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Abstract. This paper introduces an experimental setup for retrieving horizontal wind speed and direction pro-
files with a high temporal and vertical resolution for process studies and validation of convection-permitting
model simulations. The CMTRACE (tracing convective momentum transport in complex cloudy atmospheres)
campaign used collocated wind lidar and cloud radar measurements to retrieve seamless wind profiles from
near the surface up to cloud tops. It took place in Cabauw, the Netherlands, between 13 September and
3 October 2021. The intermediate processing steps for generating the level 1 and level 2 data, such as sec-
ond trip echoes filtering, offset correction, wind retrieval, re-gridding, and flagging, are described. In level 1
(https://doi.org/10.5281/zenodo.6926483, Dias Neto, 2022a), the data from lidar and radars are kept in the origi-
nal spatial and temporal resolution, while in level 2 (https://doi.org/10.5281/zenodo.6926605, Dias Neto, 2022b),
they are regridded to a common spatial and temporal resolution. Statistical analyses of the lidar’s and radar’s wind
speed and direction profiles indicate a correlation higher than 0.95 for both variables. The bias of wind direction
and speed calculated between radar’s and lidar’s observations are 0.24◦ and−0.16 ms−1, respectively. The fore-
seen initial application of the datasets includes the study of convective momentum transport and its validation in
regional weather forecasts and large-eddy simulation hindcasts.

1 Introduction

Wind is an essential component in nearly every weather phe-
nomenon on Earth through its transport of heat, moisture,
and scalars. How winds blow sets patterns of precipitation
on large scales through e.g. atmospheric rivers or monsoons
(Gimeno et al., 2014; Zemp et al., 2014; Naakka et al., 2019;
Gimeno et al., 2020), while on small scales it influences sur-
face heat and moisture fluxes, convection, and cloud devel-
opment. Large-scale wind is driven by thermal (pressure)
gradients, but modified by a range of small-scale processes,
including surface drag, momentum transport, and gravity
waves. The parametrisation of those small-scale processes in
weather and climate models remains uncertain, and persis-
tent wind biases likely related to such processes continue to
exist.

Wind observations for data assimilation and model vali-
dation are therefore invaluable, but generally limited to the
surface layer where meteorological stations (over land) or
permanent moorings or buoys (in the ocean) exist. Besides
meteorological towers (limited to 200 m) or airborne wind
measurements (limited in time), ground-based radar and li-
dars can be used more routinely to measure wind profiles
beyond the surface layer.

The so-called velocity azimuth display (VAD) radar ap-
proach for retrieving the wind properties was proposed
by Lhermitte (1962); Browning and Wexler (1968); Lher-
mitte (1969), where the mean Doppler velocity (MDV) as
a function of azimuth results in a sine curve. Later, Wilson
(1970); Kropfli (1986) used radars to study turbulence in the
boundary layer based on the VAD. Weather Doppler radars
have also been extensively used by weather services (Chan-
drasekar et al., 2018; Kumjian, 2018) to monitor winds, miti-
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gate the impact of storms, study the evolution of meteorolog-
ical systems (e.g. tornadoes, cyclones) (Kosiba et al., 2013),
and detect wave structures in the horizontal wind (Miller
et al., 2022).

In the last decade, due to the current global transition
from fossil fuel power plants to systems based on renew-
able energy sources, the wind energy industry has bloomed.
For accurate wind power prediction, understanding the influ-
ence of turbulence in the atmospheric boundary layer, as well
as topography and surface drag, is crucial. Wind turbulence
can strongly affect energy production (Elliott and Cadogan,
1990; Peinke et al., 2004; Clifton and Wagner, 2014) or even
damage the wind turbines (Kelley et al., 2006). Studying
such processes requires much higher resolution wind obser-
vations to understand the temporal and spatial scales with
which wind varies, including over ocean. This has spurred
the development and deployment of commercial Doppler
wind lidar. Based on VAD radar works, Eberhard et al. (1989)
used lidar for studying turbulence for the first time, and since
then, lidar has been largely used for this application (New-
man et al., 2016; Newman and Clifton, 2017; Mann et al.,
2010; Sathe et al., 2015; Smalikho and Banakh, 2017; Bonin
et al., 2017). Sathe and Mann (2013) provide a good review
of lidar-based experiments.

Recently, observations from wind lidar and weather
Doppler radar at low elevations (2◦) were combined to ex-
tend the range of retrieved horizontal wind (Ritvanen et al.,
2022), but few studies combine radar and lidar to investi-
gate the detailed evolution of wind below and within clouds.
One exception is the work from Bühl et al. (2015), where the
authors combine radar and lidar observations, but only for
retrieving the vertical component of the wind.

In this study, we attempt to develop a dataset that uses
clouds explicitly to make extended wind profiles through-
out the lower atmosphere and not just in the surface layer.
Clouds have long helped visualise and quantify the winds
at higher levels (e.g. atmospheric motion vectors can be de-
rived from clouds’ motion Velden et al., 2005; Velden and
Bedka, 2009; Kishtawal et al., 2009; Cordoba et al., 2017).
But how winds themselves are modified by convection re-
mains poorly studied let alone observed. By measuring winds
below and through clouds, we may gain insight into one of
the main uncertainties for wind prediction, as highlighted by
the numerical weather prediction community; namely, con-
vective momentum transport (CMT), which we broadly de-
fine as convectively-driven transport of momentum through
updrafts, downdrafts, and the cloud-scale or even mesoscale
circulations that accompany clouds.

Turbulent eddy-resolving models may lend themselves
better than point measurements for the study of momen-
tum transport by providing a three-dimensional view of the
multi-scale flow. However, they are limited by the model’s
periodic boundary conditions, the use of domains smaller
than the scales of mesoscale cloud organisation observed
in nature, and possible misrepresentations of turbulence and

convection. Recent large-eddy simulations (LESs) studies
with open boundaries and large domains show that horizon-
tal flows can generate substantial momentum fluxes (Dixit
et al., 2021), which are not present in more traditional
(BOMEX, Siebesma and Cuijpers, 1995; RICO, vanZan-
ten et al., 2011) cases of shallow cumulus convection. They
also show that such flows produce so-called counter-gradient
transport, whereby the environmental wind shear is enhanced
instead of diminished (due to local downgradient turbulent
diffusion). The handful of LES studies focusing on CMT
have been carried out for convection over oceans, while stud-
ies of CMT over land are limited.

Recently, Koning et al. (2021) combined 9 years of wind
observations from a 200 m tall tower and LES from a com-
mercialised graphics processing unit (GPU) version of Dutch
atmospheric large-eddy simulation (DALES, Heus et al.,
2010) over Cabauw (the Netherlands) to investigate the re-
lationship between different cloud regimes (clear sky, shal-
low clouds, non-convective clouds) and momentum flux and
wind shear in the boundary layer. The authors found that
clear sky and shallow clouds days have a similar diurnal cy-
cle of near-surface winds, but the further deepening of the
convective boundary layer in the presence of clouds can lead
to a larger daytime increase in near-surface winds. Further-
more, for a similar atmospheric stability in the surface layer,
days with shallow clouds sustained larger surface momen-
tum fluxes for a given wind gradient. The data also suggest
that more crosswind momentum fluxes are present within
the mixed layer – hinting at more organised cloud or roll
cloud structures – compared to days when non-convective
clouds are predominant. As part of the Ruisdael Observatory
(https://ruisdael-observatory.nl/, last access: 15 November
2022), the Dutch LES will be run over the entire Netherlands
at a 100 m grid daily. To accompany and validate these simu-
lations, high-resolution (wind) measurements are invaluable.

This paper introduces an experimental setup where scan-
ning cloud radar and wind lidar observations are combined to
retrieve horizontal and vertical wind profiles with the high-
est possible resolution. Even though the sonic detection and
ranging (SODAR) and radar wind profiler (RWP) instru-
ments can have similar vertical resolutions as cloud radar
and lidar, the SODAR and RWP averaging time is around
10 min, which limits the study of turbulence and convec-
tion. By merging radar and lidar observations, this experi-
ment provides, for the first time, continuous profiles of the
horizontal wind from near the surface up to cloud tops. The
experiment is conducted as part of the Dutch Research Coun-
cil (NWO)-funded “tracing convective momentum transport
in complex cloudy atmospheres experiment” project (CM-
TRACE) that targets convective momentum transport under
different cloud conditions and across different temporal/spa-
tial scales.
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Figure 1. Conceptual illustration (not to scale) of the horizon-
tal separation between the lidar and radars operated during CM-
TRACE.

2 Experiment

CMTRACE occurred between 13 September and 3 Oc-
tober 2021, in Cabauw, the Netherlands. It was car-
ried out by the Delft University of Technology and the
Royal Netherlands Meteorological Institute, in coordina-
tion with the Ruisdael Land–Atmosphere Interactions Inten-
sive Trace-gas and Aerosol measurement campaign (RITA,
https://ruisdael-observatory.nl/the-rita-2021-campaign/, last
access: 15 November 2022), which took place at the same
site, allowing the synergy of combining observations from
in situ measurements (ground-based and airborne) with the
CMTRACE remote sensing observations. For this experi-
ment, one wind lidar and two cloud radars were installed
close to each other; the wind lidar provided information on
the sub-cloud layer winds, while the cloud radars provided
information on the cloud layer winds. The horizontal dis-
tance between them was less than 60 m (Fig. 1). This small
separation between the instruments was intended to optimise
overlap in sampled volume.

2.1 Instruments

The first cloud radar is a dual-frequency (35 and 94 GHz)
scanning polarimetric frequency-modulated continuous-
wave radar (FMCW) produced by Radiometer Physics
GmbH (hereafter CLARA, CLoud Atmospheric RAdar).
This radar allows setting different configuration parameters
for different range intervals (e.g. range resolution, integra-
tion time). During the campaign, three range intervals were
used, and the radar settings from each range are summarised
in Tables 1 and 3. CLARA was operated performing clock-
wise and anti-clockwise periodical plan position indicator
(PPI) scans (azimuths: 0–359.9◦) with an elevation angle
of 75◦; each scan sequence lasted for about 72 s. This high
elevation was chosen to minimise the MDV folding effect
that could affect the observations if the scatterers’ veloci-
ties were larger than the Nyquist velocity. The Nyquist ve-
locity for each range interval is listed in Table 3. Although
CLARA is a dual-frequency system, only the Doppler veloc-
ities from 35 GHz are used due to an approximately 3 times
larger Nyquist velocity when compared to the 94 GHz.

The second cloud radar is a single frequency (94 GHz)
scanning polarimetric frequency-modulated continuous-

wave radar (FMCW) produced by Radiometer Physics
GmbH (hereafter MARA, Mobile Atmospheric RAdar). Al-
though MARA is a scanning capable radar, it continuously
pointed vertically during the experiment, providing verti-
cal profiles with a temporal resolution of 1 s. As CLARA,
MARA also allows setting different range resolutions for dif-
ferent range intervals, and it was also operated using three
range intervals. The configuring parameters for each range
interval are also listed in Tables 1 and 2.

The wind lidar is a WindCube-200s scanning lidar pro-
duced by Vaisala (hereafter WindCube). It is a pulsed sys-
tem operating at a wavelength of 1.54 µm, and it is capable
of scanning at different azimuths and elevations. This lidar
also allows defining different integration times (from 0.1 up
to 10 s) and range resolution (from 25 up to 100 m). Dur-
ing the campaign, the WindCube was operated following the
six-beam scanning strategy proposed by Sathe et al. (2015),
which, according to the authors, provides more information
about turbulence than the VAD. The six-beam scanning strat-
egy consists in measuring the radial velocity at five azimuths
equally separated by 72◦ at a specific elevation angle and one
additional measurement at 90◦ elevation (see Sathe et al.,
2015 for a complete description). During CMTRACE, the
elevation of the slanted measurements was set to 75◦, pro-
ducing a conical sampling volume equivalent to that from
CLARA. Table 1 lists additional configuring parameters used
by the WindCube.

During the campaign, the three instruments continuously
operated following the abovementioned strategy. Apart from
that, no other scanning strategy was used.

2.2 Weather characteristics

The 21 d of measurements were characterised by different
weather conditions and a diverse cloud cover. For a rapid
overview of the weather conditions and cloud coverage, Ta-
ble 4 provides the daily estimated duration in hours of low-
level clouds (LLCs), mid-level clouds (MLCs), high-level
clouds (HLCs), deep convective clouds (DCCs), and strati-
form clouds (SCs) (cloud levels are described in Lamb and
Verlinde, 2011, chap. 1). The duration of the cloud cover was
estimated by visual inspection of data recorded by MARA.
Table 4 also provides the maximum and mean precipitation
rate (RR) measured by an optical disdrometer, and the daily
mean wind speed (WS200) and direction (WD200) derived
from the WindCube observations at 200 m above the surface.

Table 4 indicates that most of the days were non-
precipitating with few cloud cover (predominantly LLC).
During those days, the mean wind speed at 200 m above the
ground ranged between 3.6 and 9.6 ms−1, and the wind di-
rection was predominantly from the southwest, but for some
days, the wind direction changed to the east. During the pre-
cipitating days, DCC and SC clouds were present in addi-
tion to LLC, MLC, and HLC. The wind speed for these days
ranged between 6.7 and 12.9 ms−1, and the wind direction
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Table 1. Technical specifications and settings of the lidar and cloud radars operated during CMTRACE.

Specifications MARAa CLARAa WindCube

Frequency (GHz) 94 35 1.94 105

Chirp repetition frequency (kHz) 14.0–5.8 12.8–6.4 20b

Doppler velocity resolution (ms−1) 0.03–0.04 0.05–0.1 –
3dB beam width (◦) 0.55 0.84 –
Nyquist velocity (±ms−1) 11.2–4.6 27.5–13.7 41
Range resolution (m) 22.3–37.6 22.3–37.6 50
Temporal sampling (s) 1 1 2
Time of a complete scan (s) – 72 22
Minimum/maximum range (m) 111/11 974 111/11 974 100/7500

a Chirp repetition frequency, Doppler velocity resolution, Nyquist velocity, and range resolution depend
on the chirp definition; those values are indicated in Table 2 for MARA and in Table 3 for CLARA. b For
the WindCube, this value refers to the pulse repetition frequency.

Table 2. Configuration parameters used by the single frequency radar MARA for each chirp sequence.

Chirp sequence

Attributes 1 2 3

Integration time (s) 0.034 0.137 0.274
Range interval (m) 111.7–581.3 620.9–1997.9 2033.4–11 974.8
Range resolution (m) 22.3 26.9 37.6
Nyquist velocity (±ms−1) 11.2 9.9 4.6
Doppler velocity resolution (ms−1) 0.04 0.03 0.03
Chirp repetition frequency (kHz) 14.0 12.4 5.8

was predominately from the southwest, with the exception
of days where it changed to the east.

3 Data processing

The CMTRACE dataset is structured in three levels accord-
ing to the processing steps applied. Those different process-
ing levels are designed to facilitate the usage of the CM-
TRACE dataset, and with that, users will have the possibility
to choose the data level that better suits their needs. The pro-
cessing steps for each level are summarised in Fig. 2, and
they are described in the following sections.

3.1 Processing levels

The original data output from the WindCube, MARA, and
CLARA is defined as the CMTRACE level 0 dataset. In
level 0, the variables available in the dataset are related to
the scatterer properties (e.g. backscattered signal, MDV, and
spectrum width), and the data from the WindCube are still
affected by noise. Note that neither the lidar nor the radars
datasets provide the horizontal wind speed and direction ob-
servations at this level.

The level 1 processing starts with the removal of artefacts
present in the level 0 dataset, as indicated in the flowchart
(Fig. 2). A filter based on the WindCube’s status variable

similar to that described in the manual is applied to the
WindCube observations to filter out the noise data and non-
realistic MDV values. After this filtering step, the WindCube
data are still affected by second trip echoes (STEs) produced
by clouds from altitudes further than the maximum range
sampled by the WindCube. A similar issue was also found in
previous experiments (Bonin and Alan Brewer, 2017; Bonin
et al., 2017). Panels a and b from Fig. 4 show an example
of the MDV recorded by the WindCube at 0◦ azimuth and
the equivalent radar reflectivity (Ze) recorded by MARA on
21 September 2021. The MDV values from below 2 km are
continuous and distributed between−2 and 1 ms−1 (Fig. 4a).
In contrast, the MDV rapidly changes from −1 to −7 ms−1

between 11:00 and 12:00 UTC at around 2 km. The region
with fast velocities extends from 2 up to 6 km in range and
appears at different times along the day. In contrast, for the
same period, MARA’s Ze does not show any cloud below
6 km, and the only clouds with similar shapes appear at al-
titudes above 8 km. A filter is then applied to minimise the
presence of STE in the dataset (see Sect. 3.2). After filter-
ing, the WindCube vertical Doppler velocities are stored as
the vertical wind component, and a wind retrieval based on
a Fourier transform is applied to the slanted azimuthal MDV
observations to retrieve the horizontal wind speed and direc-
tion (see Sect. 3.3). In addition to the information related to

Earth Syst. Sci. Data, 15, 769–789, 2023 https://doi.org/10.5194/essd-15-769-2023



J. Dias Neto et al.: Wind lidar and cloud radar for wind profiling 773

Table 3. Configuration parameters used by the dual-band radar CLARA for each chirp sequence.

Chirp sequence

Attributes 1 2 3

Integration time (s) 0.034 0.137 0.274
Range interval (m) 111.7–581.3 620.9–1997.9 2033.4–11974.8
Range resolution (m) 22.3 26.9 37.6
Nyquist velocity (±ms−1) 27.5 19.2 13.7
Doppler velocity resolution (ms−1) 0.1 0.07 0.05
Chirp repetition frequency (kHz) 12.8 8.9 6.4

Table 4. Daily characterisation of the cloud coverage and precipitation during CMTRACE. The first five columns (LLC, MLC, HLC,
DCC, SC) indicate the approximated duration in hours of each class of clouds. RR indicates the maximum and mean precipitation rate in
mmh−1 measured by a nearby optical disdrometer. WS200 and WD200 are the mean wind speed and direction derived from the WindCube
observation at 200 m a.g.l. (above the ground).

date LLC MLC HLC DCC SC RR (mmh−1) WS200 WD200
yyyy.mm.dd (h) (h) (h) (h) (h) max/mean (ms−1) (◦)

2021.09.13 5 15 5 0 0 0.0/0.0 5.38 86.5
2021.09.14 2 5 3 2 0 7.6/1.38 7.38 132.35
2021.09.15 16 4 0 0 0 1.4/0.65 6.77 285.65
2021.09.16 1 0 1 0 0 0.0/0.0 7.26 295.25
2021.09.17 7 0 10 0 0 0.0/0.0 4.56 238.1
2021.09.18 0 0 12 0 0 0.0/0.0 5.84 110.38
2021.09.19 3 0 3 0 0 0.0/0.0 8.09 109.81
2021.09.20 7 0 6 0 0 0.0/0.0 7.57 81.7
2021.09.21 0 0 3 0 0 0.0/0.0 3.66 240.9
2021.09.22 0 0 3 0 0 0.0/0.0 6.39 233.46
2021.09.23 10 0 2 0 0 0.9/0.55 10.22 266.07
2021.09.24 11 0 0 0 0 0.0/0.0 8.5 239.73
2021.09.25 11 2 1 0 0 0.0/0.0 5.9 182.96
2021.09.26 0 5 3 4 0 6.3/2.01 6.5 199.42
2021.09.27 0 5 0 4.5 0 2.6/0.56 10.63 218.92
2021.09.28 0 8 0 0 0 0.0/0.0 9.63 200.22
2021.09.29 0 0 3 3 5 47.7/2.55 11.81 243.64
2021.09.30 6 0 11 1 1.5 – 11.87 225.6
2021.10.01 4 7 4 2 3 8.3/1.71 12.94 199.79
2021.10.02 1 7 0 0 12 11.6/1.89 11.38 188.37
2021.10.03 0 12 0 0 12 6.8/1.32 8.09 247.44

wind, the backscattered data are also included in WindCube
level 1 data.

The level 1 processing applied to CLARA dataset slightly
differs from that applied to the WindCube observations; the
radar software internally removes the noise, and for this rea-
son, the artefact removal is skipped. The Fourier transform
wind retrieval is also applied to CLARA slanted azimuthal
MDV observations to retrieve the speed and direction of the
horizontal wind. Surprisingly, after the retrieval, CLARA’s
wind profiles also had information from the lowest 2 km,
where clouds are not present most of the time (see Sect. 3.4).
It was also noticed that an alternating offset affected the
wind direction. The magnitude of this offset was estimated
using the WindCube wind direction profiles as reference. It

was found that each one of the range intervals listed in Ta-
ble 3 was affected by a different offset (see Sect. 3.5). After
the offset correction, CLARA’s wind speed and direction are
stored as the level 1 products. Yet, in the level 1 processing of
CLARA’s data, an index is generated to quantify the percent-
age of invalid data for each complete scan for each height.
The invalid index value Iinv is calculated as follows:

Iinv = 100
Ninv

Nazm
, (1)

where Ninv is the number of invalid data, and Nazm is the
number of azimuths. At the current stage, it is not possi-
ble to decouple the vertical wind speed component from the
hydrometeors’ fall velocities using MARA’s observations.
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Figure 2. Flowchart illustrating the CMTRACE data processing: The upper part shows the processing steps applied for generating the level
1 data, and the lower part shows the steps applied for generating the level 2 data.

However, MARA’s vertical MDV is also included in level
1. MARA’s attenuated Ze is also included in level 1, which
can be used for cloud identification.

At the end of level 1 processing, the data still have their
original temporal and spatial resolution, and the data de-
rived from the different instruments are stored in different
datasets. The level 2 processing merges the wind profiles re-
trieved from the WindCube and CLARA observations, and
produces continuous profiles of wind speed and direction
from the surface up to the boundary layer or cloud top.
The vertical and temporal resolution of level 2 data is set
to 50 m (WindCube range resolution) and to 72 s (duration
of CLARA PPI scans), which are the coarser resolutions in
the level 1 data. Table 5 summarises the settings of the level
2 dataset. The radar variables from CLARA and MARA are
then interpolated to the new spatial resolution. The tempo-
ral resolution from the WindCube and MARA data is ad-
justed to CLARA’s temporal resolution by averaging all pro-
files within the time interval of each complete PPI scan from
CLARA. This last strategy is used to create profiles that rep-
resent equivalent air mass volumes. After that, the process-
ing continues by creating a time–height flag to identify the
regions where the lidar and radars provide measurements.
Finally, the wind speed and direction profiles from Wind-
Cube and CLARA are merged following a hierarchical cri-
terium. The WindCube data have priority over the CLARA
data, meaning that CLARA only provides information in re-
gions where the WindCube data are absent. However, not all
data from CLARA are incorporated into level 2. The distri-
bution of velocity differences as a function of the Iinv indi-
cates that a systematic bias becomes apparent for Iinv larger
than 50 % (Fig. 3). Therefore, all CLARA’s data flagged with
Iinv equal to 50 % or larger are not used in the level 2 gen-
eration. In addition to the wind-related variable, level 2 also
contains the lidar and radar backscattered signals and the ver-
tical Doppler velocities.

Table 5. General specifications of the level 2 dataset.

Level 2 data settings

min/max range (m) 100/11 600
range resolution (m) 50
temporal resolution (s) 72

Figure 3. Two-dimensional histogram of the differences between
the wind speed retrieved from CLARA’s and WindCube’s obser-
vations as a function of the invalid index; the horizontal red line
indicates 0 ms−1 and the vertical dashed orange line indicates the
invalid index value of 50 %.

The complete list of variables available in CMTRACE
level 1 and level 2 data is given in the Appendix A.

3.2 Second trip echoes filter

In Sect. 3.1, it was introduced that the WindCube Doppler
velocities observations were affected by the presence of STE
produced by clouds above the maximum unambiguous range.
As indicated in Table 1, the vertical range resolution of the
WindCube was set to 50 m, and for the model we used, the
pulse repetition frequency is automatically set to 20 kHz,
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Figure 4. Time–height plots: (a) mean Doppler velocity measured by the WindCube, (b) radar equivalent reflectivity measured by MARA,
(c) backscattered signal measured by a nearby Ceilometer, (note that the negative values are already set as NaN (not a number)), and (d) the
same as in (a), but after filtering for second trip echoes. The white shaded curve on (c) indicates the retrieved noise height interface.

limiting the maximum unambiguous range to 7.5 km. Fig-
ure 4a illustrates that the STE can happen at any height.
Sometimes, the STE appears in regions close to the surface
(hereafter low-STE), contrasting with the surrounding signal
produced by aerosols (e.g. between 11:00 and 12:00 UTC be-
low 2 km). However, at other times, the STE appears above
the region loaded with aerosols (hereafter high-STE), where
there is no clear contrast with the surroundings (e.g. signals
above 2 km). In order to minimise the occurrence of low- and
high-STE, two filtering approaches were developed.

The low-STE filter takes advantage of the contrasting
characteristics. This filter is based on the temporal anomaly
(v′azm) of the MDV from each azimuth angle, as indicated by
Eq. (2); vazm is the observed MDV, and vazm|1t is the mean

value calculated within a given time window.

v′azm = vazm− vazm|1t . (2)

The exact size of the time window is arbitrary. However, it
should be such that a normal distribution can approximate
the distribution of the anomalies (e.g. Fig. 5); if this condi-
tion is fulfilled, the standard deviation (STD) can be used
to characterise the anomaly distribution. The resulting distri-
bution is expected to have the following characteristics: the
low-STE anomalies would populate the edges of the distribu-
tion, while the anomaly of the true signal due to turbulence
would be close to the centre of the distribution. A too large
or too small time window could produce an anomaly distri-
bution that deviates from a normal distribution, or a distribu-
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Figure 5. Example of the probability distribution of the MDV
anomalies calculated using observations at azimuth equal to 0◦ (the
same data from Fig. 4a). The vertical red lines indicate the size of
the window used for filtering the data, and the light red areas indi-
cate the values removed.

tion where the anomaly of the low-STE populates the centre
while the true signal anomaly is near the edges.

Once the anomaly STD is calculated, a window n times
the STD can be used to discard the data outside the defined
window, as illustrated in Fig. 5. The exact value of n is arbi-
trary, but it should be a value that removes most of the STE
and preserves most of the valid data. In this work, the values
used for1T and n are 3.5 h and 3, respectively. Those values
were found after several trials. Since turbulence during night-
time and daytime is different, only anomalies from between
09:00 and 16:00 UTC were used to calculate the STD. Oth-
erwise, if the nighttime anomalies were included, the STD
would be smaller than that from 09:00–16:00 UTC, and then
3 ·STD would still remove data not affected by STE. Note
that this approach may fail in situations when the low-STE
values are comparable to the real data.

The high-STE filtering uses the backscattered signal ob-
servations from a nearby ceilometer (≈ 20 m away from the
WindCube) to estimate the height interface that separates the
regions loaded with lidar scatterers from clean regions. The
ceilometer observations are still affected by noise, and there-
fore the data from the scatterers-free region are dominated by
noise (Fig. 4c).

Because the ceilometer data did not contain the signal
to noise ratio information, an alternative approach was ap-
plied to filter out the noise. It was noticed that the noise of-
ten reached negative values. This characteristic was then ex-
plored to remove the noise from the data. The removal starts
by setting all negative values as NaN (not a number). Us-
ing a moving window over the time and range coordinates,
the NaNs are propagated through the noise region. For the

time coordinate, the size of the window was set to cover 15
consecutive profiles, and for the range coordinate, the size
of the window was set to cover 10 consecutive ranges. The
NaN values were propagated by calculating the mean value
of the data points covered by the moving window. The NHI
is then retrieved as the largest altitude of the heights from
the noise-free data in the region between the surface and
4 km. Basically, the noise height interface (NHI) separates
the non-noise region (loaded with scatterers) from the noise-
dominated region (scatterers free). Figure 4c shows that the
NHI curve closely follows the region loaded with lidar scat-
terers. Note that this approach will not work in regions where
the noise does not reach negative values.

The detected NHI is then used as a threshold to separate
the WindCube data into two regions. One region is below the
NHI, where the WindCube data are expected to be predomi-
nately originated from lidar scatterers, and the other is from
above the NHI, where clouds and high-STE mainly produced
the data. An example of the STE filtered data is shown in
Fig. 4d. One can see that most of the STEs visible in Fig. 4a
are no longer present in Fig. 4d. Note that due to differences
in sensitivity between the WindCube and the ceilometer, it is
possible that using the NHI as a height threshold will possi-
bly remove more data than intended.

3.3 Fourier transform wind retrieval

As described in Sect. 2.1, the WindCube scanning strategy
used during the campaign produced observations at five az-
imuthal angles that differ from the four azimuthal angles
(0, 90, 180, 270◦) used for the Doppler beam swing strat-
egy (Röttger and Larsen, 1990). Similarly, CLARA produced
continuous MDV observations in PPI mode.

In order to retrieve the wind speed and direction profiles
from both sets of observations, one can use the velocity
azimuth display (VAD) method (Doviak and Zrnic, 2006;
Browning and Wexler, 1968). This approach assumes that
horizontal wind is uniform within the scanned volume and
that the vertical velocity of the scatterers is the same for all
azimuths. Under those assumptions, the radial velocity can
be described as a Fourier series, but only the first coefficient
is used for determining the wind speed and direction (Doviak
and Zrnic, 2006; Browning and Wexler, 1968).

In this work, the wind speed and direction profiles are de-
rived using the fast Fourier wind vector algorithm (FFWVA)
proposed by Ishwardat (2017), and a brief description of this
method is given below. The FFWVA is similar to the VAD
method. However, instead of using the Fourier series, it takes
advantage of the currently available fast Fourier transform
algorithms for digital signal processing to decompose the ra-
dial Doppler observations in terms of amplitude and phase
of their harmonic frequencies. Note that the unit of these fre-
quencies is 1 per degree and not 1 per time. The amplitude
and phase from the first harmonic are used for calculating
the wind speed and direction, and the determination of both
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quantities is summarised as follows:

a+ bi = DFT(V (φ))|1st (3)

φd =−arctan
(
b

a

)
+ 180 (4)

Vh =
2|a+ bi|
N cos(α)

, (5)

where a and b are the real and the imaginary parts from
the first harmonic, respectively, and i is the imaginary unit.
V (φ) is the azimuthal slanted MDV values from one com-
plete scan, and φ is the azimuth. DFT stands for discrete
Fourier transform. φd is the wind direction azimuth related
to the North, and Vh is the horizontal wind speed. N is an
amplitude correction parameter, and its value is equal to the
number of data points used in the transformation. α is the
scanning elevation angle. Using this method, the retrieved
wind will lose information from spatial variability smaller
than a complete scan. The energy of small-scale variability
will be distributed among the higher harmonics. In princi-
ple, it would be possible to use the higher harmonics infor-
mation to identify the regions and periods of enhanced hor-
izontal wind variability. Since the sampled volume diameter
increases with height, it is expected that the variability of
the horizontal wind within the sampled volume will increase
with height. Consequently, the distribution of energy towards
higher harmonics will increase with height.

3.4 Radar observations below 2 km

In addition to the data obtained from the cloud layer, CLARA
also received echoes from the sub-cloud layer during clear air
conditions and precipitation. Due to CLARA’s polarimetric
capability, it was also possible to obtain the differential re-
flectivity ratio (ZDR) from the sub-cloud layer while execut-
ing the PPI scans at 75◦ elevation. To investigate the origin of
those sub-cloud layer echoes and whether the retrieved wind
information was biased, the maximum ZDR from each PPI
scan is combined with the difference between wind speed de-
rived from the WindCube and CLARA’s data from the entire
campaign.

The distribution of maximum ZDR stratified by height
shows two main regions (Fig. 6). The first region is above
2 km, where the histogram shows one main mode at 0 dB and
a broadening of the distribution up to 7 dB. In this region, the
temperature is colder than 0 ◦C, suggesting that the ZDR
signal is likely produced by pristine ice crystals, snow, and
super-cooled liquid water. In the second region, below 2 km,
the distribution shows two main modes, the first at 0 dB and
the second at 7 dB. In this region, the temperature is warmer
than 0 ◦C, suggesting that the mode at 0 dB is likely to be pro-
duced by water droplets. However, what could be producing
the second ZDR mode at an elevation of 75◦? Previous stud-
ies have already indicated that radar returns from clear air
conditions are likely to be from insects (Chandra et al., 2010;

Figure 6. Two-dimensional histograms of the maximum ZDR for
each PPI scan from the entire CMTRACE stratified with height.
Note that only data with Iinv smaller than 50 % are used.

Geerts and Miao, 2005; Ritvanen et al., 2022), and also that
insects could produce a strong polarimetric signature in the
boundary layer region (Wainwright et al., 2017; Achtemeier,
1991; Wilson et al., 1994; Rennie et al., 2010; Martner and
Moran, 2001).

Results from previous studies suggest that insects may ac-
tively fly and not only be carried by the wind, and due to
it, the derived wind information could be biased (Lhermitte,
1969; Achtemeier, 1991; Wainwright et al., 2017; Chandra
et al., 2010). On the other hand, the study from Wilson et al.
(1994) suggests that the wind carried the insects, and no sys-
tematic bias was found. Klingebiel et al. (2019) combined
35.5 GHz cloud radar and lidar observations from Barba-
dos, and identified that radar returns (from −65 to 50 dBz)
from below non-precipitating clouds coincide with regions
where the lidar depolarisation ratio indicates the presence of
spherical-like scatterers. The authors suggest that the radar
returns are likely from sea salt. Based on radar observa-
tions and without in situ measurements, we cannot affirm
that the clear air echoes from the lowest 2 km are from in-
sects or wet aerosols. Nevertheless, to evaluate if CLARA’s
retrieved wind speed is biased, the relationship between the
retrieved wind speed difference (CLARA−WindCube) and
the ZDR was investigated using data from the lowest 2 km
only. Figure 7 shows that the difference in velocity for ZDR
larger than 4 dB is similar to that from ZDR around 0 dB, and
no systematic bias is found. These results suggest that over
Cabauw, the clear air scatterers are likely to be carried by
the horizontal wind, giving the possibility to use them to re-
trieve information from the horizontal wind. Nevertheless, if
those scatterers are insects, they can fly up or downward ac-
tively (Rennie et al., 2010; Achtemeier, 1991; Chandra et al.,
2010), but it was not investigated in this study.
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Figure 7. Two-dimensional histograms of the difference between
WindCube’s and CLARA’s wind speed from the lowest 2 km as
a function of the maximum ZDR. Note that only data with Iinv
smaller than 50 % are used.

Under precipitation conditions and in the presence of ver-
tical wind shear, previous studies suggested that due to the
differential fall velocity, smaller droplets can be advected fur-
ther away than larger droplets (Laurencin et al., 2020; Daw-
son et al., 2015; Kumjian and Ryzhkov, 2012; Biswas et al.,
2022), suggesting that larger droplets are less affected by
the horizontal wind. Consequently, the horizontal wind re-
trieved from observations collected during precipitation may
differ from the real wind. Under drizzle, the vertical wind
component observed by the wind lidar may also differ from
the real magnitude. Those small droplets’ fall velocity could
contribute to the lidar observed vertical velocity. Addition-
ally, Ghate et al. (2021) suggested that the evaporative cool-
ing effect induced by drizzle strengthens the air’s downward
motion and weakens the upward motion.

Besides wind profiles, the dataset contains Ze and MDV
profiles from the MARA. We suggest that the dataset users
combine MARA’s Ze and MDV variables to flag precipitat-
ing periods.

3.5 Radar wind direction offset estimation

After the campaign, it was noticed that the consecutive wind
direction profiles from CLARA were periodically biased. In
order to assess this bias, direction profiles from CLARA
were compared with the direction profiles retrieved from the
WindCube data. The histogram of the differences between
both sets of profiles from the entire experimental campaign
(Fig. 8a) shows that most points are distributed below 2 km,
and the distribution is much broader in this region if com-
pared with the region above 2 km. The probability distribu-
tion of differences (Fig. 8b) shows that the maxima are con-
stant within each range interval from each chirp sequence,
suggesting that the biases are constant in those regions. It
also shows that the biases are positive for some profiles, and
for others, the biases are negative.

The biases from each range region were calculated as the
mean of all probability distribution maxima within each re-
gion. The retrieved values are±1.4◦ for the first chirp,±3.2◦

for the second, and ±5.4◦ for the third chirp; the red dashed
lines in Fig. 8b indicate those values. The negative biases
are from profiles when the scans increase in azimuth from
0 to 359◦, and the positive biases are from scans when the
azimuths decrease from 359 to 0◦. Figure 12b shows the re-
sult of the offset correction, and one can see that the bias
along the range coordinate is close to 0◦. The possible rea-
son for this range-dependent offset is that it takes around
1 s for CLARA to sample the three range intervals consec-
utively while CLARA rotates with an angular speed of ap-
proximately 5◦ s−1. Then, the data from each range interval
are stored, and the azimuth from when the sampling started is
assigned to them, even though each range interval was sam-
pled at a different azimuth.

4 Data evaluation

4.1 Radiosonde comparison to lidar and radar

In order to evaluate the wind speed and direction retrieved
from the WindCube and CLARA observations, profiles of
both observables from 34 radiosondes launched in De Bilt
were used; the launching site in De Bilt is approximately
25 km away from the remote sensing site in Cabauw. For
the evaluation, the level 1 data from the WindCube and
CLARA were used, but the high-STE filter was not applied
to the WindCube observations, in order to evaluate the agree-
ment between the observations from regions above 4 km. For
the evaluation, the WindCube and Clara profiles were aver-
aged within a time window of 10 min centred at the launch-
ing time. Figure 9 shows an example of those profiles from
27 September 2021. Even though both sites are far from each
other, the WindCube and CLARA profiles surprisingly al-
most overlap the radiosonde profiles.

A statistical analysis combining all radiosonde profiles
suggests that the WindCube and CLARA observations of
wind speed and direction are comparable to the radiosonde
measurements (Fig. 10); it is also supported by the statisti-
cal metrics bias, RMSE, and correlation listed in Table 6. A
more precise evaluation of the WindCube and CLARA data
near the surface can be made using the measurements from
the KNMI mast tower; however, the mast measurements are
not available for this publication.

4.2 Radar and lidar intercomparison

In addition to the data evaluation using radiosonde observa-
tions, the WindCube and CLARA profiles from the entire
dataset were compared against each other. Analogous to the
previous Sect. 4.1, the high-STE filter was not applied to the
WindCube data, in order to assess the quality of the wind
profiles in the cloud layer.
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Figure 8. Panel (a) shows the two-dimensional histogram of the wind direction differences (CLARA−WindCube), and panel (b) shows
the probability distribution of the differences. The data used in both panels are from the entire CMTRACE campaign. The red dashed line
indicates the mean bias for each range interval.

Table 6. Statistical metrics of the WindCube and CLARA data assuming the radiosonde measurements as a reference. RMSE stands for root
mean square error. The bias and RMSE are in ms−1 and degrees for the wind speed and wind direction, respectively.

WindCube Clara

metrics wind direction wind speed wind direction wind speed

bias 0.37 0.52 −0.24 −0.34
RMSE 12.62 1.98 14.03 2.35
correlation 0.98 0.92 0.96 0.94

Figure 9. Profiles of wind direction (panel a) and wind speed (panel
b) from 27 September 2021 at 11:00 UTC. The blue, red, and or-
ange lines indicate the radiosonde, CLARA, and WindCube obser-
vations, respectively.

The statistical analyses of wind speed (Fig. 11a) and direc-
tion (Fig. 11b) reveal that the observations from both instru-
ments are well correlated with relative small bias, 0.24◦ for
wind direction and −0.16 ms−1 for wind speed. The agree-
ment between the data from both instruments is also sup-
ported by the statistical metrics listed in Table 7. In addi-
tion, Fig. 12a, b show the difference between CLARA and
WindCube observations of wind speed and direction strati-

fied with range. Those figures show that most of the differ-
ences are distributed around 0 for both variables, indicating
that the observations provided by both instruments are com-
parable. They also show that at 3 km, both difference distri-
butions broaden towards the surface, indicating that CLARA
observations deviate from the WindCube observations. As
suggested in Sect. 3.4, insects are likely the source of infor-
mation in the lowest 2 km. It is possible that insects’ random
motion is increasing the uncertainty of the retrieved wind
profiles.

Given the good agreement between the observations from
both instruments, CLARA observations of wind speed and
direction from regions below the NHI were included in the
merged level 2 dataset if the WindCube did not provide them.
The impact of the broadening of the difference may not be
significant for the level 2 data because most of the observa-
tions in the lowest 3 km are from the WindCube, as shown in
Fig. 13.

5 Application highlights

The CMTRACE dataset may be used for different applica-
tions. Here we would like to highlight two ways in which
we are currently using the data: (1) the validation of wind
and momentum transport in models; and (2) process studies
of convective momentum transport (or transport of scalars
through the boundary layer). A third application, which we
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Figure 10. Two-dimensional histograms of wind speed (panels a and c) and direction (panels b and d) data retrieved by the WindCube
(panels a and b) and CLARA (panels c and d) versus all available radiosonde measurements.

Figure 11. Two-dimensional histograms from the data pair WindCube–CLARA for wind speed (panel a) and wind direction (panel b); the
red line indicates the 1 to 1 line.

Earth Syst. Sci. Data, 15, 769–789, 2023 https://doi.org/10.5194/essd-15-769-2023



J. Dias Neto et al.: Wind lidar and cloud radar for wind profiling 781

Figure 12. Two-dimensional probability distribution of the wind speed (panel a) and direction (panel b) differences stratified with height.

Table 7. Statistical metrics of the intercomparison between
CLARA and WindCube observations. RMSE stands for root mean
square error. The bias and RMSE are in ms−1 and degrees for the
wind speed and wind direction, respectively.

CLARA×WindCube

metrics wind direction wind speed

bias 0.24 −0.16
RMSE 12.85 0.93
correlation 0.98 0.99

Figure 13. Distribution of level 2 data source stratified with height:
WindCube in blue and CLARA in green.

do not further exemplify here, is the assimilation of wind pro-
files by weather models.

5.1 Model validation

The DALES model is running in near real-time hindcast
mode on a (still) relatively small domain (15× 15 km), cen-
tred at Cabauw with a grid spacing of 75 m. As part of the
Ruisdael Observatory, these simulations will, in the future, be
running on domains spanning the Netherlands at a grid spac-
ing of ≈ 100 m. Along with model output at Cabauw from
KNMI’s mesoscale weather model HARMONIE, Fig. 15
shows an initial comparison of observed and modelled winds
on 29 September 2021. On this day, a frontal system passed
over the observational site from the early to late morning.
The Ze (Fig. 14a) and the MDV (Fig. 14b) recorded by
MARA show that between 00:00 and 12:00 UTC, precipitat-
ing deep clouds with stratiform outflow passed over the site,
while after the front passage, shallow cumulus and congestus
clouds developed with tops between 4–7 km.

The level 2 wind direction (Fig. 15a) and speed (Fig. 15c)
show that before 06:00 UTC, the wind was mainly southerly
throughout the lower and middle troposphere. During the
frontal passage (06:00–12:00 UTC), the wind direction
changed from southerly to westerly, while winds of 10–
15 ms−1 extended from near the surface up to cloud tops.
After 12:00 UTC, the horizontal wind was mainly westerly,
and the wind speed in the lower boundary layer was faster
at about 15–20 ms−1. The DALES model simulates the front
passage and post-frontal convection (Fig. 15b, d), but some
differences are apparent. The frontal passage seems to be
slower in the model, judging mainly from the slanted wind
direction and wind speed signature. Furthermore, in the pe-
riod of post-frontal shallow convection (12:00–18:00 UTC),
wind speeds in the observations appear to reach values up to
20 ms−1 (orange–red) that can extend all the way to the sur-
face, while DALES maintains weaker surface layer winds.
Comparing winds at 0.1 km above the surface (Fig. 16a, b)
reveals that the wind turning associated with the front pas-
sage in DALES is well simulated, but the wind speeds at
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100 m are evidently too weak. Because the DALES winds
showed are averages over the 15× 15 km domain, while
the observations represent wind variability at a single loca-
tion, DALES is not expected to show the convective varia-
tions. However, in the observations, such convective varia-
tions would average out over time, and the weak wind bias
in DALES appears too persistent throughout the day to be
caused by the difference in domain-averaged versus point es-
timates.

The bias is intriguing because earlier comparisons of
DALES to observations revealed a too strong wind bias in-
stead (van Stratum et al., 2019). DALES uses a surface
roughness length that underestimates the effective regional
roughness length at Cabauw, which leads to too small surface
stress. Ongoing investigations also include HARMONIE and
employ measurement simulators to ensure a fair comparison
of observations to models.

5.2 Momentum transport on different scales

Focusing on the period of post-frontal shallow convection
on the same day (Fig. 17), we can illustrate the presence of
multi-scale flows in the convective boundary layer. Reynolds
averaging (Stull, 2003) is applied to the vertical and hori-
zontal wind using a sliding window to separate flows with
scales longer and shorter than 10 min (Eq. 6). vobs is the ob-
served wind, v10m is the 10 min averaged wind, and v′10m is
the 10 min anomaly.

v′10m = vobs− v10m. (6)

Assuming wind speeds of 10–20 ms−1, a 10 min average
window corresponds to a spatial scale of about 6–12 km,
which is in the meso-γ range. Figure 17a and b illustrate
the fluctuations in the horizontal and vertical wind speed on
these scales, while Fig. 17c and d show the presence of con-
vective up- and downdrafts that carry different winds. Evi-
dently, during the frontal passage, before 12:00 UTC, the ver-
tical motion is on average downward (red) in the presence of
precipitating convection, even though individual updrafts and
downdrafts are visible. MARA’s observations from the same
period and height show an intensification of Ze and MDV
(Fig. 14a, b), which suggests the occurrence of precipitation.
It is possible that w10m not only contains information from
downward winds, but also from the terminal fall velocity of
raindrops (Aoki et al., 2016).

After 12:00 UTC, mesoscale fluctuations in both the ver-
tical and horizontal wind are evident, where downward mo-
tion tends to be accompanied by stronger horizontal winds
extending from the top of the boundary layer to the surface
and upward motion to weaker horizontal winds extending
upward from the surface. Qualitatively comparing the hori-
zontal and vertical speed observation with MARA’s Ze sug-
gests that faster horizontal winds and downward motion are
associated with periods of congestus and precipitation. Driz-
zle, evaporative cooling, and associated downdrafts, as sug-

gested by Ghate et al. (2021), may contribute significantly
to the momentum transport. In turn, slower horizontal winds
and upward motion are associated with periods of no pre-
cipitation and clear skies. These mesoscale-like fluctuations
may be coupled to an organisation in the cloud field – a cur-
rently popular subject of research in the cloud–circulation–
climate community – and contribute non-negligibly to total
momentum transport. Past LES modelling studies, includ-
ing with DALES, have not been able to accurately represent
these mesoscale flows due to their use of small domain sizes
and periodic boundary conditions. As DALES will be run-
ning on much larger domains with open boundary conditions,
the ability to validate such flows with observations is neces-
sary. In our current ongoing work, we use spectral analysis
to derive the contribution of convective and mesoscale fluc-
tuations to total momentum transport.

6 Data availability

The CMTRACE level 1 and level 2 datasets are pub-
licly available on the ZENODO platform. CMTRACE level
1 can be downloaded from https://doi.org/10.5281/zenodo.
6926483 (Dias Neto, 2022a) and level 2 from https://doi.
org/10.5281/zenodo.6926605 (Dias Neto, 2022b). The level
0 can be requested from the corresponding author.

7 Conclusions

This paper introduces an experimental setup for retriev-
ing horizontal wind speed and direction profiles from near-
surface to cloud top, taking advantage of the synergy of us-
ing wind lidars to retrieve wind profiles in the boundary layer
and cloud radars to retrieve wind in the cloud layer. The first
CMTRACE campaign was conducted in Cabauw, the Nether-
lands, and lasted 21 d, and its results are presented here. Dur-
ing this experiment, most days were non-precipitating with
the presence of few clouds (mainly low level clouds). The
winds at 200 m were mainly southwesterly, with speeds be-
tween 3.6 and 12.9 ms−1.

The CMTRACE dataset was processed in two levels. In
level 1, the processing minimises the presence of second trip
echoes that affect the WindCube measurements, and reduces
the bias in wind direction profiles derived from the radar ob-
servations. The level 1 observations from each instrument are
kept in their original spatial and temporal resolution. In level
2, the lidar and radar differences in the sampled volume are
reduced, and the horizontal wind profiles from both instru-
ments are merged, creating a single profile with a flag to
identify the measuring instrument.

Statistical analyses are used to assess the level of con-
fidence of the CMTRACE dataset. When correlating the
CMTRACE data with radiosonde measurements, the results
show that this correlation is higher than 0.9 for wind speed
and wind direction. The results also indicate that the abso-
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Figure 14. Time–height plot of MARA’s observations from 29 September 2021: (a) attenuated equivalent radar reflectivity, and (b) mean
Doppler velocity (negative means towards the ground).

Figure 15. Time–height plot of wind direction (panels a and b) and speed (panels c and d) from the CMTRACE level 2 (panels a and c) and
from DALES (panels b and d) from 29 September 2021.

https://doi.org/10.5194/essd-15-769-2023 Earth Syst. Sci. Data, 15, 769–789, 2023



784 J. Dias Neto et al.: Wind lidar and cloud radar for wind profiling

Figure 16. Time series of wind direction (panel a) and speed (panel b) from 29 September 2021 at 0.1 km above the surface. The blue curve
is from the lowest available observation in the CMTRACE level 2; the red is from DALES.

Figure 17. Time–height plots from 29 September 2021: (a) CMTRACE level 2 horizontal wind speed main component (10 min averaged),
(b) CMTRACE level 2 lidar vertical mean Doppler velocity (10 min averaged, negative means towards the surface), (c) CMTRACE level 2
horizontal wind speed anomaly, and (d) CMTRACE level 2 lidar vertical mean Doppler velocity anomaly.
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lute wind speed bias is smaller than 0.55 ms−1, and the ab-
solute wind direction bias is smaller than 0.4◦ (Table 6). The
surprising possibility of using CLARA for retrieving wind
profiles in the boundary layer, likely due to the presence of
insects, allows the agreement between lidar and radar mea-
surements to be evaluated. The intercomparison between li-
dar and radar reveals that for wind speed and direction, the
correlation is higher than 0.95 (Table 7), and the bias of wind
direction and speed is 0.24◦ and −0.16 ms−1, respectively.

Possible applications of the CMTRACE dataset include
model validation (e.g. convection-permitting model simula-
tions), analysis of the scales of motion that accompany di-
verse (organised) cloud fields, process studies of momentum
transport, and transport of scalars (e.g. air pollution). The
subsequent CMTRACE campaigns are intended to last sev-
eral months in a row to capture a diverse cloud regime and
periods when congestus clouds are predominant. An exten-
sion of the experiment to other regions (e.g. in the tropics) is
also planned.

Appendix A: List of variables

The files from the level 1 and level 2 data are structured
differently. As described in Sect. 3, level 1 data from each
instrument are kept with their original spatial and temporal
resolution. The level 1 data from the instrument were resam-
pled to a common spatial and temporal resolution, and used
to generate the level 2 data. The data from both levels are
stored as NetCDF files. The variables available in level 1 and
level 2 data are listed in Table A1.
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