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Abstract. High-quality gridded data on industrial water use are vital for research and water resource manage-
ment. However, such data in China usually have low accuracy. In this study, we developed a gridded dataset of
monthly industrial water withdrawal (IWW) for China, which is called the China Industrial Water Withdrawal
(CIWW) dataset; this dataset spans a 56-year period from 1965 to 2020 at spatial resolutions of 0.1 and 0.25°. We
utilized > 400 000 records of industrial enterprises, monthly industrial product output data, and continuous sta-
tistical IWW records from 1965 to 2020 to facilitate spatial scaling, seasonal allocation, and long-term temporal
coverage in developing the dataset. Our CIWW dataset is a significant improvement in comparison to previous
data for the characterization of the spatial and seasonal patterns of the IWW dynamics in China and achieves
better consistency with statistical records at the local scale. The CIWW dataset, together with its methodology
and auxiliary data, will be useful for water resource management and hydrological models. This new dataset is
now available at https://doi.org/10.6084/m9.figshare.21901074 (Hou and Li, 2023).

1 Introduction

Industrial water withdrawal (IWW) is the amount of water
abstracted from freshwater sources for industrial purposes,
which is different from water consumption. IWW accounts
for approximately 19 % of human water withdrawal globally
and is the second largest sector of human water use, follow-
ing irrigation (WWAP, 2019). In developed countries, IWW
accounts for more than half of the water use (Shen et al.,
2010; Wada et al., 2011a; Flörke et al., 2013). Driven by
economic and population growth, global IWW has steadily
increased over the past 60 years (Oki and Kanae, 2006; Wada

et al., 2011b) from 400 km3 yr−1 in 1960 to 955 km3 yr−1 in
2010 (Flörke et al., 2013), and it is projected to continue to
increase in the future (Oki et al., 2003; Shen et al., 2010; Fu-
jimori et al., 2017). Considering the high spatial heterogene-
ity and fast changes in IWW, quantitative information with a
high spatiotemporal resolution on IWW is essential for water
resource management and research.

Existing IWW datasets primarily consist of statistical data
at the administrative/watershed levels and model estima-
tions at the grid level, in which the sectoral information
is represented with varying degrees of complexity (Arnell,
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1999, 2004; Alcamo et al., 2000, 2007; Vörösmarty et al.,
2000; Oki et al., 2003; Hanasaki et al., 2008a; Otaki et
al., 2008; Wada et al., 2011b; Hejazi et al., 2014; Wada
et al., 2016; Yan et al., 2022). Gridded datasets developed
from administrative-level data or models provide more de-
tailed spatial information (Hanasaki et al., 2008a; Wada et
al., 2011a); however, their accuracy depends on the spatial
downscaling methods, including the spatial proxies and data
sources.

For the total IWW, statistical data are usually allocated to
the grid level relying on the spatial proxies, such as popu-
lation density and urban or industrial area (Hanasaki et al.,
2008a, b, 2010; Van Beek et al., 2011; Wada et al., 2011a,
b, 2014). For the sectoral IWW, different mapping meth-
ods are applied. For the energy sector, water withdrawal was
estimated by the total energy generated and water use effi-
ciency under different technologies (Koch and Vögele, 2009;
Flörke et al., 2013). With detailed information on the loca-
tion, power output, and water use efficiency of power plants,
water withdrawal for the energy sector could be mapped out
(Vassolo and Döll, 2005; Flörke et al., 2013; Müller Schmied
et al., 2014; Wang et al., 2016; Qin et al., 2019). For manu-
facturing, water withdrawal was estimated to be either the
residue of the energy water use from the total IWW down-
scaled using the spatial proxies mentioned above (Hejazi et
al., 2014) or the product of population and per capita wa-
ter consumption (Vörösmarty et al., 2000). Although several
global gridded IWW datasets have been developed, the spa-
tial proxies used for downscaling (e.g. population) are only
indirect factors that are not directly tied to industrial produc-
tion processes that consume water, and they cannot be used to
separate the different industrial subsectors whose water use
efficiencies could be substantially different (0.32×103 of pa-
per and paper products versus 5.6× 103 of electrical equip-
ment and machinery in units of CNY per cubic metre). More-
over, when downscaling, the global gridded datasets typically
rely on the national statistical data (Hejazi et al., 2014; Wa-
terGAP model 2.2 as per Wada et al., 2016; Huang et al.,
2018) without incorporating subnational statistics to better
capture the regional differences. Therefore, global datasets
are sufficient in showing the global general pattern, but their
performance could be poor for the specific regions, limiting
their applications for regional water issues (Liu et al., 2019b).

More importantly, IWW has seasonal fluctuations because
of changes in weather conditions (temperature, precipitation,
and thunderstorms), water supply availability (especially in
monsoon climates, such as in China), production demand,
and emission restrictions (Liu et al., 2006). However, most
existing datasets do not represent seasonal variations (only
annual data) or treat it as monthly invariant (i.e. each month
shares 1/12 of the annual total withdrawal) (Brunner et al.,
2019; Wada et al., 2011a). The lack of representation of intra-
annual variations may result in significant discrepancies be-
tween the data and reality. A few studies consider seasonal
variations in industrial water withdrawal for specific sectors.

For example, seasonality in IWW for electricity generation
is estimated by incorporating the influence of temperature
variability on the electricity demand of thermoelectric power
plants (Byers et al., 2014; Liu et al., 2015). The included
climate variations introduce a clear seasonal pattern, with
large withdrawals in winter at high latitudes and summer
in tropical regions (Huang et al., 2018). Therefore, it is es-
sential to fully account for intra-annual variations in IWW,
which directly affect water resource management and alloca-
tion (Derepasko et al., 2021; Sunkara and Singh, 2022).

After decades of fast growth, China has become the
second-largest economy in the world, with rapid industrial
development leading to increasing water use (Zhou et al.,
2020). IWW in China accounted for 20.2 % of the total wa-
ter withdrawal in 2019 (as reported by the China Water Re-
sources Bulletin; Ministry of Water Resources of the Peo-
ple’s Republic of China, 2019) and increased 4.5 times, from
31.93 km3 in 1965 to 142.86 km3 in 2013 (Zhou et al., 2020).
However, water resources in China are distributed unevenly
in space, causing severe water stress due to a mismatch be-
tween the water supply and demand of the population and in-
dustrial development (Liu et al., 2013; Zhao et al., 2015). For
instance, northern China is one of China’s largest industrial
centres and most densely populated regions, but it is expe-
riencing the most severe water scarcity in the world (Yin et
al., 2020). The changes in IWW and total water withdrawal
have further increased the water conflict, making it urgent
to optimize the current water use and management struc-
ture. Therefore, high-quality gridded IWW data for China
are needed to characterize the spatial–temporal pattern of
IWW for water management and for research on hydrologi-
cal processes and modelling (Addor et al., 2020). However,
IWW data produced from reliable data sources with a long
period and high spatial resolution in China are still lacking.
The publicly available data on IWW in China are either the
statistical data at the provincial, prefecture, and basin level
(Xia et al., 2017; Qin et al., 2020; Chen et al., 2021) or the
gridded data extracted from the global datasets that have low
accuracy for regional and local studies (Liu et al., 2019a, b;
Han et al., 2019; Niva et al., 2020; Yin et al., 2020; Li et al.,
2022).

To address this data gap, in our study, we used reliable lo-
cal data sources to develop gridded datasets of monthly IWW
in China with a high spatial resolution, while incorporating
seasonal variations. Using multiple statistical data sources,
the high-resolution mapping of IWW was achieved by a
unique industrial enterprise dataset including > 400 000 en-
terprises, the seasonal variations were derived from the in-
dustrial product output data, and the long-term temporal cov-
erage was obtained by the continuous statistical records from
1965 to 2020. The resulting dataset, named the China Indus-
trial Water Withdrawal (CIWW) dataset, provides monthly
IWW from 1965 to 2020 at spatial resolutions of 0.1 and
0.25°. The dataset, along with its auxiliary data, is useful to
better understand the spatial and seasonal variations in IWW
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in China and support hydrological studies and regional water
resource management.

2 Data and method

2.1 Data

2.1.1 Statistical data for the industrial output value and
water withdrawal

The provincial-level industrial output value (IOV; multiplied
by 103 and in units of CNY per year) and IWW were from
the China Economic Census Yearbook in 2008 (http://www.
stats.gov.cn/sj/pcsj/jjpc/2jp/indexch.htm, last access: 2 April
2021). The data included surveyed IOV and IWW for enter-
prises above a designated production level (annual produc-
tion > CNY 5 million), consisting of three main industrial
sectors (mining; manufacturing; and production and supply
of electricity, gas and water) and 38 subsectors (Table A1).
Note that two subsectors, Other mining and Waste resources
and material recycling and processing, contained no data, and
the average values of the IOV and IWW of the mining and
manufacturing sectors in each province were used to fill these
two subsectors.

2.1.2 Industrial enterprise data in China

The industrial enterprise dataset used in this study was
from the Chinese Industrial Enterprises database in main-
land China from 1998 to 2013 (https://www.lib.pku.edu.cn/
portal/cn/news/0000001637, last access: 18 May 2022). The
dataset contains surveyed industrial information, including
the address, products, annual IOV, and industrial category,
for more than 400 000 enterprises whose annual IOV was
more than CNY 5 million (or CNY 20 million from 2011 to
2013 due to standard changes). The dataset covers 3 main in-
dustrial sectors and 37 subsectors similarly to the provincial
data in Sect. 2.1.1. The enterprises’ records for the subsector
of Water production and supply were not used because the
water supply was mainly for domestic rather than industrial
purposes. To match the IWW survey data, which were only
available in 2008 (the economic censuses in other years do
not include detailed provincial IWW by subsector), industrial
enterprise data in 2008 were selected for spatial downscaling
of the provincial IWW (Fig. S1 in the Supplement).

2.1.3 Statistical data for the monthly industrial product
output

The monthly industrial product output data were from the
China Industrial Product Output database (http://olap.epsnet.
com.cn, last access: 26 September 2021). The data contain
monthly outputs of 283 specific products of 36 industrial sub-
sectors at the provincial level. We used the average of 5 years,
from 2006–2010, to reduce interannual variability in out-
puts. The monthly outputs of each product were converted to

monthly fractions (divided by the annual total output) to rep-
resent their intra-annual variation. Missing values in monthly
product output fractions were filled by the average value of
monthly fractions of product output from 2006 to 2010. The
monthly output fractions of 283 products were aggregated to
36 subsectors by averaging products within each subsector
by the arithmetic mean.

2.1.4 Statistical data of industrial water withdrawal for
long-term extension

Long-term statistical IWW data were required to produce
IWW data for the past 4 decades. Provincial surveyed IWW
statistical data of 2003 to 2020 were obtained from the
China Water Resources Bulletin (http://www.mwr.gov.cn/sj/
tjgb/szygb/, last access: 3 May 2022). IWW is defined in
the China Water Resources Bulletin as the annual amount
of water withdrawal for industrial production activities, in-
cluding primary production, auxiliary production, and an-
cillary production and excluding recycled water. To further
extend the time series to an earlier period, the IWW from
1965 to 2002 reported by Zhou et al. (2020) (referred to
as “Zhou2020 data” hereafter), was used after summing the
prefecture data to form the provincial-level data. The IWW
record was from multiple versions of water resources sur-
vey data (first and second National Water Resources Assess-
ment Programme) and defined the same way as in the China
Water Resource Bulletin and our study. The national IWW
between two sources (Zhou2020 data and China Water Re-
sources Bulletin) was almost identical in 2003 (117.72 vs.
118.86 in units of km3; Fig. S2) but started to diverge af-
terwards. To ensure data continuity, we opted for the China
Water Resources Bulletin starting from 2003 as a statistical
data source because it has been updated continuously since
then. Thus, the combination of the above two data sources
provided complete and continuous statistical records of IWW
from 1965 to 2020 in China. Table 1 provides a summary of
the data sources used for developing the CIWW dataset.

2.1.5 Other industrial water withdrawal data for
comparison

We used two other gridded IWW datasets to compare with
the CIWW dataset: the global gridded monthly sectoral wa-
ter use dataset for 1971–2010 at 0.5° (Huang et al., 2018)
(hereafter referred to as Huang data) and water abstraction
for industrial uses from 1901 to 2005 at 0.5° as the input data
for ISIMIP2b (hereafter referred to as model data). The IWW
from Huang data consists of three sectors: mining, manufac-
turing, and cooling of thermal power plants, and the sum of
the three sectors was treated as the total IWW. The IWW
from model data is the multi-model mean (WaterGAP, PCR-
GLOBWB, and H08). The sum of sectoral IWWs (if avail-
able) was treated as the total IWW (Wada et al., 2016). The
unit of IWWs was converted from m3 to millimetres by di-
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Table 1. A summary of data sources for developing the CIWW dataset.

Data Source Industrial sector Spatial resolution Time span Usage

Industrial enterprise
output value

Chinese Industrial
Enterprises database

Subsectors (36) Point Yearly, 2008 Spatial mapping

Industrial water
withdrawal

China Economic
Census Yearbook

Province Yearly, 2008

Industrial output value

Monthly product
output
(283 products)

China Industrial Prod-
uct Output database

Province Monthly,
2006–2010

Seasonal allocation

Industrial water use China Water Resources
Bulletin

None Province Yearly, 2003–2020 Long-term data from
1965 to 2020

Industrial water use Zhou et al. (2020) Sectors (10) Prefecture Yearly, 1965–2002

viding the grid cell area. Table B2 provides a summary of the
data description used for comparison.

2.2 Methods

The development of the CIWW dataset primarily consisted
of three steps: (1) mapping the provincial IWW data to the
grid scale, (2) allocating annual IWW data to the monthly
scale, and (3) producing long time series of IWW (Fig. 1).

2.2.1 Mapping industrial water withdrawal

The spatial mapping of IWW in China was achieved using
the IOV of > 400 000 enterprises in 2008 and the subsectoral
water use efficiency at the provincial level from the Chinese
Economic Census Yearbook in 2008.

The geographical location of industrial enterprises was ob-
tained by converting their addresses to geographical coor-
dinates by the BaiduV3 geocoding service with the geopy
package in Python. The industrial water use efficiency
(WUEp,subs) of the province (p) and subsectors (subs) was
computed as the industrial output value (IOVp,subs) divided
by the industrial water withdrawal (IWWp,subs) (Eq. 1).

WUEp,subs =
IOVp,subs

IWWp,subs
(1)

By assuming the same industrial water use efficiency for all
industrial enterprises in a province of a subsector, the indus-
trial water withdrawal (IWWi,subs) of an enterprise (i) be-
longing to the subsector (subs) was estimated by multiply-
ing the corresponding water use efficiency of the subsector
(subs) in a province (p; WUEp,subs) and the industrial output
value of an enterprise (i; IOVi,subs), as shown in Eq. (2).

IWWi,subs =WUEp,subs× IOVi,subs (2)

The IWWs of the enterprises of specific subsectors
(IWWi,subs) could be summed up from the point level to the
grid level at a given spatial resolution (IWWgrid,subs). The

summation of the subsectors (
36∑

subs=1
IWWgrid,subs) provided

the spatial pattern of the total IWW in 2008.

2.2.2 Allocating industrial water withdrawal to seasonal
variations

We assumed that the monthly IWW was proportional to
the industrial product output and that there was no seasonal
variation in water use efficiency during the year. Therefore,
seasonal variations in IWW could be approximated by the
monthly industrial product output, which was calculated as
the fraction of the monthly product output to the annual to-
tal output. The seasonal pattern included signals of variations
in climate and weather because the industrial product output
for some sectors could be affected by seasonal climate condi-
tions and extreme weather events (e.g. production shutdowns
or restrictions due to heatwaves, thunderstorms, and tor-
rential rains). Since the climate-change-induced seasonality
changes were slow and gradual, their influences on monthly
IWW were also low, and the long-term climate change im-
pacts (e.g. warming) could be captured by the yearly statisti-
cal IWW data.

Since the monthly industrial product output data included
283 different products of different subsectors and the number
of products varied across subsectors, we initially calculated
the monthly fraction of each product output of each province,
averaged from 2006 to 2010, to reduce the influence of in-
terannual variability. Because the amount of industrial water
used for producing different products is unknown, we sim-
ply used the arithmetic mean of the monthly fractions of the
different products belonging to a subsector to represent ag-
gregated monthly fractions for that subsector. In this way, we
obtained the fractions of the product outputs for a subsector
(subs) in a province (p) for a month (mon; fractionoutput

p,mon,subs).
Although provincial differences exist in the seasonality

of IWW, we found that fractionoutput
mon,p,subs in certain sub-

sectors and provinces exhibited unreasonable seasonal vari-
ations that were difficult to explain (Fig. S3). Instead of
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Figure 1. The workflow for developing the CIWW dataset.

directly using the provincial-specific seasonal variations in
the output, the seasonal variations in each industrial sub-
sector (fractionwater

mon,subs) were represented by the weighted
mean of monthly product fractions across all provinces
(fractionoutput

mon,p,subs), with weights of provincial subsector
IWW (IWWp,subs) from the Chinese Economic Census Year-
book in 2008 (Eq. 3). The only exception is for the Elec-
tricity and heating power production and supply (EPS) sub-
sector because its seasonality is strongly linked to seasonal
temperature variation in each province and may thus exhibit
regional differences. To account for this issue, we used the
k-means method and classified the seasonality of EPS into
three types, which broadly correspond to north China (type
1), south and northwest China (type 2), and Xizang (type 3)
(Fig. S4). Shanghai in particular was manually adjusted from
the originally classified type 1 to type 2 because of its strong
peak in JJA.

fractionwater
mon,subs =

31∑
p=1

(
fractionoutput

p,mon,subs× IWWp,subs

)
31∑

p=1
IWWp,subs

(3)

Therefore, the monthly IWW of the different subsectors at
the grid level (IWWgrid,mon,subs) could be obtained by allo-
cating its annual IWW (IWWgrid,subs) into 12 months based
on the corresponding monthly fractions of the same subsec-
tor (fractionwater

mon,subs) as Eq. (4).

IWWgrid,mon,subs = IWWgrid,subs× fractionwater
mon,subs (4)

The monthly IWW at the grid level (IWWgrid,mon) after sum-

ming subsectors (
36∑

subs=1
IWWgrid,mon,subs) provided the spa-

tial and seasonal pattern of the total IWW of China in 2008.
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2.2.3 Developing China’s industrial water withdrawal
data from 1965 to 2020

We developed long-term IWW data in China from 1965 to
2020 by mapping provincial IWW statistics based on the
spatial–seasonal pattern derived from IWW in 2008. Due to
the different statistical calibers of the data sources, the raw
IWW from the 2008 Chinese Economic Census Yearbook
was not directly used in the long-term IWW data. Instead,
its spatial–seasonal distribution was used to map the provin-
cial industrial water withdrawal (IWWp) from the China
Water Resources Bulletin between 2003 and 2020 and the
Zhou2020 data between 1965 and 2002. These two IWW
records were combined to develop the long-term data. The
provincial industrial water withdrawal (IWWp) of each year
was allocated to the grid level following Eq. (5) to obtain the
gridded IWW data from 1965 to 2020 (IWWadjust

grid,mon):

IWWadjust
grid,mon = IWWp ×

IWWraw
grid,mon∑

p

12∑
mon=1

IWWraw
grid,mon

, (5)

where IWWadjust
grid,mon was the adjusted IWW (to match IWWp)

of month mon at the grid level, IWWraw
grid,mon was the monthly

IWW at the grid level in 2008, and
∑
p

12∑
mon=1

IWWraw
grid,mon

summed the monthly gridded IWWraw
grid,mon to form the an-

nual total IWW of all grids in a province (p), representing
the fraction of grid-to-provincial total IWW.

Table 2 provides an overview of the CIWW dataset, in-
cluding the gridded monthly IWW data in China from Jan-
uary 1965 to December 2020 with spatial resolutions of 0.1
and 0.25° and auxiliary data supporting the development.

2.3 Data validation and comparison with other datasets

To validate the CIWW dataset, we compared the spatial
and seasonal patterns with statistical data records and other
datasets. For spatial validation, the 35-year mean IWW
(1971–2005) from CIWW, global gridded data (Huang et
al., 2018), and model data (ISIMIP2b input data) were
compared with the Zhou2020 data (treated as truth) (Zhou
et al., 2020) for 341 prefectures in China. Although we
used the provincial-level Zhou2020 data in the spatial map-
ping, the prefectural-level data were unused in developing
CIWW but intentionally left only for validation purposes.
The provincial- and prefectural-level IWW are not com-
pletely independent (each province consists of many prefec-
tures); however, the intra-provincial variations reflected in
prefectural IWW are not captured by the provincial IWW.
In the absence of additional validation data, the prefectural
IWW can support the validation and determine the effective-
ness of spatial patterns after downscaling. All gridded data
were averaged over each prefecture using the zonal statistics

function of the rasterstats package (with the all-touched op-
tion enabled) in Python and then multiplied by the prefecture
area to obtain IWW for each prefecture (in units of km3). The
results in Fig. 2a indicate a superior performance of CIWW
data in representing the spatial variations in IWW compared
with Huang data and model data due to its much higher cor-
relation (0.75, 0.43, and 0.54) and lower root mean square
error (RMSE) (0.28, 0.38, and 0.38 km3). Additionally, when
comparing CIWW at higher resolutions (0.25 and 0.1°), the
consistency with the Zhou2020 data improved further, with
a similar or higher correlation (0.74 and 0.79, respectively)
than the 0.5° data. This result demonstrated the benefit of
an increased spatial resolution in characterizing the IWW at
smaller scales.

For seasonal validation, owing to the data limitation, we
only had monthly surveyed statistical IWW data in Beijing
from 2006 to 2010 (Long et al., 2020). The results showed
that both the CIWW and the Huang data could capture the
5-year mean seasonality of IWW in Beijing (Fig. 2b). How-
ever, the magnitude of IWW was significantly overestimated
by the Huang data (56 mm yr−1) relative to the surveyed sta-
tistical data (33 mm yr−1). In comparison, the magnitude of
IWW in the CIWW data (34 mm yr−1) was more in line with
the surveyed statistical data (Fig. 2b). The slight deviation
of CIWW from statistical data in certain months (e.g. De-
cember) reflects the imperfect capability of applying national
seasonality to characterize local variations in Beijing. These
validations demonstrated better performances of CIWW data
with much higher accuracy and improved representations
of the spatial and seasonal variations; thus, CIWW could
be a preferable data source for IWW-related applications in
China.

3 Results

3.1 Spatial distribution of industrial water withdrawal in
China

There was substantial spatial variation in the total IWW ac-
cording to the 2008 data (Fig. 3a). The eastern coastal area of
China had a generally higher IWW, followed by southeastern
and central China, and the lowest IWW occurred in western
China. The largest water withdrawal was found in the urban
agglomeration of the Yangtze River Delta and Pearl River
Delta. The spatial distribution of IWW over the country in-
dicated that industry enterprises were primarily concentrated
in urban areas with more intensified economic activities.

The water withdrawal by the main industrial sectors
showed distinctive spatial patterns. Water withdrawal from
Electricity and gas production and supply (EGPS) showed
a dispersive pattern that was mainly concentrated in south-
eastern coastal areas, especially in the Yangtze River Delta
region (Fig. 3b). Water withdrawal from manufacturing
broadly reflected the total IWW and population distribution
of China because of the close linkage between manufac-
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Table 2. Overview of the China Industrial Water Withdrawal (CIWW) dataset (available at https://doi.org/10.6084/m9.figshare.21901074;
Hou and Li, 2023). NA – not available

Data Variable Spatial resolution Temporal coverage Industrial sectors

Main data Industrial water withdrawal (adjusted) 0.1°/0.25° Monthly, 1965–2020 NA

Auxiliary data Industrial water withdrawal (raw) 0.1°/0.25° Monthly, 2008 36 subsectors

Industrial output value 0.1°/0.25° Yearly, 2008 36 subsectors

Number of industrial enterprises 0.1°/0.25° Yearly, 2008 36 subsectors

Figure 2. Validation of the CIWW data against the statistical data for spatial distribution and seasonal variation. (a) Relationship between
the mean IWW of 1971–2005 from the Zhou2020 data (Zhou et al., 2020) and CIWW, Huang data (Huang et al., 2018), and the model data
(ISIMIP2b input data) for 341 prefectures in China. The dotted black line indicates the 1 : 1 line and the dashed coloured lines indicate the
fitted lines. For this comparison, CIWW is processed to the same spatial resolution of the Huang data and the model data at 0.5° before
aggregating to the prefecture level. Comparison results with CIWW at other resolutions (0.25 and 0.1°) are reported in R and RMSE.
(b) Comparison of the 5-year mean (2006–2010) monthly variation in IWW from the surveyed data (red; Long et al., 2020), CIWW (blue),
and Huang data (orange) in Beijing. The solid grey line shows IWW for individual years from 2006 to 2010. The inset shows the annual
mean total IWW from 2006 to 2010.

turing and population (Figs. 3c and S5). The water with-
drawal in mining was confined to regions with rich mineral
resources, such as central, northern, and southwestern China
(Fig. 3d). Overall, the industrial sector with the largest IWW
was EGPS (57.85 %) followed by manufacturing (37.11 %)
and mining (5.03 %). The dominance of the EGPS sector
in the total IWW reflected the large water requirement for
thermoelectric power generation (Gu et al., 2016; Niva et al.,
2020).

3.2 Seasonal variations in industrial water withdrawal in
China

The seasonal variations in IWW during 2006–2010, repre-
sented by the fraction of the monthly water withdrawal to
the annual total, are shown in Fig. 4. The results indicated
that the IWW peaked in summer (June to August; 28 %), fol-
lowed by autumn (September to November; 25 %), spring
(March to May; 24 %), and winter (December to February;

23 %) (Fig. 4). February was the month with the lowest IWW,
possibly due to it being shorter and coinciding with the Chi-
nese Spring Festival (Liu et al., 2006). The highest IWW oc-
curred in June, potentially due to the industrial output be-
ing the largest and the high demand for cooling. This IWW
peak did not extend to other summer months because extreme
weather events, such as heatwaves and heavy rain, occurred
more frequently in July and August, which could result in
production shutdowns and reduced water consumption (Liu
et al., 2006).

Seasonal patterns of IWW for the manufacturing and min-
ing sectors were generally similar, but the subsectors of man-
ufacturing showed more diverse patterns. The IWW for the
EGPS had quite a different seasonality as there were two
peaks, one from June to August and the other in Decem-
ber (Fig. 4b); these peaks were likely caused by the seasonal
changes in cooling water withdrawal for thermal electricity
generation due to seasonal temperature variation. The sum-

https://doi.org/10.5194/essd-16-2449-2024 Earth Syst. Sci. Data, 16, 2449–2464, 2024

https://doi.org/10.6084/m9.figshare.21901074


2456 C. Hou et al.: Mapping industrial water withdrawal in China

Figure 3. Total IWW (raw) in China at 0.25° in 2008 (a) and for different industrial sectors, including electricity and gas production and
supply (EGPS; b), manufacturing (c), and mining (d). The box plot in the bottom-left corner shows the interquartile range (25 % and 75 %)
of nonzero water withdrawal, with the red and yellow lines denoting the median and mean values, respectively. The numbers displayed as
percentages denote the percentage of the sectoral IWW to the total IWW. Publisher’s remark: please note that the above figure contains
disputed territories.

mer peak of EGPS was related to the high energy demand for
air-conditioning cooling (Huang et al., 2018), and the winter
peak was related to the high energy demand for heating (By-
ers et al., 2014; Liu et al., 2015; Huang et al., 2018).

3.3 Long-term changes in industrial water withdrawal in
China from 1965 to 2020

For interannual variations, IWW in China increased signif-
icantly from 2.1 billion to 14 billion m3 per month during
1965–2010, and it then decreased to 10 billion m3 per month
(Fig. 5). These long-term changes indicated that IWW in
China has now entered a slowly declining phase. The decline
in national IWW after 2010 is mainly due to the implementa-
tion of a series of water-saving management measures (The
State Council of the People’s Republic of China, 2011) such
as establishing the “three red lines” principle to cap the total
water withdrawal, enhance water use efficiency, and increase
industrial water recycling rate (Chen and Chen, 2021; Zhang
et al., 2023). In addition, the comparison of long-term annual
national IWW of three datasets (CIWW, Huang, and model
data) showed that the other two datasets significantly under-

estimated China’s total IWW and presented different tempo-
ral patterns, as they did not consider the effects of water use
policies (Fig. S6).

4 Discussion

Our study developed new gridded data for IWW in China
from 1965 to 2020. The CIWW dataset improves upon pre-
vious data, particularly in the characterization of spatial and
seasonal patterns. Instead of using indirect proxies, such as
population density, to map IWW, we used data on industrial
enterprises that were direct water withdrawers. Compared
with existing IWW datasets that either lack or have a lim-
ited representation of seasonal changes (Wada et al., 2011b;
Huang et al., 2018; Brunner et al., 2019), our dataset con-
tained seasonal variations based on information from direct
water consumers of the sectorial industrial production pro-
cesses. Furthermore, we used localized data sources in China
to produce the long-term IWW data, significantly improving
regional accuracy and consistency with the statistical data
records. The usage of public data sources and the transpar-
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Figure 4. Seasonal variations in the national total IWW (a) and for separate industrial sectors, including the electricity and gas production
and supply (EGPS) (b), manufacturing (c), and mining sectors (d). The seasonal variations are represented as the fraction of the monthly
IWW to the annual total during 2006–2010. The thick lines represent the water withdrawal of the main industrial sectors, and the thin lines
represent the subsectors. The shadows represent the seasons with peak and low water withdrawal of a year.

Figure 5. Monthly industrial water withdrawal in China from 1965
to 2020 in the CIWW dataset. The red line represents the moving
average of the monthly IWW of a 12-month moving window.

ent methodology make it possible to update and recalibrate
the data further for specific user needs.

4.1 Potential applications of industrial water withdrawal
data: high-resolution analysis and data scaling

The IWW data product with a high resolution supports var-
ious research applications. The high spatial resolution re-
vealed IWW at fine scales. Figure 6 shows IWW hotspots in
some of China’s most densely urbanized regions in 2008 at
0.01° (this resolution was not included in the CIWW dataset
but could be produced by the data and code we provided), in-
cluding the Beijing–Tianjin–Hebei, the Yangtze River Delta,
and the Pearl River Delta. These maps displayed high hetero-
geneity of IWW at the local scales.

Additionally, CIWW data could facilitate downscaling of
statistical data between different administrative (e.g. provin-
cial or prefecture level), natural (e.g. watershed), and grid
levels and help reconcile the scale mismatch between data
with different spatial units (e.g. administrative and water-
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Figure 6. Zoomed view of IWW in the densely urbanized regions in China at a spatial resolution of 0.01° (a, b, c) and 0.02° (d, e, f) for
clarity, including the Beijing–Tianjin–Hebei region (a, d), Yangtze River Delta (b, e), and Pearl River Delta (c, f). Panels (a)–(c) show the
spatial pattern of IWW for manufacturing, and panels (d)–(f) show the spatial pattern of IWW for electricity and gas production and supply.
The numbers displayed as percentages denote the percentage of the sectoral IWW to total IWW.

Figure 7. CIWW data showing the downscaling of IWW from provincial to county levels in China (a) and from provincial to water basin
levels in the Yellow River Basin (b). Publisher’s remark: please note that the above figure contains disputed territories.

shed/catchment). For example, with the gridded CIWW data,
the statistical provincial IWW data could be downscaled to
the prefecture level or even the county level (Fig. 7a). More-
over, the provincial IWW could be rescaled to the watershed
level using weights from the gridded IWW. Figure 7b shows

the rescaling of the IWW from provincial levels to water-
sheds in the Yellow River basin.
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4.2 Uncertainties in the spatial downscaling methods

The spatial pattern of IWW in the CIWW dataset was pri-
marily derived based on > 400 000 industrial enterprises in
2008. The spatial sampling of industrial enterprises could
affect the spatial mapping. Although this was a large num-
ber of records, the enterprise dataset could not cover all en-
terprises in China since it only sampled enterprises above
a designated production level. Therefore, other enterprises
below this level, including their IWWs, would be omitted
from the datasets, leading to spatial undersampling of all
industrial enterprises and their IWWs in China. According
to the 2008 Chinese Economic Census Yearbook, the enter-
prises above a designated level accounted for 93 % of the
IOV and 85 % of the water withdrawal of all industries. This
data indicated that spatial sampling could have a limited in-
fluence on the overall spatial pattern. Additionally, this issue
could have been mitigated when the point-level enterprise es-
timates were aggregated to the grid level.

Another source of uncertainty came from water use effi-
ciency (WUE). Ideally, the enterprise-level IWW could be
estimated using each enterprise’s IOV and WUE. However,
the enterprise-specific WUE was unavailable; thus, we used
the provincial subsectorial WUE, assuming the enterprises of
the same subsector in the province had similar WUEs. This
assumption disregarded the WUE variations since the WUE
of different enterprises could vary substantially depending on
the subsector, technological levels, investment, scale effects,
and so on. For this matter, the spatial distribution of IWW
could be further improved with better data sources available
at finer scales in the future.

4.3 Uncertainties in seasonal allocation methods

When allocating the annual IWW to monthly scales, we used
monthly variations in industrial product output data to repre-
sent the seasonal variations in IWW. Notably, there were dif-
ferences in monthly variations across different products and
provinces. When aggregating the monthly variations in 283
products to subsectors, each product was assigned an equal
weight due to the lack of product-specific WUE, which ne-
glected the structural differences within the subsector that ex-
ist because the products consuming more water could have a
more important role. When aggregating IWW from a subsec-
tor to a sector, the structural differences within a sector were
considered with the weights of subsector WUEs.

We observed considerable differences in monthly varia-
tions in product output across provinces for different in-
dustrial sectors (Fig. S3). However, the seasonal fluctua-
tions shown in sectors, such as manufacturing and min-
ing, exhibited patterns that were chaotic and unreasonable
at the provincial level (Fig. S3). It was difficult to deter-
mine whether these different seasonal fluctuations originated
from statistical/random errors, unweighted product outputs
to the subsector, interannual variability, or actual regional

differences. Therefore, we selected to use the national mean
monthly variations to represent each subsector to improve
the robustness. These monthly subsector variations were then
combined with the subsectoral water withdrawal to derive
the seasonal variations in IWW (Eq. 4). This choice was
expected to have a limited impact on the seasonality of to-
tal IWW because it was primarily determined by the secto-
rial composition of a province (Reynaud, 2003; Sathre et al.,
2022). In future research, the regional differences in seasonal
variations in IWW should be further explored.

4.4 Uncertainties in producing long-term gridded data

A key step in developing the long-term gridded IWW data
was to apply the spatial–seasonal pattern of IWW derived in
2008 for downscaling. The year 2008 was chosen to match
the 2008 Chinese Economic Census Yearbook data, which
include detailed IWW information that are only available for
2008. Thus, even though the total IWW increased over time
with economic development, their spatial pattern and season-
ality remained the same in CIWW. We acknowledge that the
time-invariant spatial–seasonal pattern of IWW from a sin-
gle year in 2008 was a strong assumption and probably not
true in reality. Nevertheless, this practice was acceptable in
the literature under the data limit. For example, the spatial
patterns from a single year – e.g. the urban population distri-
bution in 2009 used in WaterGAP3 (Flörke et al., 2013) and
the global IWW map in 2000 used in PCR-GLOBAL (Wada
et al., 2011a, b) – or patterns with multi-year updates – e.g.
H08 (Hanasaki et al., 2008b) and Huang et al. (2018) – were
used when developing the gridded IWW data with long time
spans. Other time-varying data sources, such as nightlight,
land cover, and population density maps with frequent tem-
poral updates, could potentially facilitate the characterization
of the temporal changes in the spatial pattern of IWW.

The long-term changes in the industrial WUE can affect
IWW since WUE generally improves over time with the de-
velopment of technology. This improvement would occur for
all enterprises (Chen et al., 2019; Yang et al., 2021) and thus
would not necessarily change the broad spatial pattern of
IWW, since this pattern is determined by the spatial distri-
bution of the industry and economic activities. The influence
of other long-term factors such as climate change and WUE
changes related to industry development could be partially
captured by the provincial statistical data which incorporate
the changing spatial pattern of total IWW at the provincial
level (Fig. S7).

Notably, the number of enterprises would also change over
time and is likely to influence the spatial pattern of IWW. By
comparing the spatial pattern of the IOV between 2008 and
2013 using the gridded enterprise data, the two years showed
high consistency, with correlation values of 0.9 at 0.1° and
0.94 at 0.25° (Fig. S8). Since the 2013 data had 16 % fewer
enterprise samples (< 340 000) than 2008 data (> 400 000),
the different sample sizes meant fewer enterprises would ap-
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pear in 2013 compared to 2008. Nonetheless, the number of
grids with the presence of valid enterprises in 2013 was just
12 % lower than that in 2008 at 0.1° and 7 % at 0.25°, which
is much smaller than the expected 16 % decline in spatial
coverage. This result indicated that the spatial pattern of the
gridded data was less sensitive to the number of enterprises,
especially at coarse spatial resolutions.

These analyses support that although specific industrial
enterprises, their WUEs, and water withdrawal substantially
changed over time, the broad spatial pattern after aggregating
to the grid scale still largely holds because the spatial pattern
of IWW is determined by the distribution of the population
and economy of the country, which remain relatively stable
over the years (Fig. S5). Nevertheless, temporal changes in
the driving factors of IWW and their regional differences,
such as industrial structure, water use efficiency, and climate
(Alcamo et al., 2003; Otaki et al., 2008; Flörke et al., 2013;
Zhou et al., 2020), should be considered to achieve higher
accuracy. Due to this limitation, the CIWW dataset would
have better performance for the last 20 years but may con-
tain larger uncertainties towards earlier periods. Users can
select the time period of the dataset according to their spe-
cific needs and interpret data from earlier years with cau-
tion. Our evaluation indicated that the CIWW data in ear-
lier years had a surprisingly good performance with a much
higher correlation (0.83 vs. 0.35–0.36 in 1971; as illustrated
in Fig. S9) and smaller RRMSE (relative root mean square
error; RMSE / mean; 1.97 vs. 2.78–2.85 in 1971) than other
gridded datasets when compared against Zhou2020 data at
a prefectural level (note that the prefecture-level IWW from
Zhou2020 data was not used in the development CIWW).

5 Data availability

The China Industrial Water Withdrawal (CIWW) dataset
is available at https://doi.org/10.6084/m9.figshare.21901074
(Hou and Li, 2023). The Chinese Industrial Enter-
prises database is available from the library resources
of Peking University (https://www.lib.pku.edu.cn/portal/cn/
news/0000001637, China State Statistical Bureau, 2022).
The Chinese Economic Census Yearbook in 2008 is freely
available to the public at https://www.stats.gov.cn/sj/pcsj/
jjpc/2jp/left.htm (Leading Office of the Second Economic
Census, 2010). The China Industrial Product Output database
can be downloaded from the EPS database (https://www.
epsnet.com.cn/, China State Statistical Bureau, 2021). The
provincial industrial water withdrawal data from 2003 to
2020 are from the China Water Resources Bulletin (http:
//www.mwr.gov.cn/sj/tjgb/szygb/, Ministry of Water Re-
sources of the People’s Republic of China, 2022), and
the data from 1965 to 2002 were obtained from Zhou et
al. (2020).

6 Code availability

The Python codes used in this study are available on Zen-
odo (https://doi.org/10.5281/zenodo.11198022, Hou and Li,
2024).

7 Conclusions

To address the data gap in industrial water withdrawal in
China, one of the top water consumers in the world, we
developed a new gridded dataset, namely the China Indus-
trial Water Withdrawal (CIWW) dataset. This dataset pro-
vided monthly IWWs from 1965 to 2020 at spatial resolu-
tions of 0.1 and 0.25°. With the best available data sources,
this dataset showed significant improvements compared to
previous global datasets in characterizing the spatial pattern,
seasonal variation, and long-term changes in IWW in China
and had much higher accuracy. The transparent methodology
and public availability of the source data enabled further ad-
justments and calibration to support the various applications
by users. They also served as a reference to develop localized
datasets for other countries. This dataset could help to un-
derstand human water use dynamics and support studies in
hydrology, geography, environment, sustainability sciences,
and regional water resource management and allocation in
China.
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Appendix A

Table A1. Classification of sectors in the data. Subsectors in italics are not used in mapping of CIWW as explained in the Notes.

No. Subsector Sector Notes

6 Coal mining and dressing Mining industry
7 Petroleum and natural gas extraction
8 Ferrous-metal mining and dressing
9 Non-ferrous-metal mining and dressing No industrial enterprise data
10 Non-metal minerals mining and dressing
11 Other mining No monthly product output data, filled by

the average of the mining sector

13 Food processing Manufacturing industry
14 Food manufacture
15 Beverage processing
16 Tobacco processing
17 Textile industry
18 Apparel, footwear, and cap manufacturing
19 Leather, furs, down, and related products
20 Processing of timber and manufacturing of wood, bamboo,

rattan, palm, and straw products
21 Furniture manufacturing
22 Paper and paper products
23 Printing and reproduction of recording media
24 Cultural, educational, and sports articles
25 Petroleum processing and coking
26 Raw chemical materials
27 Medicine manufacturing
28 Chemical fibre manufacturing
29 Rubber manufacturing
30 Plastics manufacturing
31 Non-metal mineral products
32 Smelting and pressing of ferrous metals
33 Smelting and pressing of non-ferrous metals No industrial enterprise data
34 Metal products
35 General machinery
36 Special machinery
37 Transportation equipment
39 Electrical equipment and machinery
40 Electronic and telecommunication equipment
41 Instruments, metres, and cultural and office machinery
42 Artwork and other manufacturing products
43 Waste resources and material recycling and processing No monthly product output data, filled by

the average of the manufacturing sector

44 Electricity and heating power production and supply Electricity and gas production and supply
45 Gas production and supply
46 Water production and supply Unused, not for industrial purposes
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Appendix B

Table B1. A summary description of other IWW data for comparison.

Data variable Data source Industrial sector Time span Spatial resolution

Industrial water withdrawal Global gridded monthly
sectoral water use dataset

Sectors (3) Monthly, 1971–2010 0.5°

Water abstraction for industrial uses Input data used in ISIMIP2b None Yearly, 1901–2005 0.5°

Introduction of IWW between different models in model data

IWW in model data Industrial sector Definition of IWW
WaterGAP Sectors (2; except mining) Total IWW is the sum of manufacturing and energy production water withdrawal
H08 None Total IWW includes manufacturing use and energy production
PCR-GLOBWB None Total IWW, no details available
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