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Abstract. Marine sediments are among the largest carbon reservoirs on the planet and play a key role in the
global cycling of organic matter. Bottom fisheries are the most widespread anthropogenic physical disturbance
to seabed habitats, prompting NGOs and governments to act on regulating mobile bottom-contacting fishing
gear. However, the scientific evidence of the effects of bottom trawling on sediment biogeochemistry is highly
diverse and presents contrasting results. Here we present a global harmonized dataset of 71 independent studies
that assess the effects of demersal fisheries on sedimentological (i.e. grain size, porosity) and biogeochemical
(i.e. organic carbon, phytopigments, nutrient fluxes) properties: the Demersal fishery Impacts on Sedimentary
Organic Matter (DISOM) database (Paradis, 2023; https://doi.org/10.3929/ethz-b-000634336). We identify con-
siderable gaps, namely in the geographical extension of the data; coverage of environmental predictors (i.e.
seasons); fishing descriptors such as the availability of true controls, quantification of fishing effort, and dis-
tribution of fishing gear types; and biogeochemical variables that study the remineralization of organic matter.
Future studies should address these data gaps to enhance the comprehensiveness of the dataset. With this harmo-
nized database, we aim to allow researchers to explore the effects of demersal fisheries in variable environmental
settings to disentangle the effects of this disturbance and provide efficient management strategies.
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1 Introduction

Demersal fishing is one of the most destructive anthro-
pogenic activities in the ocean given its widespread occur-
rence, covering nearly all continental margins (Amoroso et
al., 2018; Kroodsma et al., 2018) and increasing in inten-
sity over time (Watson and Tidd, 2018). Fishing with mobile
bottom-contacting fishing gear (e.g. trawls, dredges) alters
the composition of benthic communities, with a general de-
crease in faunal biomass and biodiversity after disturbance,
though effects vary in accordance with fishing intensity, type
of fishing gear, sediment type, and biological traits of the
resident community (e.g. mobility and longevity) (Hiddink
et al., 2017, 2019; Sciberras et al., 2018). In addition, the
mixing and resuspension of sediment that results from drag-
ging the gears across the seafloor changes the biogeochemi-
cal and physical characteristics of fishing grounds (Martín et
al., 2014b; Oberle et al., 2018).

Results from trawling studies on sediment biogeochem-
istry are variable (Epstein et al., 2022). Certain studies have
observed that demersal fisheries reduce sedimentary organic
matter (Hale et al., 2017; Mayer et al., 1991; Tiano et al.,
2019), and others have reported increases (Palanques et al.,
2014; Pusceddu et al., 2005a; Sciberras et al., 2016), while
some have found statistically insignificant effects (Bhagi-
rathan et al., 2010; Smith et al., 2000). Similarly, variable
effects have been observed on the organic matter remineral-
ization rates, with both increases (Paradis et al., 2019; Poly-
menakou et al., 2005) and decreases (Tiano et al., 2019;
Warnken et al., 2003) after fishing disturbance. The incon-
sistency in these results highlights the fact that the effects
of demersal fisheries on biogeochemical processes on the
seafloor may be context- and site-specific, and caution must
be taken when upscaling the effects to global demersal fish-
ing grounds (Sala et al., 2021; Hiddink et al., 2023).

The wide array of studies assessing the effects of dem-
ersal fisheries have their own unique designs and sampling
strategies, which could affect the observed outcomes if they
are not considered: manipulative experimental studies report
the immediate effect of sediment disturbance, whereas com-
parative studies tend to assess chronic effects of demersal
fisheries. In addition, the environmental conditions of the
study area such as sediment grain size influence the effect
of sediment disturbance. Coarser-grained sediments present
in dynamic environments with strong bottom currents are
generally characterized by low organic carbon contents and
higher permeabilities regimes that lead to lower organic mat-
ter accumulation when compared to finer-grained muddy en-
vironments (Burdige, 2007; Huettel et al., 2014). In contrast,
higher organic carbon contents are found in muddy areas of
the seafloor given their higher surface area (Keil et al., 1998;
Mayer, 1994). In addition, fishing descriptors such as gear
penetration depth, fishing intensity, and frequency between
disturbance events determine the effect of bottom fishing on
benthic communities (Hiddink et al., 2017; Sciberras et al.,

2018), as well as on sediment biogeochemistry (Depestele
et al., 2019; Tiano et al., 2019, 2021). Similarly, different re-
sults may be obtained if the study is conducted in an area that
has been chronically fished, due to the cumulative effects of
sediment disturbance (De Borger et al., 2021).

To properly understand the effects of bottom trawling on
sediment biogeochemistry in diverse sedimentary environ-
ments worldwide, a global harmonized dataset of the studies
that investigate the effects of mobile bottom-contacting fish-
ing gear on sediment biogeochemistry is needed. The need
for this global harmonized dataset is reflected by the growing
attention on the impacts of demersal fisheries on sediment or-
ganic carbon stocks (Legge et al., 2020) and the proposal of
variable management strategies (Black et al., 2022; Epstein
and Roberts, 2022). This harmonized database will allow re-
searchers, managers, and policymakers to determine the bio-
geochemical effects of bottom trawling within a global con-
text while also considering context-dependent factors. More-
over, it will allow reproducible meta-analyses to be con-
ducted from different perspectives, as well as training and
validating models that upscale the biogeochemical impacts
of bottom trawling on a global scale.

Here we present the first global dataset that compiles infor-
mation on the sedimentological (i.e. grain size, porosity) and
biogeochemical (i.e. organic carbon, phytopigments, nutri-
ent fluxes) variables. Importantly, this database harmonizes
metadata of the different studies, given their inevitable in-
fluence on their findings. Finally, we also specify important
metadata that should be reported in future studies to allow
their inclusion in global meta-analyses.

2 Data collection

2.1 Literature review

A literature search was conducted in Web of Science and
Scopus for publications that included any of the following
keywords: (trawling OR dredging), (sediment OR seafloor),
(organic matter OR nutrient OR organic carbon). This search
produced 195 studies that spanned 1964 to 2022 (Table S1 in
the Supplement). A preliminary screening process was per-
formed using the title and abstract to assess whether the ar-
ticles studied the effects of sediment disturbance by demer-
sal fishing gear on biogeochemical properties of the seafloor.
This preliminary screening discarded 129 studies, either be-
cause they were not studying the impact of fishing (87), they
were studying the impact of demersal fishing but not on the
seafloor (16), or they did not address its effects on sediment
biogeochemistry or sedimentology (12). Additional studies
were discarded when they attributed demersal fishing as a
possible explanation of their results but did not study its ef-
fects directly (12) or when the article could not be accessed
(2) (Table S1). Only studies with empirical data obtained
from sampling and consequent analyses of sediments ex-
posed to demersal fisheries were included in the database.
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Table 1. References of publications included in DISOM. Additional information on the publications that were screened prior to their inclusion
in DISOM is given in Table S1.

Reference Reference (continued) Reference (continued)

Tsikopoulou et al. (2022) Hale et al. (2017) Brown et al. (2005)
Tiano et al. (2022) Sciberras et al. (2016) Polymenakou et al. (2005)
Lamarque et al. (2021) Muntadas et al. (2015) Pusceddu et al. (2005a)
Morys et al. (2021) Costa and Netto (2014) Trimmer et al. (2005)
Paradis et al. (2021) Dannheim et al. (2014) Sheridan and Doerr (2005)
Ferguson et al. (2020) Goldberg et al. (2014) Falcão et al. (2003)
McLaverty et al. (2020a) Meseck et al. (2014) Stone et al. (2003)
McLaverty et al. (2020b) Martin et al. (2014a) Warnken et al. (2003)
Silveira et al. (2020) Palanques et al. (2014) Fiordelmondo et al. (2003)
Ramalho et al. (2020) Pusceddu et al. (2014) Sparks-McConkey and Watling (2001)
Rajesh et al. (2019) Sañé et al. (2013) Watling et al. (2001)
Paradis et al. (2019) Atkinson et al. (2011) Dolmer et al. (2001)
Tiano et al. (2019) Liu et al. (2011) Smith et al. (2000)
Ramalho et al. (2018) Bhagirathan et al. (2010) Tuck et al. (1998)
Van de Velde et al. (2018) Sánchez et al. (2009) Brylinsky et al. (1994)
Sciberras et al. (2017) Simboura et al. (2008) Eleftheriou and Robertson (1992)
Rosli et al. (2016) Cartes et al. (2007) Mayer et al. (1991)

Hence, data obtained from modelling or manipulation exper-
iments in the laboratory were excluded.

From the 66 publications that passed this preliminary
screening, only the studies that complied with the following
inclusion criteria were retained: (i) studies sampled fished
and control sites and/or before and after the fishing distur-
bance or fishing grounds with different fishing intensities
(e.g. gradient studies), (ii) studies provided data of sediment
geochemical variables (Table S2), and (iii) studies presented
novel data. This last inclusion criterion was added because
several studies belong to the same project (e.g. INTERPOL
project (Polymenakou et al., 2005; Pusceddu et al., 2005a);
RESPONSE project (Cartes et al., 2007; De Juan and Cartes,
2011; Palanques et al., 2014)) and often present duplicate
results that could introduce bias to statistical analyses. This
second screening process led to 51 publications that were in-
cluded in the database (Table 1).

If a publication presented data for multiple independent
studies, they were separated into several independent stud-
ies. This was the case if a publication included different study
designs (e.g. Brown et al., 2005), sampled in different geo-
graphical locations (e.g. Atkinson et al., 2011; McLaverty et
al., 2020a; Muntadas et al., 2015; Rosli et al., 2016), sam-
pled in different environmental settings (e.g. Sciberras et al.,
2016, 2017), or compared different fishing gears (e.g. Tiano
et al., 2019). This led to 71 independent studies from 51 pub-
lications. Mean, measure of variability (i.e. standard devia-
tion, standard error, confidence interval), and sample sizes
of sedimentological (e.g. grain size, dry bulk density) and
biogeochemical (e.g. organic carbon (OC) content, total ni-
trogen (TN), oxygen consumption) variables were extracted
from these 71 studies. When data were only presented as fig-

ures and not in tabular form, the authors were contacted to
provide missing data, or the values were extracted using the
freely accessible WebPlotDigitizer software (Rohatgi, 2022).

2.2 Data harmonization

Given the diverse configurations of individual studies and
their context-specific outcomes, it is imperative to harmonize
them to facilitate the comparability of findings. Harmoniza-
tion was conducted for the study designs, environmental fac-
tors, and fishing descriptors.

Studies were separated into three main study designs:
experimental, comparative control-impact, and comparative
gradient studies. Experimental studies are those where areas
were experimentally disturbed using a specific fishing gear.
These either consisted of collecting samples within and out-
side an experimentally fished area (control-impact study, CI),
before and after an area was experimentally fished (before–
after study, BA), or a combination of both (before–after–
control-impact study, BACI). Comparative control-impact
studies were those where an area known to be fished and at
least one undisturbed control site with similar environmen-
tal conditions were sampled. Finally, comparative gradient
studies collected samples in several sites exposed to differ-
ent fishing intensities to assess the effect of fishing effort on
sediment biogeochemistry.

Categories of environmental factors such as habitat type
(sediment type) and seasonality were standardized across all
studies. Two different habitat types were defined based on
the sedimentological properties of the sites: “muddy” if the
percentage of mud (sediment grain size < 63 µm) was higher
than that of sand or “sandy” if the percentage of sand was
higher than mud. If this information was not available, we
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Table 2. Demersal fishing gear types included in DISOM.

Gear type Characteristics

Otter trawl Net is held open by two boards (otter trawls) at its extremes, which provide
greater flexibility to adapt to rougher and steeper terrain.a

Beam trawl Net is held open by a horizontal bar (beam) above the seafloor and collects
demersal fauna that live on the seafloor.a

Dredge Net is held open by a horizontal metal bar or blade that scrapes or digs the
seafloor depending on the targeted commercial species.a

Electric pulse trawl Electrodes produce electric stimuli that drive flatfish out of the sediment, which
are then captured by the dragged net behind.b

Artisanal Combination of artisanal gears (passive and active) at night using light to pro-
mote the capture of demersal fisheries.c

Undefined Undefined fishing gear type, usually a combination of otter trawls, beam trawls,
and dredges.

a Martín et al. (2014b). b Tiano et al. (2019). c Silveira et al. (2020).

Table 3. List of harmonized response variables and harmonization method employed in DISOM.

Harmonized response variable Harmonization method

Sand fraction Sum of all sand fractions (e.g. fine sand, coarse sand)
Mud content (< 63 µm) Sum of silt and clay fraction
Phytopigments Sum of phaeopigment and chlorophyll concentrations
TOC / TN Molar ratio between TOC and TN contents
Biopolymeric fraction of organic carbon Sum of protein, lipid, and carbohydrate concentrations

extracted this classification based on the paper’s description
or from an associated bibliography of the study area. Seasons
varied throughout the different climatic zones encompassed
in this database. Although local variations in seasons may ex-
ist, temperate zones are usually characterized by four seasons
(winter, spring, summer, autumn), and tropical zones usually
have two main contrasting seasons (wet and dry); the dataset
was harmonized into these different categories.

Regarding the metadata associated with fishing activity,
we included several parameters of interest: fishing gear type,
fishing effort, time since first and last disturbance, and if
the site had been historically fished. Fishing gear type was
classified into six main categories: otter trawls, beam trawls,
dredges, electric pulse trawl, artisanal fishing gears, and un-
defined fishing gears (Table 2). If a study did not specify what
type of fishing technique was used, it was extracted from
other studies or technical reports from the area, and if this in-
formation could not be obtained anywhere, it was assigned as
“undefined”. While this classification groups together gears
with similar properties, it may mask the nuances of the de-
gree of impact each specific fishing gear could have. Hence,
we advise future studies to specify, in addition to this general
gear type, the model, dimensions, and the weight of the gear

Figure 1. Structure of the relational database.

type as well as the targeted commercial species, all of which
could affect the magnitude of the impacts.

Fishing effort was defined inconsistently among studies:
some reported fishing effort as the density of fishing vessels
(Trimmer et al., 2005) and others as the number of hauls per
surface area (Paradis et al., 2021) or as the presence of trawl
tracks using side-scan sonars (Muntadas et al., 2015). When-
ever possible, we harmonized fishing effort to fishing fre-
quency (yr−1), as adopted in several meta-analyses of fishing
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Figure 2. Spatial (a) and temporal (b) distribution of number of studies and publications that have addressed the impacts of demersal
fishing on sediment biogeochemistry and sedimentology. Fishing grounds were extracted from Global Fishing Watch v.2.0 (Kroodsma et al.,
2018). Note that Global Fishing Watch does not distinguish between demersal and pelagic trawling, so this spatial extent should be used
informatively.

disturbance (Hiddink et al., 2017; Sciberras et al., 2018). This
unit is equivalent to swept area ratio (km2 km−2 yr−1), often
employed in fishery studies, and is representative of the num-
ber of disturbances that the site is experiencing. In the case of
experimental studies, we harmonized the data to the number
of times the entire experimental area was fished prior to sam-
pling, considering only the known fishing disturbance by the
experimental setup and ignoring fishing effort by commer-
cial demersal fisheries in the area, if applicable. In the case
of comparative control-impact and gradient studies, ∼ 75 %
of the studies reported fishing intensity as fishing frequency,
and in the remaining cases it was calculated by multiplying
the number of hours fished by the speed and the width of the
fishing gear, following the methods described by Hiddink et
al. (2017).

To account for variations of the cumulative effect of dem-
ersal fishing disturbance on the seafloor, as well as the recov-
ery of fishing grounds, additional fishing-related metadata at-
tributes were extracted. For instance, time since fishing can
be used to assess the recovery of fishing grounds after its dis-
turbance and is often reported in experimental study designs
as part of their research objectives (Brylinsky et al., 1994;
Falcão et al., 2003; Silveira et al., 2020). This variable can

not only be used for the impacted site but also for control
sites. Several studies used areas that have been fished in the
past but have not been disturbed recently due to, for exam-
ple, a temporary ban (Dannheim et al., 2014) or the recent
establishment of a marine protected area (MPA; Brown et al.,
2005; Sparks-McConkey and Watling, 2001) as their control
site, whereas some studies were able to identify areas that
had never been fished as their control sites. To account for
these contrasting control sites, we extracted the time since
fishing, if available, and created an additional column “His-
torically fished” that classifies whether a site had been fished
in the past or not. To account for the cumulative impact of
sediment disturbance (De Borger et al., 2021), we also ex-
tracted how much time had elapsed since the first disturbance
(i.e. when fishing in the area had first begun), and, if this in-
formation was not available, a related bibliography describ-
ing historical fishing activity of the area was consulted.

Finally, the different response variables were harmonized,
and complementary variables were calculated when possi-
ble (Table 3). For instance, although some studies provided
a more precise classification of different sand fractions (e.g.
fine sand or medium sand; Ramalho et al., 2018; Silveira et
al., 2020), the majority of studies simply presented total sand
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Figure 3. Spatial distribution of study designs on global continental margins (a) and on European margins (b) in DISOM. Summary of the
different study designs in the dataset (c).

fractions (grain size > 63 µm) (Sciberras et al., 2017; Sim-
boura et al., 2008), and these were calculated whenever pos-
sible.

3 Database structure

Since each study analyses specific variables and reports dif-
ferent information, it would not be efficient to store all
the data in a single spreadsheet. Therefore, a relational
database was constructed to optimize the data storage capac-
ity, where each table includes data from different categories
that are linked together based on identifiers (i.e. primary
and foreign keys such as study_id and sample_id) (Fig. 1).
These different tables are as follows: study_description, sam-
pling_locations, and response_variables.

The first table, “study_description”, stores information re-
lated to the publication, study area, and study design (Ta-
ble S3). Since each publication can have several indepen-
dent studies based on the study design or study area (see
Sect. 2.2), a unique identifier is given to each independent
study.

The second table, “sampling_location”, stores metadata
associated with the sampling site such as its coordinates,
sampling date, habitat type, seasonality, climate zone, and
other variables related to fishing activity (e.g. fishing gear,

fishing intensity, time since disturbance) which would help
discern the effect of demersal fisheries (Table S4).

The third table, “response_variables”, stores the different
sedimentological (i.e. grain size and porosity) and biogeo-
chemical (i.e. OC, nitrogen, phytopigment, nutrient fluxes)
variables measured for each individual study and sampling
location, as well as the sample’s metadata, such as sediment
sectioning and how the data were collected (Table S5).

4 Database description

4.1 Spatiotemporal coverage of the data

This database compiled data from 71 studies that covered a
total of 907 independent locations where a series of sedimen-
tological and biogeochemical proxies were analysed to as-
sess the impacts of demersal fisheries. The majority of the 71
studies included in the database were conducted in European
waters, namely in the Mediterranean Sea (18) and in north
European seas (e.g. North Sea, Irish Sea, Baltic Sea) (21)
(Fig. 2a). Several studies were conducted in North Amer-
ica (15), mainly in the eastern margin, as well as along the
Alaskan margin, the Gulf of Mexico, and the Gulf of Cali-
fornia (Fig. 2a). Few studies were conducted in the Atlantic
Iberian margin (4), southeastern African margin (4), India
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Figure 4. Spatial distribution of habitat types on global continental margins (a) and on European margins (b) in DISOM. Summary of the
different habitat types in the dataset (c).

Figure 5. Spatial distribution of habitat types on global continental margins (a) and on European margins (b) in DISOM. Summary of the
different habitat types in the dataset (c). Note that the colour bar is centred at 130 m water depth to highlight the variations in sampling
depths.
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Figure 6. Spatial distribution of sampled seasons (filled quadrants) or whether data collected during different seasons were pooled together
yearly (black circles) on global continental margins (a) and on European margins (b) in DISOM. Summary of the different seasons sampled
in the dataset (c).

(2), Brazil (3), New Zealand (2), Australia (1), and east Asia
(1) (Fig. 1a). Despite the wide extension of fishing grounds
along the southwestern South American and the east Asian
margins, only two studies were identified in these widespread
fished margins. Although demersal fisheries occur in all con-
tinental margins, we did not find peer-reviewed studies on
trawling impacts and biogeochemistry along western South
America and western Canada, nor along the western North
African margin or the eastern Russian margin (Fig. 2a).

The first reported studies that assessed the impacts of bot-
tom trawling on sediment biogeochemistry were published in
the 1990s, with five independent studies during that decade
(Fig. 2b). An increase in the number of studies was observed
in the following decade, with 18 independent studies pub-
lished between 2000 and 2010, whereas 35 studies were pub-
lished during the last decade (2010–2020). In the last few
years (2020–2022), we have identified 13 studies that have
addressed the impacts of demersal fisheries on biogeochem-
istry, which indicates a growing interest in understanding
whether and how demersal fisheries may be altering biogeo-
chemical cycles.

4.2 Distribution of study designs

The distribution of study designs stored in DISOM is rel-
atively equal, with a similar representation of experimen-
tal (25), comparative control-impact (20), and comparative
gradient (26) studies (Fig. 3). Studies conducted on the Eu-
ropean continental margins include an equal number of the
three study designs (Fig. 3). In North America, experimental
and comparative control-impact studies have been conducted
equally, but no comparative gradient studies were carried out
(Fig. 3). Studies conducted in South America, Africa, Asia,
and Oceania only presented one typology of study design
(Fig. 3). Future studies should be carried out with all three of
the typologies of study designs in order to deepen the knowl-
edge of acute and chronic impacts and the effects of different
fishing intensity on organic matter in these regions.

4.3 Distribution of environmental conditions

Studies of the effects of different bottom fishing gear in dif-
ferent habitat types on sediment biogeochemistry are essen-
tial to understand fishing impacts using global models. The
number of independent studies in sandy and muddy habitats
is equally represented in DISOM, with 37 and 34 indepen-
dent studies in sandy and muddy habitat types, respectively

Earth Syst. Sci. Data, 16, 3547–3563, 2024 https://doi.org/10.5194/essd-16-3547-2024
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Figure 7. Spatial distribution of fishing gear type used for each study on global continental margins (a) and on European margins (b) in
DISOM. Summary of the different fishing gear type in the dataset (c).

(Fig. 4). However, except for the European and American
margin, there is an unequal spatial distribution of the stud-
ies on sandy and muddy habitats: Brazilian and southwest
African margins only presented studies on sandy environ-
ments whereas Chinese, Australian, and New Zealand mar-
gins only had studies on muddy areas of the seafloor (Fig. 4).

The majority of studies were conducted in shallow en-
vironments, at < 50 m depth, whereas few studies were
conducted at deeper environments (> 200 m) (Fig. 5). The
highly skewed nature of the dataset towards shallow environ-
ments should be considered when modelling the effects of
demersal fisheries, especially considering the continuous ex-
pansion of fishing grounds to deeper environments (Norse et
al., 2012; Watson and Morato, 2013).

Finally, one of the factors that should be considered when
studying the impacts of demersal fisheries is the sampling
season, since the impacts caused by this anthropogenic ac-
tivity could be masked if they coexist with seasonal storms
or cycles of high net primary productivity. For instance, sea-
sonal storms can resuspend as much sediment and particu-
late organic carbon as bottom trawling (Arjona-Camas et al.,
2021, 2022; Durrieu de Madron et al., 2005; Ferré et al.,
2008; Mengual et al., 2016; Paradis et al., 2022; Pusceddu
et al., 2005b, 2015), whereas seasonal variations in organic

matter inputs to the seafloor could offset the effects of trawl-
ing (Daly et al., 2018; Rajesh et al., 2019; Smith et al., 2000).
Although several studies (20) conducted their sampling dur-
ing several seasons to account for the effect of seasonality,
the majority of the studies included in DISOM only sampled
during a specific season, usually during summer (30), which
could skew the global results when assessing the impacts of
demersal fisheries on sediment biogeochemistry (Fig. 6).

4.4 Distribution of fishing descriptors

Although we harmonized the different fishing gear types, it
is important to note that there is a wide variety of configura-
tions for each gear type with different effects on the seafloor
(Martín et al., 2014b). For instance, the size and weight of
otter trawls tend to increase with the water depth at the fish-
ing ground, so an otter trawl that operates in shallow envi-
ronments will be different than one that operates at greater
depths (Ragnarsson and Steingrimsson, 2003).

In this dataset, there was an unequal distribution of dem-
ersal fishing gear types, which could skew statistical analy-
ses. The most common fishing gear type identified was otter
trawls (39), followed by towed dredges (18) and beam trawls
(7) (Fig. 7). The type of fishing gear was sometimes unde-
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Figure 8. Spatial distribution of presence of a control site for each study on global continental margins (a) and on European margins (b) in
DISOM. Summary of the different types of controls in the dataset (c).

fined in certain studies (7). In these situations, a literature
search indicated that demersal fishing fleets consisted of a
mixture of otter trawls, dredges, and beam trawls (Fig. 7).
The effects of electric pulse trawls and artisanal gears were
only assessed by one study each, and these were spatially
limited: the study on the electric pulse trawl technique was
only conducted in the North Sea, while artisanal gears were
only studied in southern Brazil (Fig. 7).

From the 71 independent studies, ∼ 75 % did not have a
true control site (i.e. where bottom fishing was completely
absent) to compare the effect of this anthropogenic distur-
bance in relation to natural baseline conditions (Fig. 8). Ei-
ther these studies did not have any control site (no control),
or their control site had been disturbed in the past (histori-
cally fished) and may not have recovered completely to its
baseline conditions.

Studies with no true control site were either experimental
studies that sampled before and after disturbance in an im-
pacted site (Bhagirathan et al., 2010; Tiano et al., 2021) or
were comparative gradient studies that sampled in areas with
different fishing intensities (Atkinson et al., 2011; Hale et al.,
2017; Sciberras et al., 2016). Considering that demersal fish-
ing grounds essentially cover all continental margins, it is not
surprising that a representative control site with similar envi-
ronmental conditions to the disturbed site is most often not

available (Fig. 8). Indeed, only 17 independent studies had
true control sites due to specific conditions: (i) experimen-
tal studies were conducted in marine protected areas that had
never been fished (Ferguson et al., 2020; Morys et al., 2021;
Tuck et al., 1998); (ii) control sites were far from harbours,
and fishers still had not explored those areas (Paradis et al.,
2019; Simboura et al., 2008; Watling et al., 2001); or (iii) spe-
cific features prevented the access of fishing vessels to certain
areas (Cartes et al., 2007; Martín et al., 2014a; Palanques et
al., 2014; Paradis et al., 2021).

To overcome this lack of true controls, certain studies
chose sites that were not currently disturbed but had been his-
torically fished as pseudo-control sites (“Historically fished”
in Fig. 8). These sites were not being disturbed during the
study because they were conducted during a seasonal fish-
ing closure (Fiordelmondo et al., 2003; Meseck et al., 2014;
Polymenakou et al., 2005; Pusceddu et al., 2005a; Silveira
et al., 2020; Tiano et al., 2019) or because the site had
been recently banned from fishing activities (Brown et al.,
2005; Dannheim et al., 2014). However, since these pseudo-
controls had been disturbed by demersal fisheries in the past,
they may not reflect true baseline conditions, which could af-
fect the outcomes of the study. For instance, a recent global
meta-analysis on the effects of demersal fisheries on ben-
thic communities revealed that the history of fishing distur-
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Figure 9. Number of studies that analysed each response variable
in each of the three study designs: (a) experimental, (b) compara-
tive control-impact, and (c) comparative gradient studies. For clar-
ity, only the 10 most common response variables were included, and
variables were grouped based on the property they represent (sedi-
mentological or biogeochemical). A full description of the different
biogeochemical and sedimentological variables can be found in Ta-
ble S2.

bance prior to an experimental study influenced the outcome
of the result, masking the impacts in comparison to studies
on undisturbed sites (Sciberras et al., 2018).

Finally, only 45 studies provided information on fishing
frequency, which eventually will limit the possibility to use
these data to fully understand how fishing frequency af-
fects the magnitude of the sedimentological or biogeochem-
ical parameter measured. The majority of the 26 studies that
did not include fishing frequency are comparative control-
impact studies that designed their studies to compare the bio-
geochemical properties between impacted and control sites,
without considering the influence of fishing frequency. In ad-
dition, many of these studies were conducted prior to the in-
stallation of geographical positioning systems in fishing ves-
sels, such as an automatic identification system (AIS) or ves-
sel monitoring system (VMS), which facilitate the estimation
of fishing frequency over an area. With the increasing avail-
ability of harmonized fishing frequency data such as through
the efforts of Global Fishing Watch, we will be able to in-
clude this information without the need to harmonize fishing
effort.

4.5 Response variables

We identified 90 different sedimentological and biogeochem-
ical variables reported in all studies, and the 10 most re-
ported ones are shown in Fig. 9. These are separated based
on the different study designs (experimental, comparative
control-impact, and comparative gradient studies) and the
type of information they provide (sedimentological and bio-
geochemical). Unsurprisingly, the most widely measured re-
sponse variable for all study designs was total organic car-
bon (TOC) (Fig. 9). Total nitrogen and proxies of algal ma-
terial (e.g. chlorophyll a, phaeopigments, and the total phy-
topigment concentration), which provide a useful measure of
the fishing effect on the nutritional quality of organic mat-
ter (i.e. its food availability for the benthos; Pusceddu et al.,
2009), were commonly reported in both experimental and
comparative control-impact study designs (Fig. 9). However,
other organic compounds such as proteins, lipids, and lignin
phenols were not sufficiently represented across studies, hin-
dering the capacity to study the effects of demersal fisheries
on a wider range of organic compounds with different reac-
tivities and origins.

The effect of sediment disturbance on sedimentological
variables, such as grain size, was represented in all study de-
signs, but these variables were more prominent in compara-
tive gradient studies.

Biogeochemical variables which measure remineralization
processes (e.g. nutrient concentrations and fluxes, as well as
oxygen consumption) were more commonly reported in ma-
nipulative and comparative gradient studies than in compar-
ative control-impact ones (Fig. 9). The unbalanced represen-
tation of these variables among study designs may bias our
understanding of the effect of fishing disturbance on reminer-
alization processes in marine sediments, which has become a
matter of debate when modelling the amount of CO2 emitted
from the seafloor due to this sediment disturbance (Sala et
al., 2021; Hiddink et al., 2023). Hence, more studies that as-
sess the effect on organic matter remineralization should be
performed.

4.6 General remarks

As illustrated in the Sankey diagram (Fig. 10), each individ-
ual study in this compilation has a unique combination of
environmental conditions (e.g. habitats, depths, and season-
ality) and demersal fishing descriptors (e.g. fishing gear type,
presence of control site, information on fishing effort), which
need to be considered when comparing their results. For in-
stance, the majority of the comparative gradient studies did
not have any control site given the difficulty of finding a rep-
resentative control site in the area under scrutiny. Given their
nature, beam trawls were almost exclusively used in sandy
environments, and no comparative gradient study was per-
formed using this gear. Hence, researchers that aim to use
this database should take into account that the heterogeneity
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Figure 10. Sankey diagram of the different study designs, habitat types, and fishing descriptors found in the literature, highlighting the
complexity of the dataset. Colours represent the study design.

of the large number of influential variables (i.e. study design,
environmental conditions, fishing descriptors) will reduce the
degrees of freedom needed to conduct meaningful statistical
analyses.

These unique combinations of study design, environmen-
tal conditions, and fishing descriptors (Fig. 10) may limit
what is currently known on the effect of demersal fishery
on biogeochemical processes on the seafloor, producing con-
trasting results in their biogeochemical effects on the seafloor
(Epstein et al., 2022). The reasons behind these contrasting
results are beyond the scope of this paper and should be ad-
dressed in a thorough meta-analysis (Tiano et al., 2024).

While this database only gathered data from studies pub-
lished in peer-reviewed papers, there is a wealth of informa-
tion available in grey literature that could further improve our
understanding of the effect of demersal fisheries on global
biogeochemical processes in marine sediments. Moreover,
future versions of this database should incorporate data of
benthic community abundance and composition, since alter-
ations of benthic communities can also affect the biogeo-
chemical and sedimentological properties of the seafloor. Fi-
nally, considering that demersal fisheries modify sedimen-
tary dynamics in the water column and the composition of
suspended sediment and nutrients in the overlying water col-
umn, these effects should be included to properly understand
the global effect of demersal fisheries on biogeochemical cy-
cles in the marine realm. As the number of these studies in-
creases, DISOM will be expanded to include studies that ad-
dress the effect of demersal fisheries on the water column.

5 Data availability

The database is available for download as an Excel file,
where each separate sheet stores the individual tables (Par-
adis, 2023; https://doi.org/10.3929/ethz-b-000634336).

6 Conclusion

DISOM is the first comprehensive open-access database that
compiles and harmonizes data of sedimentological and bio-
geochemical variables of peer-reviewed studies that address
the effects of demersal fisheries on the seafloor. We also
present important metadata on environmental and fishing de-
scriptors that need to be reported to ensure the compara-
bility between studies and facilitate holistic meta-analyses.
While this database harmonizes data from 71 independent
studies located in a wide variety of continental margins, we
have identified geographical gaps along the African, South
American, Canadian, and Asian margins. Studies presented
an unbalanced seasonal sampling strategy, with the majority
of studies conducted during summer in temperate regions.
Regarding fishing descriptors, we highlight the scarcity of
true controls given the global extension of demersal fish-
ing grounds as well as the unbalanced distribution of dem-
ersal fishing gear types studied. Finally, our comprehension
of the impact of demersal fishing disturbance on organic mat-
ter remineralization may be constrained by the limited avail-
ability of studies quantifying these variables. Hence, more
studies should be conducted considering these data gaps to
obtain a more comprehensive dataset. Given the complexity
of influential variables, researchers that aim to use this har-
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monized dataset to understand the biogeochemical impacts
of demersal fisheries should account for the heterogeneity of
study designs, environmental conditions, and fishing descrip-
tors.
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