Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-265-2023
https://doi.org/10.5194/essd-15-265-2023
Data description paper
 | 
17 Jan 2023
Data description paper |  | 17 Jan 2023

GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020

Xiao Zhang, Liangyun Liu, Tingting Zhao, Xidong Chen, Shangrong Lin, Jinqing Wang, Jun Mi, and Wendi Liu

Related authors

GLC_FCS10: a global 10-m land-cover dataset with a fine classification system from Sentinel-1 and Sentinel-2 time-series data in Google Earth Engine
Xiao Zhang, Liangyun Liu, Tingting Zhao, Wenhan Zhang, Linlin Guan, Ming Bai, and Xidong Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-73,https://doi.org/10.5194/essd-2025-73, 2025
Revised manuscript under review for ESSD
Short summary
Algorithm, Progresses, Datasets and Validation of GLC_FCS30D: the first global 30 m land-cover dynamic product with fine classification system from 1985 to 2022
Liangyun Liu and Xiao Zhang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 137–143, https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024,https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024, 2024
GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method
Xiao Zhang, Tingting Zhao, Hong Xu, Wendi Liu, Jinqing Wang, Xidong Chen, and Liangyun Liu
Earth Syst. Sci. Data, 16, 1353–1381, https://doi.org/10.5194/essd-16-1353-2024,https://doi.org/10.5194/essd-16-1353-2024, 2024
Short summary
The global leaf chlorophyll content dataset over 2003–2012 and 2018–2020 derived from MERIS/OLCI satellite data (GLCC): algorithm and validation
Xiaojin Qian, Liangyun Liu, Xidong Chen, Xiao Zhang, Siyuan Chen, and Qi Sun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-277,https://doi.org/10.5194/essd-2022-277, 2022
Manuscript not accepted for further review
Short summary
Long-term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022,https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
The Earth Topography 2022 (ETOPO 2022) global DEM dataset
Michael MacFerrin, Christopher Amante, Kelly Carignan, Matthew Love, and Elliot Lim
Earth Syst. Sci. Data, 17, 1835–1849, https://doi.org/10.5194/essd-17-1835-2025,https://doi.org/10.5194/essd-17-1835-2025, 2025
Short summary
The 20 m Africa rice distribution map of 2023
Jingling Jiang, Hong Zhang, Ji Ge, Lijun Zuo, Lu Xu, Mingyang Song, Yinhaibin Ding, Yazhe Xie, and Wenjiang Huang
Earth Syst. Sci. Data, 17, 1781–1805, https://doi.org/10.5194/essd-17-1781-2025,https://doi.org/10.5194/essd-17-1781-2025, 2025
Short summary
Revised and updated geospatial monitoring of 21st century forest carbon fluxes
David A. Gibbs, Melissa Rose, Giacomo Grassi, Joana Melo, Simone Rossi, Viola Heinrich, and Nancy L. Harris
Earth Syst. Sci. Data, 17, 1217–1243, https://doi.org/10.5194/essd-17-1217-2025,https://doi.org/10.5194/essd-17-1217-2025, 2025
Short summary
ChatEarthNet: a global-scale image–text dataset empowering vision–language geo-foundation models
Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu
Earth Syst. Sci. Data, 17, 1245–1263, https://doi.org/10.5194/essd-17-1245-2025,https://doi.org/10.5194/essd-17-1245-2025, 2025
Short summary
Aboveground biomass dataset from SMOS L-band vegetation optical depth and reference maps
Simon Boitard, Arnaud Mialon, Stéphane Mermoz, Nemesio J. Rodríguez-Fernández, Philippe Richaume, Julio César Salazar-Neira, Stéphane Tarot, and Yann H. Kerr
Earth Syst. Sci. Data, 17, 1101–1119, https://doi.org/10.5194/essd-17-1101-2025,https://doi.org/10.5194/essd-17-1101-2025, 2025
Short summary

Cited articles

Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mohammad Javad Mirzadeh, S., White, L., Banks, S., Montgomery, J., and Hopkinson, C.: Canadian Wetland Inventory using Google Earth Engine: The First Map and Preliminary Results, Remote Sens.-Basel, 11, 842, https://doi.org/10.3390/rs11070842, 2019. 
Azzari, G. and Lobell, D. B.: Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring, Remote Sens. Environ., 202, 64–74, https://doi.org/10.1016/j.rse.2017.05.025, 2017. 
Büttner, G.: CORINE land cover and land cover change products, in: Land use and land cover mapping in Europe, Springer, https://doi.org/10.1007/978-94-007-7969-3_5, 2014. 
Belgiu, M. and Drăguţh, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001. 
Download
Short summary
An accurate global 30 m wetland dataset that can simultaneously cover inland and coastal zones is lacking. This study proposes a novel method for wetland mapping and generates the first global 30 m wetland map with a fine classification system (GWL_FCS30), including five inland wetland sub-categories (permanent water, swamp, marsh, flooded flat and saline) and three coastal wetland sub-categories (mangrove, salt marsh and tidal flats).
Share
Altmetrics
Final-revised paper
Preprint