Articles | Volume 16, issue 5
https://doi.org/10.5194/essd-16-2449-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-2449-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020
Chengcheng Hou
State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing 100875, China
Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing 100875, China
Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Shan Sang
State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing 100875, China
Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Xu Zhao
Institute of Blue and Green Development, Shandong University, Weihai 264209, China
Yanxu Liu
State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing 100875, China
Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Yinglu Liu
College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
Fang Zhao
Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
Related authors
Shan Sang, Yan Li, Chengcheng Hou, Shuangshuang Zi, and Huiqing Lin
Hydrol. Earth Syst. Sci., 29, 67–84, https://doi.org/10.5194/hess-29-67-2025, https://doi.org/10.5194/hess-29-67-2025, 2025
Short summary
Short summary
Green water exchanges between each province in China form an interconnected flow network and have substantial socioeconomic values. Green water flow and its teleconnected socioeconomic effects should be considered in water resource management in addition to blue water.
Shan Sang, Yan Li, Shuang Zong, Lu Yu, Shuai Wang, Yanxu Liu, Xutong Wu, Shuang Song, Wenwu Zhao, Xuhui Wang, and Bojie Fu
EGUsphere, https://doi.org/10.5194/egusphere-2025-5597, https://doi.org/10.5194/egusphere-2025-5597, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Regional coupled human–natural systems models are essential for regional sustainability. We developed a new model, CHANS-SD-YRB, using System Dynamics for the Yellow River Basin in China, which faces severe human-water conflicts. The model links 10 components, including Population, Economy, Energy, Food, Water, Sediment, Land, Carbon, and Climate to simulate basin’s key human-natural interactions. The model is applicable for sustainable development through scenario analyses and predictions.
Shan Sang, Yan Li, Chengcheng Hou, Shuangshuang Zi, and Huiqing Lin
Hydrol. Earth Syst. Sci., 29, 67–84, https://doi.org/10.5194/hess-29-67-2025, https://doi.org/10.5194/hess-29-67-2025, 2025
Short summary
Short summary
Green water exchanges between each province in China form an interconnected flow network and have substantial socioeconomic values. Green water flow and its teleconnected socioeconomic effects should be considered in water resource management in addition to blue water.
Zhiwei Yang, Jian Peng, Yanxu Liu, Song Jiang, Xueyan Cheng, Xuebang Liu, Jianquan Dong, Tiantian Hua, and Xiaoyu Yu
Earth Syst. Sci. Data, 16, 2407–2424, https://doi.org/10.5194/essd-16-2407-2024, https://doi.org/10.5194/essd-16-2407-2024, 2024
Short summary
Short summary
We produced a monthly Universal Thermal Climate Index dataset (GloUTCI-M) boasting global coverage and an extensive time series spanning March 2000 to October 2022 with a high spatial resolution of 1 km. This dataset is the product of a comprehensive approach leveraging multiple data sources and advanced machine learning models. GloUTCI-M can enhance our capacity to evaluate thermal stress experienced by the human, offering substantial prospects across a wide array of applications.
Jianquan Dong, Stefan Brönnimann, Tao Hu, Yanxu Liu, and Jian Peng
Earth Syst. Sci. Data, 14, 5651–5664, https://doi.org/10.5194/essd-14-5651-2022, https://doi.org/10.5194/essd-14-5651-2022, 2022
Short summary
Short summary
We produced a new dataset of global station-based daily maximum wet-bulb temperature (GSDM-WBT) through the calculation of wet-bulb temperature, data quality control, infilling missing values, and homogenization. The GSDM-WBT covers the complete daily series of 1834 stations from 1981 to 2020. The GSDM-WBT dataset handles stations with many missing values and possible inhomogeneities, which could better support the studies on global and regional humid heat events.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Cited articles
Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., and Mendoza, P. A.: Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges, Hydrolog. Sci. J., 65, 712–725, https://doi.org/10.1080/02626667.2019.1683182, 2020.
Alcamo, J., Henrichs, T., and Rösch, T.: World Water in 2025 – Global modeling and scenario analysis for the World Commission on Water for the 21st Century, Report A0002, Center for Environmental System Research, University of Kassel, Germany, 47 pp., 2000.
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, https://doi.org/10.1623/hysj.48.3.317.45290, 2003.
Alcamo, J., Flörke, M., and Märker, M.: Future long-term changes in global water resources driven by socio-economic and climatic changes, Hydrolog. Sci. J., 52, 247–275, https://doi.org/10.1623/hysj.52.2.247, 2007.
Arnell, N. W.: Climate change and global water resources, Global Environ. Chang., 9, S31–S49, https://doi.org/10.1016/S0959-3780(99)00017-5, 1999.
Arnell, N. W.: Climate change and global water resources: SRES emissions and socio-economic scenarios, Global Environ. Chang., 14, 31–52, https://doi.org/10.1016/j.gloenvcha.2003.10.006, 2004.
Brunner, M. I., Zappa, M., and Stähli, M.: Scale matters: Effects of temporal and spatial data resolution on water scarcity assessments, Adv. Water Resour., 123, 134–144, https://doi.org/10.1016/j.advwatres.2018.11.013, 2019.
Byers, E. A., Hall, J. W., and Amezaga, J. M.: Electricity generation and cooling water use: UK pathways to 2050, Global Environ. Chang., 25, 16–30, https://doi.org/10.1016/j.gloenvcha.2014.01.005, 2014.
Chen, M. and Chen, H.: Spatiotemporal coupling measurement of industrial wastewater discharge and industrial economy in China, Environ. Sci. Pollut. Res., 28, 46319–46333, https://doi.org/10.1007/s11356-021-14743-3, 2021.
Chen, Y., Feng, X., Fu, B., Shi, W., Yin, L., and Lv, Y.: Recent Global Cropland Water Consumption Constrained by Observations, Water Resour. Res., 55, 3708–3738, https://doi.org/10.1029/2018WR023573, 2019.
Chen, Y., Yin, G., and Liu, K.: Regional differences in the industrial water use efficiency of China: The spatial spillover effect and relevant factors, Resour. Conserv. Recy., 167, 105239, https://doi.org/10.1016/j.resconrec.2020.105239, 2021.
China State Statistical Bureau: China Industrial Product Output database [data set], https://www.epsnet.com.cn/, last access: 26 September 2021.
China State Statistical Bureau: The Chinese Industrial Enterprises database [data set], https://www.lib.pku.edu.cn/portal/cn/news/0000001637, last access: 18 May 2022.
Derepasko, D., Peñas, F. J., Barquín, J., and Volk, M.: Applying Optimization to Support Adaptive Water Management of Rivers, Water, 13, 1281, https://doi.org/10.3390/w13091281, 2021.
Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., and Alcamo, J.: Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study, Global Environ. Chang., 23, 144–156, https://doi.org/10.1016/j.gloenvcha.2012.10.018, 2013.
Fujimori, S., Hanasaki, N., and Masui, T.: Projections of industrial water withdrawal under shared socioeconomic pathways and climate mitigation scenarios, Sustain. Sci., 12, 275–292, https://doi.org/10.1007/s11625-016-0392-2, 2017.
Gu, A., Teng, F., and Lv, Z.: Exploring the nexus between water saving and energy conservation: Insights from industry sector during the 12th Five-Year Plan period in China, Renew. Sust. Energ. Rev., 59, 28–38, https://doi.org/10.1016/j.rser.2015.12.285, 2016.
Han, Z., Long, D., Fang, Y., Hou, A., and Hong, Y.: Impacts of climate change and human activities on the flow regime of the dammed Lancang River in Southwest China, J. Hydrol., 570, 96–105, https://doi.org/10.1016/j.jhydrol.2018.12.048, 2019.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007–1025, https://doi.org/10.5194/hess-12-1007-2008, 2008a.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 2: Applications and assessments, Hydrol. Earth Syst. Sci., 12, 1027–1037, https://doi.org/10.5194/hess-12-1027-2008, 2008b.
Hanasaki, N., Inuzuka, T., Kanae, S., and Oki, T.: An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model, J. Hydrol., 384, 232–244, https://doi.org/10.1016/j.jhydrol.2009.09.028, 2010.
Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., Calvin, K., Moss, R., and Kim, S.: Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework, Technol. Forecast. Soc., 81, 205–226, https://doi.org/10.1016/j.techfore.2013.05.006, 2014.
Hou, C. and Li, Y.: The China industrial water withdrawal Dataset (CIWW) – a gridded monthly industrial water withdrawal data in China from 1965 to 2020, figshare [data set], https://doi.org/10.6084/m9.figshare.21901074, 2023.
Hou, C. and Li, Y.: Code for mapping China Industrial Water Withdrawal (CIWW) dataset (CIWW), Zenodo [code], https://doi.org/10.5281/zenodo.11198022, 2024.
Huang, Z., Hejazi, M., Li, X., Tang, Q., Vernon, C., Leng, G., Liu, Y., Döll, P., Eisner, S., Gerten, D., Hanasaki, N., and Wada, Y.: Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns, Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, 2018.
Koch, H. and Vögele, S.: Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change, Ecol. Econ., 68, 2031–2039, https://doi.org/10.1016/j.ecolecon.2009.02.015, 2009.
Leading Office of the Second Economic Census: The Chinese Economic Census Yearbook 2008 [data set], https://www.stats.gov.cn/sj/pcsj/jjpc/2jp/left.htm (last access: 2 April 2021), 2010.
Li, X., Long, D., Scanlon, B. R., Mann, M. E., Li, X., Tian, F., Sun, Z., and Wang, G.: Climate change threatens terrestrial water storage over the Tibetan Plateau, Nat. Clim. Change, 12, 801–807, https://doi.org/10.1038/s41558-022-01443-0, 2022.
Liu, J., Zang, C., Tian, S., Liu, J., Yang, H., Jia, S., You, L., Liu, B., and Zhang, M.: Water conservancy projects in China: Achievements, challenges and way forward, Global Environ. Chang., 23, 633–643, https://doi.org/10.1016/j.gloenvcha.2013.02.002, 2013.
Liu, L., Hejazi, M., Patel, P., Kyle, P., Davies, E., Zhou, Y., Clarke, L., and Edmonds, J.: Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus, Technol. Forecast. Soc. Change, 94, 318–334, https://doi.org/10.1016/j.techfore.2014.11.004, 2015.
Liu, M., Fang, Y., and Li Y.: Analysis of Several Chinese National Economic Indexes' Seasonal Fluctuation by Applying the Methods of Directional Data Statistics, 64–72, 2006 (in Chinese).
Liu, X., Tang, Q., Liu, W., Veldkamp, T. I. E., Boulange, J., Liu, J., Wada, Y., Huang, Z., and Yang, H.: A Spatially Explicit Assessment of Growing Water Stress in China From the Past to the Future, Earths Future, 7, 1027–1043, https://doi.org/10.1029/2019EF001181, 2019a.
Liu, X., Liu, W., Yang, H., Tang, Q., Flörke, M., Masaki, Y., Müller Schmied, H., Ostberg, S., Pokhrel, Y., Satoh, Y., and Wada, Y.: Multimodel assessments of human and climate impacts on mean annual streamflow in China, Hydrol. Earth Syst. Sci., 23, 1245–1261, https://doi.org/10.5194/hess-23-1245-2019, 2019b.
Long, D., Yang, W., Scanlon, B. R., Zhao, J., Liu, D., Burek, P., Pan, Y., You, L., and Wada, Y.: South-to-North Water Diversion stabilizing Beijing's groundwater levels, Nat. Commun., 11, 3665, https://doi.org/10.1038/s41467-020-17428-6, 2020.
Ministry of Water Resources of the People’s Republic of China: China Water Resources Bulletin, Beijing, China, http://www.mwr.gov.cn/sj/tjgb/szygb/ (last access: 9 March 2024), 2019.
Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M., and Döll, P.: Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration, Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, 2014.
Niva, V., Cai, J., Taka, M., Kummu, M., and Varis, O.: China's sustainable water-energy-food nexus by 2030: Impacts of urbanization on sectoral water demand, J. Clean. Prod., 251, 119755, https://doi.org/10.1016/j.jclepro.2019.119755, 2020.
Oki, T. and Kanae, S.: Global hydrological cycles and world water resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Oki, T., Agata, Y., Kanae, S., Saruhashi, T., and Musiake, K.: Global water resources assessment under climatic change in 2050 using TRIP, IAHS-AISH Publ., 280, 124–133, 2003.
Otaki, Y., Otaki, M., and Yamada, T.: Attempt to Establish an Industrial Water Consumption Distribution Model, J. Water Environ. Technol., 6, 85–91, https://doi.org/10.2965/jwet.2008.85, 2008.
Qin, J., Ding, Y.-J., Zhao, Q.-D., Wang, S.-P., and Chang, Y.-P.: Assessments on surface water resources and their vulnerability and adaptability in China, Adv. Clim. Change Res., 11, 381–391, https://doi.org/10.1016/j.accre.2020.11.002, 2020.
Qin, Y., Mueller, N. D., Siebert, S., Jackson, R. B., AghaKouchak, A., Zimmerman, J. B., Tong, D., Hong, C., and Davis, S. J.: Flexibility and intensity of global water use, Nat. Sustain., 2, 515–523, https://doi.org/10.1038/s41893-019-0294-2, 2019.
Reynaud, A.: An Econometric Estimation of Industrial Water Demand in France, Environ. Resour. Econ., 25, 213–232, https://doi.org/10.1023/A:1023992322236, 2003.
Sathre, R., Antharam, S. M., and Catena, M.: Water Security in South Asian Cities: A Review of Challenges and Opportunities, CivilEng, 3, 873–894, https://doi.org/10.3390/civileng3040050, 2022.
Shen, Y., Oki, T., Utsumi, N., and Kanae, S.: Projection of future world water resources under SRES scenarios: water withdrawal/Projection des ressources en eau mondiales futures selon les scénarios du RSSE: prélèvement d'eau Projection of future world water resources under SRES scenarios: wat, Hydrolog. Sci. J., 53, 11–33, https://doi.org/10.1623/hysj.53.1.11, 2010.
Sunkara, S. V. and Singh, R.: Assessing the impact of the temporal resolution of performance indicators on optimal decisions of a water resources system, J. Hydrol., 612, 128185, https://doi.org/10.1016/j.jhydrol.2022.128185, 2022.
The state Council of the People's Republic of China, Decision on accelerating the reform and development of water resources https://www.gov.cn/gongbao/content/2011/content_1803158.htm (last access: 9 March 2024), 2011 (in Chinese).
Van Beek, L. P. H., Wada, Y., Viviroli, D., Durr, H. H., Weingartner, R., and Bierkens, M. F. P.: Global monthly water stress: 1. Water balance and water availability, Water Resour. Res., 47, W07517, https://doi.org/10.1029/2010WR009791, 2011.
Vassolo, S. and Döll, P.: Global-scale gridded estimates of thermoelectric power and manufacturing water use, Water Resour. Res., 41, 1–11, https://doi.org/10.1029/2004WR003360, 2005.
Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B.: Global water resources: Vulnerability from climate change and population growth, Science, 289, 284–288, https://doi.org/10.1126/science.289.5477.284, 2000.
Wada, Y., Van Beek, L. P. H., Viviroli, D., Drr, H. H., Weingartner, R., and Bierkens, M. F. P.: Global monthly water stress: 2. Water demand and severity of water stress, Water Resour. Res., 47, 1–17, https://doi.org/10.1029/2010WR009792, 2011a.
Wada, Y., van Beek, L. P. H., and Bierkens, M. F. P.: Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability, Hydrol. Earth Syst. Sci., 15, 3785–3808, https://doi.org/10.5194/hess-15-3785-2011, 2011b.
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources, Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, 2014.
Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P., and Wiberg, D.: Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches, Geosci. Model Dev., 9, 175–222, https://doi.org/10.5194/gmd-9-175-2016, 2016.
Wang, J., Zhong, L., and Long, Y.: Baseline Water Stress: China, Technical Note, World Resources Institute, Beijing, http://www.wri.org/publication/baseline-water-stress-china (last access: 17 May 2024), 2016.
WWAP (UNESCO World Water Assessment Programme), The United Nations World Water Development Report 2019: Leaving No One Behind, Paris, UNESCO, ISBN 978-92-3-100309-7, 2019.
Xia, J., Ning, L., Wang, Q., Chen, J., Wan, L., and Hong, S.: Vulnerability of and risk to water resources in arid and semi-arid regions of West China under a scenario of climate change, Climatic Change, 144, 549–563, https://doi.org/10.1007/s10584-016-1709-y, 2017.
Yan, D., Zhang, X., Qin, T., Li, C., Zhang, J., Wang, H., Weng, B., Wang, K., Liu, S., Li, X., Yang, Y., Li, W., Lv, Z., Wang, J., Li, M., He, S., Liu, F., Bi, W., Xu, T., Shi, X., Man, Z., Sun, C., Liu, M., Wang, M., Huang, Y., Long, H., Niu, Y., Dorjsuren, B., Gedefaw, M., Li, Y., Tian, Z., Mu, S., Wang, W., and Zhou, X.: A data set of distributed global population and water withdrawal from 1960 to 2020, Sci. Data, 9, 640, https://doi.org/10.1038/s41597-022-01760-1, 2022.
Yang, F., Wang, D., Zhao, L., and Wei, F.: Efficiency evaluation for regional industrial water use and wastewater treatment systems in China: A dynamic interactive network slacks-based measure model, J. Environ. Manage., 279, 111721, https://doi.org/10.1016/j.jenvman.2020.111721, 2021.
Yin, Y., Wang, L., Wang, Z., Tang, Q., Piao, S., Chen, D., Xia, J., Conradt, T., Liu, J., Wada, Y., Cai, X., Xie, Z., Duan, Q., Li, X., Zhou, J., and Zhang, J.: Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and South-to-North Water Diversion, Earths Future, 8, e2020EF001492, https://doi.org/10.1029/2020EF001492, 2020.
Zhang, L., Ma, Q., Zhao, Y., Chen, H., Hu, Y., and Ma, H.: China's strictest water policy: Reversing water use trends and alleviating water stress, J. Environ. Manage., 345, 118867, https://doi.org/10.1016/j.jenvman.2023.118867, 2023.
Zhao, X., Liu, J., Liu, Q., Tillotson, M. R., Guan, D., and Hubacek, K.: Physical and virtual water transfers for regional water stress alleviation in China, P. Natl. Acad. Sci. USA, 112, 1031–1035, https://doi.org/10.1073/pnas.1404130112, 2015.
Zhou, F., Bo, Y., Ciais, P., Dumas, P., Tang, Q., Wang, X., Liu, J., Zheng, C., Polcher, J., Yin, Z., Guimberteau, M., Peng, S., Ottle, C., Zhao, X., Zhao, J., Tan, Q., Chen, L., Shen, H., Yang, H., Piao, S., Wang, H., and Wada, Y.: Deceleration of China's human water use and its key drivers, P. Natl. Acad. Sci. USA, 117, 7702–7711, https://doi.org/10.1073/pnas.1909902117, 2020.
Short summary
To fill the gap in the gridded industrial water withdrawal (IWW) data in China, we developed the China Industrial Water Withdrawal (CIWW) dataset, which provides monthly IWWs from 1965 to 2020 at a spatial resolution of 0.1°/0.25° and auxiliary data including subsectoral IWW and industrial output value in 2008. This dataset can help understand the human water use dynamics and support studies in hydrology, geography, sustainability sciences, and water resource management and allocation in China.
To fill the gap in the gridded industrial water withdrawal (IWW) data in China, we developed the...
Altmetrics
Final-revised paper
Preprint