Articles | Volume 15, issue 2
https://doi.org/10.5194/essd-15-769-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-769-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Combined wind lidar and cloud radar for high-resolution wind profiling
Geoscience & Remote Sensing, Delft University of Technology, Delft, the Netherlands
Louise Nuijens
Geoscience & Remote Sensing, Delft University of Technology, Delft, the Netherlands
Christine Unal
Geoscience & Remote Sensing, Delft University of Technology, Delft, the Netherlands
Steven Knoop
R&D Observations and Data Technology, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
Related authors
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Ho Yi Lydia Mak and Christine Unal
Atmos. Meas. Tech., 18, 1209–1242, https://doi.org/10.5194/amt-18-1209-2025, https://doi.org/10.5194/amt-18-1209-2025, 2025
Short summary
Short summary
The dynamics of thunderclouds are studied using cloud radar. Supercooled liquid water and conical graupel are likely present, while chain-like ice crystals may occur at cloud top. Ice crystals are vertically aligned seconds before lightning and resume their usual horizontal alignment afterwards in some cases. Updrafts and downdrafts are found near cloud core and edges respectively. Turbulence is strong. Radar measurement modes that are more suited for investigating thunderstorms are recommended.
Ioanna Tsikoudi, Alessandro Battaglia, Christine Unal, and Eleni Marinou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3164, https://doi.org/10.5194/egusphere-2024-3164, 2025
Short summary
Short summary
The study simulates spectral polarimetric variables for raindrops as observed by a cloud radar. Raindrops are modelled as oblate spheroids and backscattering properties are computed via the T-matrix method including noise, turbulence and spectral averaging effects. When comparing simulations to measurements, differences on the amplitudes of polarimetric variables are noted. This shows the challenge of using simplified shapes to model raindrop polarimetric variables when moving to mm wavelengths.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245, https://doi.org/10.5194/amt-17-235-2024, https://doi.org/10.5194/amt-17-235-2024, 2024
Short summary
Short summary
A common method to retrieve important information about the microphysical structure of rain (DSD retrievals) requires a constrained relationship between the drop size distribution parameters. The most widely accepted empirical relationship is between μ and Λ. The relationship shows variability across the different types of rainfall (convective or stratiform). The new proposed power-law model to represent the μ–Λ relation provides a better physical interpretation of the relationship coefficients.
Alessandro Carlo Maria Savazzi, Louise Nuijens, Irina Sandu, Geet George, and Peter Bechtold
Atmos. Chem. Phys., 22, 13049–13066, https://doi.org/10.5194/acp-22-13049-2022, https://doi.org/10.5194/acp-22-13049-2022, 2022
Short summary
Short summary
Winds are of great importance for the transport of energy and moisture in the atmosphere. In this study we use measurements from the EUREC4A field campaign and several model experiments to understand the wind bias in the forecasts produced by the European Centre for Medium-Range Weather Forecasts. We are able to link the model errors to heights above 2 km and to the representation of the diurnal cycle of winds: the model makes the winds too slow in the morning and too strong in the evening.
Manuel Queißer, Michael Harris, and Steven Knoop
Atmos. Meas. Tech., 15, 5527–5544, https://doi.org/10.5194/amt-15-5527-2022, https://doi.org/10.5194/amt-15-5527-2022, 2022
Short summary
Short summary
Visibility is how well we can see something. Visibility sensors, such as employed in meteorological observatories and airports, measure at a point at the instrument location, which may not be representative of visibilities further away, e.g. near the sea surface during sea spray. Light detecting and ranging (lidar) can measure visibility further away. We find wind lidar to be a viable tool to measure visibility with low accuracy, which could suffice for safety-uncritical applications.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 15, 4951–4969, https://doi.org/10.5194/amt-15-4951-2022, https://doi.org/10.5194/amt-15-4951-2022, 2022
Short summary
Short summary
Knowledge of the raindrop size distribution (DSD) is crucial for understanding rainfall microphysics and quantifying uncertainty in quantitative precipitation estimates. In this study a general overview of the DSD retrieval approach from a polarimetric radar is discussed, highlighting sensitivity to potential sources of errors, either directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method such as the shape–size (μ–Λ) relationship.
Ada Mariska Koning, Louise Nuijens, Christian Mallaun, Benjamin Witschas, and Christian Lemmerz
Atmos. Chem. Phys., 22, 7373–7388, https://doi.org/10.5194/acp-22-7373-2022, https://doi.org/10.5194/acp-22-7373-2022, 2022
Short summary
Short summary
Wind measurements from the mixed layer to cloud tops are scarce, causing a lack of knowledge on wind mixing between and within these layers. We use airborne observations of wind profiles and local wind at high frequency to study wind transport in cloud fields. A case with thick clouds had its maximum transport in the cloud layer, caused by eddies > 700 m, which was not expected from turbulence theory. In other cases large eddies undid transport of smaller eddies resulting in no net transport.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Steven Knoop, Fred C. Bosveld, Marijn J. de Haij, and Arnoud Apituley
Atmos. Meas. Tech., 14, 2219–2235, https://doi.org/10.5194/amt-14-2219-2021, https://doi.org/10.5194/amt-14-2219-2021, 2021
Short summary
Short summary
Doppler wind lidars are laser-based remote sensing instruments that measure the wind up to a few hundred metres or even a few kilometres. Their data can improve weather models and help forecasters. To investigate their accuracy and required meteorological conditions, we have carried out a 2-year measurement campaign of a wind lidar at our Cabauw test site and made a comparison with cup anemometers and wind vanes at several levels in a 213 m tall meteorological mast.
Cited articles
Achtemeier, G. L.: The Use of Insects as Tracers for “Clear-Air”
Boundary-Layer Studies by Doppler Radar, J. Atmos. Ocean.
Tech., 8, 746–765,
https://doi.org/10.1175/1520-0426(1991)008<0746:TUOIAT>2.0.CO;2, 1991. a, b, c
Aoki, M., Iwai, H., Nakagawa, K., Ishii, S., and Mizutani, K.: Measurements of
Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler
Lidar, J. Atmos. Ocean. Tech., 33, 1949–1966,
https://doi.org/10.1175/JTECH-D-15-0111.1, 2016. a
Biswas, S. K., Chandrasekar, V., Sahoo, S., and Lakshmi, A. K.: Study of a
Convective Event During the Relampago Field Experiment Using Spectral
Polarimetry, in: IGARSS 2022 – 2022 IEEE International Geoscience and Remote
Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022, 6534–6537, https://doi.org/10.1109/IGARSS46834.2022.9884392,
2022. a
Bonin, T. A. and Alan Brewer, W.: Detection of Range-Folded Returns in Doppler
Lidar Observations, IEEE Geosci. Remote S., 14, 514–518,
https://doi.org/10.1109/LGRS.2017.2652360, 2017. a
Bonin, T. A., Choukulkar, A., Brewer, W. A., Sandberg, S. P., Weickmann, A. M., Pichugina, Y. L., Banta, R. M., Oncley, S. P., and Wolfe, D. E.: Evaluation of turbulence measurement techniques from a single Doppler lidar, Atmos. Meas. Tech., 10, 3021–3039, https://doi.org/10.5194/amt-10-3021-2017, 2017. a, b
Bühl, J., Leinweber, R., Görsdorf, U., Radenz, M., Ansmann, A., and Lehmann, V.: Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler, Atmos. Meas. Tech., 8, 3527–3536, https://doi.org/10.5194/amt-8-3527-2015, 2015. a
Chandra, A. S., Kollias, P., Giangrande, S. E., and Klein, S. A.: Long-Term
Observations of the Convective Boundary Layer Using Insect Radar Returns at
the SGP ARM Climate Research Facility, J. Climate, 23, 5699–5714,
https://doi.org/10.1175/2010JCLI3395.1, 2010. a, b, c
Chandrasekar, V., Chen, H., and Philips, B.: Principles of High-Resolution
Radar Network for Hazard Mitigation and Disaster Management in an Urban
Environment, J. Meteorol. Soc. Jpn.. Ser. II, 96A,
119–139, https://doi.org/10.2151/jmsj.2018-015, 2018. a
Clifton, A. and Wagner, R.: Accounting for the effect of turbulence on wind
turbine power curves, in: Journal of Physics: Conference Series, vol. 524, p.
012109, IOP Publishing, https://doi.org/10.1088/1742-6596/524/1/012109, 2014. a
Cordoba, M., Dance, S. L., Kelly, G. A., Nichols, N. K., and Waller, J. A.:
Diagnosing atmospheric motion vector observation errors for an operational
high-resolution data assimilation system, Q. J. Roy.
Meteor. Soc., 143, 333–341, https://doi.org/10.1002/qj.2925,
2017. a
Dawson, D. T., Mansell, E. R., and Kumjian, M. R.: Does Wind Shear Cause
Hydrometeor Size Sorting?, J. Atmos. Sci., 72, 340–348, https://doi.org/10.1175/JAS-D-14-0084.1, 2015. a
Dias Neto, J.: The Tracing Convective Momentum Transport in Complex Cloudy
Atmospheres Experiment – Level 1, Zenodo [data set], https://doi.org/10.5281/zenodo.6926483,
2022a. a, b
Dias Neto, J.: The Tracing Convective Momentum Transport in Complex Cloudy
Atmospheres Experiment – Level 2, Zenodo [data set], https://doi.org/10.5281/zenodo.6926605,
2022b. a, b
Dixit, V., Nuijens, L., and Helfer, K. C.: Counter-Gradient Momentum Transport
Through Subtropical Shallow Convection in ICON-LEM Simulations, J.
Adv. Model. Earth Sy., 13, e2020MS002352,
https://doi.org/10.1029/2020MS002352, 2021. a
Eberhard, W. L., Cupp, R. E., and Healy, K. R.: Doppler lidar measurement of
profiles of turbulence and momentum flux, J. Atmos. Ocean.
Tech., 6, 809–819, 1989. a
Elliott, D. L. and Cadogan, J. B.: Effects of wind shear and turbulence on wind
turbine power curves, Tech. Rep., Pacific Northwest Lab., Richland, WA (USA), https://ui.adsabs.harvard.edu/abs/1990wien.conf...10E (last access: 15 November 2022),
1990. a
Geerts, B. and Miao, Q.: The Use of Millimeter Doppler Radar Echoes to Estimate
Vertical Air Velocities in the Fair-Weather Convective Boundary Layer,
J. Atmos. Ocean. Tech., 22, 225–246,
https://doi.org/10.1175/JTECH1699.1, 2005. a
Ghate, V. P., Cadeddu, M. P., Zheng, X., and O'Connor, E.: Turbulence in the
Marine Boundary Layer and Air Motions below Stratocumulus Clouds at the ARM
Eastern North Atlantic Site, J. Appl. Meteorol. Clim.,
60, 1495–1510, https://doi.org/10.1175/JAMC-D-21-0087.1, 2021. a, b
Gimeno, L., Nieto, R., Vázquez, M., and Lavers, D.: Atmospheric rivers: a
mini-review, Front. Earth Sci., 2, 1–6, https://doi.org/10.3389/feart.2014.00002,
2014. a
Gimeno, L., Vázquez, M., Eiras-Barca, J., Sorí, R., Stojanovic, M.,
Algarra, I., Nieto, R., Ramos, A. M., Durán-Quesada, A. M., and
Dominguez, F.: Recent progress on the sources of continental precipitation as
revealed by moisture transport analysis, Earth-Sci. Rev., 201,
103070, https://doi.org/10.1016/j.earscirev.2019.103070, 2020. a
Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino, D., de Roode, S. R., and Vilà-Guerau de Arellano, J.: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications, Geosci. Model Dev., 3, 415–444, https://doi.org/10.5194/gmd-3-415-2010, 2010. a
Ishwardat, N.: Radar based horizontal wind profile retrieval techniques: DFT
applied to scanning Doppler radar measurements, Master's thesis, Delft
University of Technology, the Netherlands,
http://resolver.tudelft.nl/uuid:a659654b-e76a-4513-a656-ecad761bdbc8 (last access: 15 November 2022),
2017. a
Kelley, N. D., Jonkman, B. J., and Scott, G. N.: Great Plains Turbulence Environment: Its Origins, Impact, and Simulation, University of North Texas Libraries, UNT Digital Library,
https://digital.library.unt.edu/ark:/67531/metadc882034/ (last access: 21 January 2023), 2006. a
Kishtawal, C. M., Deb, S. K., Pal, P. K., and Joshi, P. C.: Estimation of
Atmospheric Motion Vectors from Kalpana-1 Imagers, J. Appl.
Meteorol. Clim., 48, 2410–2421, https://doi.org/10.1175/2009JAMC2159.1,
2009. a
Klingebiel, M., Ghate, V. P., Naumann, A. K., Ditas, F., Pöhlker, M. L.,
Pöhlker, C., Kandler, K., Konow, H., and Stevens, B.: Remote Sensing of
Sea Salt Aerosol below Trade Wind Clouds, J. Atmos.
Sci., 76, 1189–1202, https://doi.org/10.1175/JAS-D-18-0139.1, 2019. a
Koning, A. M., Nuijens, L., Bosveld, F. C., Siebesma, A., van Dorp, P. A., and
Jonker, H.: Surface-Layer Wind Shear and Momentum Transport From Clear-Sky to
Cloudy Weather Regimes Over Land, J. Geophys. Res.-Atmos., 126, e2021JD035087, https://doi.org/10.1029/2021JD035087, 2021. a
Kosiba, K., Wurman, J., Richardson, Y., Markowski, P., Robinson, P., and
Marquis, J.: Genesis of the Goshen County, Wyoming, Tornado on 5 June 2009
during VORTEX2, Mon. Weather Rev., 141, 1157–1181,
https://doi.org/10.1175/MWR-D-12-00056.1, 2013. a
Kropfli, R.: Single Doppler radar measurements of turbulence profiles in the
convective boundary layer, J. Atmos. Ocean. Tech., 3,
305–314, 1986. a
Kumjian, M. R.: Weather Radars, Springer International Publishing, 15–63,
Cham, https://doi.org/10.1007/978-3-319-72583-3_2, 2018. a
Kumjian, M. R. and Ryzhkov, A. V.: The Impact of Size Sorting on the
Polarimetric Radar Variables, J. Atmos. Sci., 69, 2042–2060, https://doi.org/10.1175/JAS-D-11-0125.1, 2012. a
Lamb, D. and Verlinde, J.: Physics and Chemistry of Clouds, Cambridge
University Press, https://doi.org/10.1017/CBO9780511976377, 2011. a
Laurencin, C. N., Didlake Jr., A. C., Loeffler, S. D., Kumjian, M. R., and
Heymsfield, G. M.: Hydrometeor Size Sorting in the Asymmetric Eyewall of
Hurricane Matthew (2016), J. Geophys. Res.-Atmos., 125,
e2020JD032671, https://doi.org/10.1029/2020JD032671, 2020. a
Lhermitte, R. M.: Note on Wind Variability with Doppler Radar, J.
Atmos. Sci., 19, 343–346,
https://doi.org/10.1175/1520-0469(1962)019<0343:NOWVWD>2.0.CO;2, 1962. a
Mann, J., Peña, A., Bingöl, F., Wagner, R., and Courtney, M.: Lidar
scanning of momentum flux in and above the atmospheric surface layer, J. Atmos. Ocean. Tech., 27, 959–976, 2010. a
Martner, B. E. and Moran, K. P.: Using cloud radar polarization measurements to
evaluate stratus cloud and insect echoes, J. Geophys. Res.-Atmos., 106, 4891–4897, https://doi.org/10.1029/2000JD900623,
2001. a
Miller, M. A., Yuter, S. E., Hoban, N. P., Tomkins, L. M., and Colle, B. A.: Detecting wave features in Doppler radial velocity radar observations, Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022, 2022. a
Naakka, T., Nygård, T., Vihma, T., Sedlar, J., and Graversen, R.:
Atmospheric moisture transport between mid-latitudes and the Arctic:
Regional, seasonal and vertical distributions, Int. J.
Climatol., 39, 2862–2879, https://doi.org/10.1002/joc.5988, 2019. a
Newman, J. F. and Clifton, A.: An error reduction algorithm to improve lidar turbulence estimates for wind energy, Wind Energ. Sci., 2, 77–95, https://doi.org/10.5194/wes-2-77-2017, 2017. a
Newman, J. F., Klein, P. M., Wharton, S., Sathe, A., Bonin, T. A., Chilson, P. B., and Muschinski, A.: Evaluation of three lidar scanning strategies for turbulence measurements, Atmos. Meas. Tech., 9, 1993–2013, https://doi.org/10.5194/amt-9-1993-2016, 2016. a
Peinke, J., Barth, S., Böttcher, F., Heinemann, D., and Lange, B.:
Turbulence, a challenging problem for wind energy, Physica A, 338, 187–193, 2004. a
Rennie, S. J., Illingworth, A. J., Dance, S. L., and Ballard, S. P.: The
accuracy of Doppler radar wind retrievals using insects as targets,
Meteorol. Appl., 17, 419–432,
https://doi.org/10.1002/met.174, 2010. a, b
Ritvanen, J., O'Connor, E., Moisseev, D., Lehtinen, R., Tyynelä, J., and Thobois, L.: Complementarity of wind measurements from co-located X-band weather radar and Doppler lidar, Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022, 2022. a, b
Röttger, J. and Larsen, M. F.: UHF/VHF Radar Techniques for Atmospheric
Research and Wind Profiler Applications, American
Meteorological Society, Boston, MA, 235–281, https://doi.org/10.1007/978-1-935704-15-7_23, 1990. a
Sathe, A. and Mann, J.: A review of turbulence measurements using ground-based wind lidars, Atmos. Meas. Tech., 6, 3147–3167, https://doi.org/10.5194/amt-6-3147-2013, 2013. a
Sathe, A., Mann, J., Vasiljevic, N., and Lea, G.: A six-beam method to measure turbulence statistics using ground-based wind lidars, Atmos. Meas. Tech., 8, 729–740, https://doi.org/10.5194/amt-8-729-2015, 2015. a, b, c
Siebesma, A. P. and Cuijpers, J. W. M.: Evaluation of Parametric Assumptions
for Shallow Cumulus Convection, J. Atmos. Sci., 52, 650–666, https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2, 1995. a
Smalikho, I. N. and Banakh, V. A.: Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer, Atmos. Meas. Tech., 10, 4191–4208, https://doi.org/10.5194/amt-10-4191-2017, 2017. a
Stull, R. B.: An Introduction to Boundary Layer Meteorology, 1 edn., edited by: Stull, R. B., Springer
Dordrecht, Dordrecht, ISBN 978-94-009-3027-8, 2003. a
van Stratum, B., Siebesma, P., Barkmeijer, J., and van Ulft, B.: Downscaling
HARMONIE-AROME with Large-Eddy simulation, Tech. Rep., Royal Netherlands
Meteorological Institute,
https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR378.pdf (last access: 15 November 2022),
2019. a
vanZanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P., Ackerman, A. S.,
Burnet, F., Cheng, A., Couvreux, F., Jiang, H., Khairoutdinov, M., Kogan, Y.,
Lewellen, D. C., Mechem, D., Nakamura, K., Noda, A., Shipway, B. J.,
Slawinska, J., Wang, S., and Wyszogrodzki, A.: Controls on precipitation and
cloudiness in simulations of trade-wind cumulus as observed during RICO,
J. Adv. Model. Earth Sy., 3, M06001,
https://doi.org/10.1029/2011MS000056, 2011. a
Velden, C., Daniels, J., Stettner, D., Santek, D., Key, J., Dunion, J.,
Holmlund, K., Dengel, G., Bresky, W., and Menzel, P.: Recent Innovations in
Deriving Tropospheric Winds from Meteorological Satellites, B.
Am. Meteorol. Soc., 86, 205–224, https://doi.org/10.1175/BAMS-86-2-205,
2005.
a
Velden, C. S. and Bedka, K. M.: Identifying the Uncertainty in Determining
Satellite-Derived Atmospheric Motion Vector Height Attribution, J.
Appl. Meteorol. Clim., 48, 450–463,
https://doi.org/10.1175/2008JAMC1957.1, 2009. a
Wainwright, C. E., Stepanian, P. M., Reynolds, D. R., and Reynolds, A. M.: The
movement of small insects in the convective boundary layer: linking patterns
to processes, Scientific Reports, 7, 5438, https://doi.org/10.1038/s41598-017-04503-0,
2017. a, b
Wilson, D.: Doppler radar studies of boundary layer wind profile and turbulence
in snow conditions, B. Am. Meteorol. Soc.,
51, 759–785, http://www.jstor.org/stable/26253228 (last access: 15 November 2022),
1970. a
Wilson, J. W., Weckwerth, T. M., Vivekanandan, J., Wakimoto, R. M., and
Russell, R. W.: Boundary Layer Clear-Air Radar Echoes: Origin of Echoes and
Accuracy of Derived Winds, J. Atmos. Ocean. Tech., 11,
1184–1206, https://doi.org/10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2, 1994. a, b
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A.: On the importance of cascading moisture recycling in South America, Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, 2014. a
Short summary
This paper describes a dataset from a novel experimental setup to retrieve wind speed and direction profiles, combining cloud radars and wind lidar. This setup allows retrieving profiles from near the surface to the top of clouds. The field campaign occurred in Cabauw, the Netherlands, between September 13th and October 3rd 2021. This paper also provides examples of applications of this dataset (e.g. studying atmospheric turbulence, validating numerical atmospheric models).
This paper describes a dataset from a novel experimental setup to retrieve wind speed and...
Altmetrics
Final-revised paper
Preprint