetrics
Final-revised paper
Preprint