Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-265-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-265-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020
Xiao Zhang
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
Key Laboratory of Digital Earth Science, Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
Key Laboratory of Digital Earth Science, Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing 100094, China
School of Electronic, Electrical and Communication Engineering, University
of Chinese Academy of Sciences, Beijing 100049, China
Tingting Zhao
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
College of Geomatics, Xi'an University of Science and Technology, Xi'an
710054, China
Xidong Chen
North China University of Water Resources and Electric Power, Zhengzhou
450046, China
Shangrong Lin
School of Atmospheric Sciences, Southern Marine Science and Engineering
Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082,
Guangdong, China
Jinqing Wang
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
Key Laboratory of Digital Earth Science, Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing 100094, China
School of Electronic, Electrical and Communication Engineering, University
of Chinese Academy of Sciences, Beijing 100049, China
Jun Mi
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
Key Laboratory of Digital Earth Science, Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing 100094, China
School of Electronic, Electrical and Communication Engineering, University
of Chinese Academy of Sciences, Beijing 100049, China
Wendi Liu
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
Key Laboratory of Digital Earth Science, Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing 100094, China
School of Electronic, Electrical and Communication Engineering, University
of Chinese Academy of Sciences, Beijing 100049, China
Related authors
Xiao Zhang, Liangyun Liu, Tingting Zhao, Wenhan Zhang, Linlin Guan, Ming Bai, and Xidong Chen
Earth Syst. Sci. Data, 17, 4039–4062, https://doi.org/10.5194/essd-17-4039-2025, https://doi.org/10.5194/essd-17-4039-2025, 2025
Short summary
Short summary
This work describes a novel global 10 m land-cover dataset with a fine classification system, which contains 30 land-cover subcategories and achieves sufficient performance on a global scale.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Liangyun Liu and Xiao Zhang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 137–143, https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024, 2024
Xiao Zhang, Tingting Zhao, Hong Xu, Wendi Liu, Jinqing Wang, Xidong Chen, and Liangyun Liu
Earth Syst. Sci. Data, 16, 1353–1381, https://doi.org/10.5194/essd-16-1353-2024, https://doi.org/10.5194/essd-16-1353-2024, 2024
Short summary
Short summary
This work describes GLC_FCS30D, the first global 30 m land-cover dynamics monitoring dataset, which contains 35 land-cover subcategories and covers the period of 1985–2022 in 26 time steps (its maps are updated every 5 years before 2000 and annually after 2000).
Xiaojin Qian, Liangyun Liu, Xidong Chen, Xiao Zhang, Siyuan Chen, and Qi Sun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-277, https://doi.org/10.5194/essd-2022-277, 2022
Manuscript not accepted for further review
Short summary
Short summary
Leaf chlorophyll content (LCC) is an important plant physiological trait and a proxy for leaf photosynthetic capacity. We generated a global LCC dataset from ENVISAT MERIS and Sentinel-3 OLCI satellite data for the period 2003–2012 to 2018–2020 using a physically-based radiative transfer modeling approach. This new LCC dataset spanning nearly 20 years will provide a valuable opportunity for the monitoring of vegetation growth and terrestrial carbon cycle modeling on a global scale.
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022, https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary
Short summary
A 30 m LAke Water Secchi Depth (LAWSD30) dataset of China was first developed for 1985–2020, and national-scale water clarity estimations of lakes in China over the past 35 years were analyzed. Lake clarity in China exhibited a significant downward trend before the 21st century, but improved after 2000. The developed LAWSD30 dataset and the evaluation results can provide effective guidance for water preservation and restoration.
Xiao Zhang, Liangyun Liu, Tingting Zhao, Yuan Gao, Xidong Chen, and Jun Mi
Earth Syst. Sci. Data, 14, 1831–1856, https://doi.org/10.5194/essd-14-1831-2022, https://doi.org/10.5194/essd-14-1831-2022, 2022
Short summary
Short summary
Accurately mapping impervious-surface dynamics has great scientific significance and application value for research on urban sustainable development, the assessment of anthropogenic carbon emissions and global ecological-environment modeling. In this study, a novel and accurate global 30 m impervious surface dynamic dataset (GISD30) for 1985 to 2020 was produced using the spectral-generalization method and time-series Landsat imagery on the Google Earth Engine cloud computing platform.
Xiao Zhang, Liangyun Liu, Xidong Chen, Yuan Gao, Shuai Xie, and Jun Mi
Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, https://doi.org/10.5194/essd-13-2753-2021, 2021
Short summary
Short summary
Over past decades, a lot of global land-cover products have been released; however, these still lack a global land-cover map with a fine classification system and spatial resolution simultaneously. In this study, a novel global 30 m landcover classification with a fine classification system for the year 2015 (GLC_FCS30-2015) was produced by combining time series of Landsat imagery and high-quality training data from the GSPECLib on the Google Earth Engine computing platform.
Xiao Zhang, Liangyun Liu, Tingting Zhao, Wenhan Zhang, Linlin Guan, Ming Bai, and Xidong Chen
Earth Syst. Sci. Data, 17, 4039–4062, https://doi.org/10.5194/essd-17-4039-2025, https://doi.org/10.5194/essd-17-4039-2025, 2025
Short summary
Short summary
This work describes a novel global 10 m land-cover dataset with a fine classification system, which contains 30 land-cover subcategories and achieves sufficient performance on a global scale.
Dianrun Zhao, Shanshan Du, Chu Zou, Longfei Tian, Meng Fan, Yulu Du, and Liangyun Liu
Atmos. Meas. Tech., 18, 3647–3667, https://doi.org/10.5194/amt-18-3647-2025, https://doi.org/10.5194/amt-18-3647-2025, 2025
Short summary
Short summary
TanSat-2 is designed for global carbon monitoring, offering high-resolution dual-band observations of solar-induced chlorophyll fluorescence – a key indicator of photosynthesis. Simulations show its data processing can retrieve fluorescence with high accuracy. These results suggest TanSat-2 will enhance global tracking of the carbon cycle and vegetation health, providing valuable insights for climate change research.
Rong Shang, Xudong Lin, Jing M. Chen, Yunjian Liang, Keyan Fang, Mingzhu Xu, Yulin Yan, Weimin Ju, Guirui Yu, Nianpeng He, Li Xu, Liangyun Liu, Jing Li, Wang Li, Jun Zhai, and Zhongmin Hu
Earth Syst. Sci. Data, 17, 3219–3241, https://doi.org/10.5194/essd-17-3219-2025, https://doi.org/10.5194/essd-17-3219-2025, 2025
Short summary
Short summary
Forest age is critical for carbon cycle modeling and effective forest management. Existing datasets, however, have low spatial resolutions or limited temporal coverage. This study introduces China's annual forest age dataset (CAFA), spanning 1986–2022 at a 30 m resolution. By tracking forest disturbances, we annually update ages. Validation shows small errors for disturbed forests and larger errors for undisturbed forests. CAFA can enhance carbon cycle modeling and forest management in China.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Julien Lamour, Shawn P. Serbin, Alistair Rogers, Kelvin T. Acebron, Elizabeth Ainsworth, Loren P. Albert, Michael Alonzo, Jeremiah Anderson, Owen K. Atkin, Nicolas Barbier, Mallory L. Barnes, Carl J. Bernacchi, Ninon Besson, Angela C. Burnett, Joshua S. Caplan, Jérôme Chave, Alexander W. Cheesman, Ilona Clocher, Onoriode Coast, Sabrina Coste, Holly Croft, Boya Cui, Clément Dauvissat, Kenneth J. Davidson, Christopher Doughty, Kim S. Ely, Jean-Baptiste Féret, Iolanda Filella, Claire Fortunel, Peng Fu, Maquelle Garcia, Bruno O. Gimenez, Kaiyu Guan, Zhengfei Guo, David Heckmann, Patrick Heuret, Marney Isaac, Shan Kothari, Etsushi Kumagai, Thu Ya Kyaw, Liangyun Liu, Lingli Liu, Shuwen Liu, Joan Llusià, Troy Magney, Isabelle Maréchaux, Adam R. Martin, Katherine Meacham-Hensold, Christopher M. Montes, Romà Ogaya, Joy Ojo, Regison Oliveira, Alain Paquette, Josep Peñuelas, Antonia Debora Placido, Juan M. Posada, Xiaojin Qian, Heidi J. Renninger, Milagros Rodriguez-Caton, Andrés Rojas-González, Urte Schlüter, Giacomo Sellan, Courtney M. Siegert, Guangqin Song, Charles D. Southwick, Daisy C. Souza, Clément Stahl, Yanjun Su, Leeladarshini Sujeeun, To-Chia Ting, Vicente Vasquez, Amrutha Vijayakumar, Marcelo Vilas-Boas, Diane R. Wang, Sheng Wang, Han Wang, Jing Wang, Xin Wang, Andreas P. M. Weber, Christopher Y. S. Wong, Jin Wu, Fengqi Wu, Shengbiao Wu, Zhengbing Yan, Dedi Yang, and Yingyi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-213, https://doi.org/10.5194/essd-2025-213, 2025
Preprint under review for ESSD
Short summary
Short summary
We present the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. This repository provides a unique source of information for creating hyperspectral models for predicting photosynthetic traits and associated leaf traits in terrestrial plants.
Chu Zou, Shanshan Du, Xinjie Liu, and Liangyun Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-94, https://doi.org/10.5194/essd-2025-94, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Understanding plant sunlight absorption is crucial for tracking global ecosystem health. We developed a 1995–2023 dataset that enhances satellite-based plant activity measurements by resolving data inconsistencies and improving resolution. Using advanced modeling, we harmonized signals from multiple satellites, cutting errors by 45 %. This offers clearer global photosynthesis trends, aiding climate research and vegetation monitoring.
Hu Zhang, Jing Li, Chenpeng Gu, Li Guan, Xiaohan Wang, Faisal Mumtaz, Yadong Dong, Jing Zhao, Qinhuo Liu, Shangrong Lin, and Wentao Yu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-42, https://doi.org/10.5194/essd-2025-42, 2025
Manuscript not accepted for further review
Short summary
Short summary
The 10m-resolution MuSyQ Global LCC has high accuracy in the validation using the ground measurements and can describe more spatial details compared with the current low-resolution LCC product, suggesting its potential in crop and forestry monitoring. We developed an online application that allows users to independently select regions of interest, time ranges, and spatial-temporal resolutions to generate their customized LCC products.
Yu Mao, Weimin Ju, Hengmao Wang, Liangyun Liu, Haikun Wang, Shuzhuang Feng, Mengwei Jia, and Fei Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3672, https://doi.org/10.5194/egusphere-2024-3672, 2025
Short summary
Short summary
The Russia-Ukraine war in 2022 severely disrupted Ukraine’s economy, with significant reductions in industrial, transportation, and residential activities. Our research used satellite data to track changes in nitrogen oxide emissions, a key indicator of human activity, during the war. We found a 28 % decline in emissions, which was twice of the decrease caused by the COVID-19 pandemic. This study highlights how modern warfare can deeply impact both the environment and economic stability.
Chu Zou, Shanshan Du, Xinjie Liu, and Liangyun Liu
Earth Syst. Sci. Data, 16, 2789–2809, https://doi.org/10.5194/essd-16-2789-2024, https://doi.org/10.5194/essd-16-2789-2024, 2024
Short summary
Short summary
To obtain a temporally consistent satellite solar-induced chlorophyll fluorescence
(SIF) product (TCSIF), we corrected for time degradation of GOME-2A using a pseudo-invariant method. After the correction, the global SIF grew by 0.70 % per year from 2007 to 2021, and 62.91 % of vegetated regions underwent an increase in SIF. The dataset is a promising tool for monitoring global vegetation variation and will advance our understanding of vegetation's photosynthetic activities at a global scale.
(SIF) product (TCSIF), we corrected for time degradation of GOME-2A using a pseudo-invariant method. After the correction, the global SIF grew by 0.70 % per year from 2007 to 2021, and 62.91 % of vegetated regions underwent an increase in SIF. The dataset is a promising tool for monitoring global vegetation variation and will advance our understanding of vegetation's photosynthetic activities at a global scale.
Liangyun Liu and Xiao Zhang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 137–143, https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024, 2024
Xiao Zhang, Tingting Zhao, Hong Xu, Wendi Liu, Jinqing Wang, Xidong Chen, and Liangyun Liu
Earth Syst. Sci. Data, 16, 1353–1381, https://doi.org/10.5194/essd-16-1353-2024, https://doi.org/10.5194/essd-16-1353-2024, 2024
Short summary
Short summary
This work describes GLC_FCS30D, the first global 30 m land-cover dynamics monitoring dataset, which contains 35 land-cover subcategories and covers the period of 1985–2022 in 26 time steps (its maps are updated every 5 years before 2000 and annually after 2000).
Xiaojin Qian, Liangyun Liu, Xidong Chen, Xiao Zhang, Siyuan Chen, and Qi Sun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-277, https://doi.org/10.5194/essd-2022-277, 2022
Manuscript not accepted for further review
Short summary
Short summary
Leaf chlorophyll content (LCC) is an important plant physiological trait and a proxy for leaf photosynthetic capacity. We generated a global LCC dataset from ENVISAT MERIS and Sentinel-3 OLCI satellite data for the period 2003–2012 to 2018–2020 using a physically-based radiative transfer modeling approach. This new LCC dataset spanning nearly 20 years will provide a valuable opportunity for the monitoring of vegetation growth and terrestrial carbon cycle modeling on a global scale.
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022, https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary
Short summary
A 30 m LAke Water Secchi Depth (LAWSD30) dataset of China was first developed for 1985–2020, and national-scale water clarity estimations of lakes in China over the past 35 years were analyzed. Lake clarity in China exhibited a significant downward trend before the 21st century, but improved after 2000. The developed LAWSD30 dataset and the evaluation results can provide effective guidance for water preservation and restoration.
Xiao Zhang, Liangyun Liu, Tingting Zhao, Yuan Gao, Xidong Chen, and Jun Mi
Earth Syst. Sci. Data, 14, 1831–1856, https://doi.org/10.5194/essd-14-1831-2022, https://doi.org/10.5194/essd-14-1831-2022, 2022
Short summary
Short summary
Accurately mapping impervious-surface dynamics has great scientific significance and application value for research on urban sustainable development, the assessment of anthropogenic carbon emissions and global ecological-environment modeling. In this study, a novel and accurate global 30 m impervious surface dynamic dataset (GISD30) for 1985 to 2020 was produced using the spectral-generalization method and time-series Landsat imagery on the Google Earth Engine cloud computing platform.
Xiao Zhang, Liangyun Liu, Xidong Chen, Yuan Gao, Shuai Xie, and Jun Mi
Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, https://doi.org/10.5194/essd-13-2753-2021, 2021
Short summary
Short summary
Over past decades, a lot of global land-cover products have been released; however, these still lack a global land-cover map with a fine classification system and spatial resolution simultaneously. In this study, a novel global 30 m landcover classification with a fine classification system for the year 2015 (GLC_FCS30-2015) was produced by combining time series of Landsat imagery and high-quality training data from the GSPECLib on the Google Earth Engine computing platform.
Cited articles
Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mohammad Javad
Mirzadeh, S., White, L., Banks, S., Montgomery, J., and Hopkinson, C.:
Canadian Wetland Inventory using Google Earth Engine: The First Map and
Preliminary Results, Remote Sens.-Basel, 11, 842,
https://doi.org/10.3390/rs11070842, 2019.
Azzari, G. and Lobell, D. B.: Landsat-based classification in the cloud: An
opportunity for a paradigm shift in land cover monitoring,
Remote Sens. Environ., 202, 64–74, https://doi.org/10.1016/j.rse.2017.05.025, 2017.
Büttner, G.: CORINE land cover and land cover change products, in: Land
use and land cover mapping in Europe, Springer, https://doi.org/10.1007/978-94-007-7969-3_5, 2014.
Belgiu, M. and Drăguţh, L.: Random forest in remote sensing: A review
of applications and future directions,
ISPRS J. Photogramm., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011,
2016.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/a:1010933404324, 2001.
Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B.,
Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R.,
Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan,
O., Moore, R., and Tait, A. M.: Dynamic World, Near real-time global 10 m
land use land cover mapping, Scientific Data, 9, 1–7,
https://doi.org/10.1038/s41597-022-01307-4, 2022.
Bunting, P., Rosenqvist, A., Lucas, R., Rebelo, L.-M., Hilarides, L.,
Thomas, N., Hardy, A., Itoh, T., Shimada, M., and Finlayson, C.: The Global
Mangrove Watch–A New 2010 Global Baseline of Mangrove Extent, Remote Sens.-Basel, 10, 1669, https://doi.org/10.3390/rs10101669, 2018.
Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N.,
Tadono, T., Worthington, T. A., Spalding, M., Murray, N. J., and Rebelo,
L.-M.: Global Mangrove Extent Change 1996–2020: Global Mangrove Watch
Version 3.0, Remote Sens.-Basel, 14, 3657, https://doi.org/10.3390/rs14153657,
2022.
Bwangoy, J.-R. B., Hansen, M. C., Roy, D. P., Grandi, G. D., and Justice, C.
O.: Wetland mapping in the Congo Basin using optical and radar remotely
sensed data and derived topographical indices, Remote Sens. Environ., 114, 73–86, https://doi.org/10.1016/j.rse.2009.08.004, 2010.
Cao, W., Zhou, Y., Li, R., and Li, X.: Mapping changes in coastlines and
tidal flats in developing islands using the full time series of Landsat
images, Remote Sens. Environ., 239, 111665,
https://doi.org/10.1016/j.rse.2020.111665, 2020.
Chen, B., Chen, L., Huang, B., Michishita, R., and Xu, B.: Dynamic
monitoring of the Poyang Lake wetland by integrating Landsat and MODIS
observations, ISPRS J. Photogramm., 139,
75–87, https://doi.org/10.1016/j.isprsjprs.2018.02.021, 2018.
Chen, G., Jin, R., Ye, Z., Li, Q., Gu, J., Luo, M., Luo, Y., Christakos, G.,
Morris, J., He, J., Li, D., Wang, H., Song, L., Wang, Q., and Wu, J.:
Spatiotemporal Mapping of Salt Marshes in the Intertidal Zone of China
during 1985–2019, Journal of Remote Sensing, 2022, 1–15,
https://doi.org/10.34133/2022/9793626, 2022.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G.,
Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover
mapping at 30m resolution: A POK-based operational approach, ISPRS J. Photogramm., 103, 7–27,
https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.
Davidson, N. C.: How much wetland has the world lost? Long-term and recent
trends in global wetland area, Mar. Freshwater Res., 65, 934–941,
https://doi.org/10.1071/mf14173, 2014.
Defourny, P., Kirches, G., Brockmann, C., Boettcher, M., Peters, M.,
Bontemps, S., Lamarche, C., Schlerf, M., and Santoro, M.: Land Cover CCI: Product
User Guide Version 2,
https://www.esa-landcover-cci.org/?q=webfm_send/84 (last
access: 22 November 2022), 2018.
DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J. W., and Lang, M.
W.: Rapid and robust monitoring of flood events using Sentinel-1 and Landsat
data on the Google Earth Engine, Remote Sens. Environ., 240, 111664,
https://doi.org/10.1016/j.rse.2020.111664, 2020.
Dixon, M. J. R., Loh, J., Davidson, N. C., Beltrame, C., Freeman, R., and
Walpole, M.: Tracking global change in ecosystem area: The Wetland Extent
Trends index, Biol. Conserv., 193, 27–35,
https://doi.org/10.1016/j.biocon.2015.10.023, 2016.
Gómez, C., White, J. C., and Wulder, M. A.: Optical remotely sensed time
series data for land cover classification: A review, ISPRS J. Photogramm., 116, 55–72,
https://doi.org/10.1016/j.isprsjprs.2016.03.008, 2016.
Gage, E., Cooper, D. J., and Lichvar, R.: Comparison of USACE three-factor
wetland delineations to national wetland inventory maps, Wetlands, 40,
1097–1105, https://doi.org/10.1007/s13157-019-01234-y, 2020.
Gardner, R. C. and Davidson, N. C.: The ramsar convention, in: Wetlands,
Springer, https://doi.org/10.1007/978-94-007-0551-7_11, 2011.
Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T.,
Masek, J., and Duke, N.: Status and distribution of mangrove forests of the
world using earth observation satellite data,
Global Ecol. Biogeogr., 20, 154–159, https://doi.org/10.1111/j.1466-8238.2010.00584.x,
2011.
Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R.: Random Forests
for land cover classification, Pattern Recogn. Lett., 27, 294–300,
https://doi.org/10.1016/j.patrec.2005.08.011, 2006.
Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang,
X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X.,
Cheng, Q., Hu, L., Yao, W., Zhang, H., Zhu, P., Zhao, Z., Zhang, H., Zheng,
Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, J., Yu, L., Wang, L., Liu,
X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C.,
Clinton, N., Zhu, Z., Chen, J., and Chen, J.: Finer resolution observation
and monitoring of global land cover: first mapping results with Landsat TM
and ETM+ data, Int. J. Remote Sens., 34, 2607–2654,
https://doi.org/10.1080/01431161.2012.748992, 2013.
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji,
L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Ping Suen, H.,
Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu,
L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song,
L.: Stable classification with limited sample: transferring a 30 m
resolution sample set collected in 2015 to mapping 10 m resolution global
land cover in 2017, Sci. Bull., 64, 370–373,
https://doi.org/10.1016/j.scib.2019.03.002, 2019.
Gumbricht, T.: Hybrid mapping of pantropical wetlands from optical satellite
images, hydrology, and geomorphology, Remote Sensing of Wetlands,
CRC Press, 435–454, https://doi.org/10.1201/b18210, 2015.
Gumbricht, T., Roman-Cuesta, R. M., Verchot, L.,
Herold, M., Wittmann, F., Householder, E., Herold, N., and Murdiyarso, D.:
An expert system model for mapping tropical wetlands and peatlands reveals
South America as the largest contributor, Glob. Change Biol., 23,
3581–3599, https://doi.org/10.1111/gcb.13689, 2017.
Guo, M., Li, J., Sheng, C., Xu, J., and Wu, L.: A Review of Wetland Remote Sensing, Sensors, 17, 777, https://doi.org/10.3390/s17040777, 2017.
Hamilton, S. E. and Casey, D.: Creation of a high spatio-temporal resolution
global database of continuous mangrove forest cover for the 21st century
(CGMFC-21), Global Ecol. Biogeogr., 25, 729–738,
https://doi.org/10.1111/geb.12449, 2016.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R.,
Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R.:
High-resolution global maps of 21st-century forest cover change, Science,
342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Hansen, M. C., Egorov, A., Potapov, P. V., Stehman, S. V., Tyukavina, A.,
Turubanova, S. A., Roy, D. P., Goetz, S. J., Loveland, T. R., Ju, J.,
Kommareddy, A., Kovalskyy, V., Forsyth, C., and Bents, T.: Monitoring
conterminous United States (CONUS) land cover change with Web-Enabled
Landsat Data (WELD), Remote Sens. Environ., 140, 466–484,
https://doi.org/10.1016/j.rse.2013.08.014, 2014.
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass,
L., Funk, M., Wickham, J., Stehman, S., Auch, R., and Riitters, K.:
Conterminous United States land cover change patterns 2001–2016 from the
2016 National Land Cover Database, ISPRS J. Photogramm., 162, 184–199,
https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020.
Hu, S., Niu, Z., and Chen, Y.: Global Wetland Datasets: a Review, Wetlands,
37, 807–817, https://doi.org/10.1007/s13157-017-0927-z, 2017a.
Hu, S., Niu, Z., Chen, Y., Li, L., and Zhang, H.: Global wetlands: Potential
distribution, wetland loss, and status, Sci. Total Environ., 586, 319–327,
https://doi.org/10.1016/j.scitotenv.2017.02.001, 2017b.
Huang, X., Li, J., Yang, J., Zhang, Z., Li, D., and Liu, X.: 30 m global
impervious surface area dynamics and urban expansion pattern observed by
Landsat satellites: From 1972 to 2019, Science China Earth Sciences,
64, 1922–1933, https://doi.org/10.1007/s11430-020-9797-9, 2021.
Jia, M., Mao, D., Wang, Z., Ren, C., Zhu, Q., Li, X., and Zhang, Y.:
Tracking long-term floodplain wetland changes: A case study in the China
side of the Amur River Basin,
Int. J. Appl. Earth Observ., 92, 102185,
https://doi.org/10.1016/j.jag.2020.102185, 2020.
Jia, M., Wang, Z., Mao, D., Ren, C., Wang, C., and Wang, Y.: Rapid, robust,
and automated mapping of tidal flats in China using time series Sentinel-2
images and Google Earth Engine, Remote Sens. Environ., 255, 112285,
https://doi.org/10.1016/j.rse.2021.112285, 2021.
Jin, H., Stehman, S. V., and Mountrakis, G.: Assessing the impact of
training sample selection on accuracy of an urban classification: a case
study in Denver, Colorado, Int. J. Remote Sens., 35,
2067–2081, https://doi.org/10.1080/01431161.2014.885152, 2014.
Khandelwal, A., Karpatne, A., Ravirathinam, P., Ghosh, R., Wei, Z., Dugan,
H. A., Hanson, P. C., and Kumar, V.: ReaLSAT, a global dataset of reservoir
and lake surface area variations, Scientific Data, 9, 1–12,
https://doi.org/10.1038/s41597-022-01449-5, 2022.
LaRocque, A., Phiri, C., Leblon, B., Pirotti, F., Connor, K., and Hanson,
A.: Wetland Mapping with Landsat 8 OLI, Sentinel-1, ALOS-1 PALSAR, and LiDAR
Data in Southern New Brunswick, Canada, Remote Sens.-Basel, 12, 2095,
https://doi.org/10.3390/rs12132095, 2020.
Lehner, B. and Döll, P.: Development and validation of a global database
of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.
Li, Z., Chen, H., White, J. C., Wulder, M. A., and Hermosilla, T.:
Discriminating treed and non-treed wetlands in boreal ecosystems using time
series Sentinel-1 data, Int. J. Appl. Earth Observ., 85, 102007, https://doi.org/10.1016/j.jag.2019.102007,
2020.
Liu, L., Zhang, X., Gao, Y., Chen, X., Shuai, X., and Mi, J.:
Finer-Resolution Mapping of Global Land Cover: Recent Developments,
Consistency Analysis, and Prospects, Journal of Remote Sensing, 2021, 1-38,
https://doi.org/10.34133/2021/5289697, 2021.
Liu, L., Zhang, X., and Zhao, T.: GWL_FCS30: global 30 m wetland map with fine classification system using multi-sourced and time-series remote sensing imagery in 2020, Zenodo [data set], https://doi.org/10.5281/zenodo.7340516, 2022.
Lu, Y. and Wang, L.: How to automate timely large-scale mangrove mapping
with remote sensing, Remote Sens. Environ., 264, 112584,
https://doi.org/10.1016/j.rse.2021.112584, 2021.
Ludwig, C., Walli, A., Schleicher, C., Weichselbaum, J., and Riffler, M.: A
highly automated algorithm for wetland detection using multi-temporal
optical satellite data, Remote Sens. Environ., 224, 333–351,
https://doi.org/10.1016/j.rse.2019.01.017, 2019.
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., and Gill,
E.: The First Wetland Inventory Map of Newfoundland at a Spatial Resolution
of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine
Cloud Computing Platform, Remote Sens.-Basel, 11, 43,
https://doi.org/10.3390/rs11010043, 2018.
Mahdianpari, M., Jafarzadeh, H., Granger, J. E., Mohammadimanesh, F.,
Brisco, B., Salehi, B., Homayouni, S., and Weng, Q.: A large-scale change
monitoring of wetlands using time series Landsat imagery on Google Earth
Engine: a case study in Newfoundland, GISci. Remote Sens., 57,
1102–1124, https://doi.org/10.1080/15481603.2020.1846948, 2020.
Mao, D., Wang, Z., Du, B., Li, L., Tian, Y., Jia, M., Zeng, Y., Song, K.,
Jiang, M., and Wang, Y.: National wetland mapping in China: A new product
resulting from object-based and hierarchical classification of Landsat 8 OLI
images, ISPRS J. Photogramm., 164, 11–25,
https://doi.org/10.1016/j.isprsjprs.2020.03.020, 2020.
Mao, D., Wang, Z., Wang, Y., Choi, C. Y., Jia, M., Jackson, M. V., and
Fuller, R. A.: Remote Observations in China's Ramsar Sites: Wetland
Dynamics, Anthropogenic Threats, and Implications for Sustainable
Development Goals, Journal of Remote Sensing, 2021, 1–13,
https://doi.org/10.34133/2021/9849343, 2021.
Matthews, E. and Fung, I.: Methane emission from natural wetlands: Global
distribution, area, and environmental characteristics of sources,
Global Biogeochem. Cy., 1, 61–86, https://doi.org/10.1029/GB001i001p00061,
1987.
McCarthy, M. J., Radabaugh, K. R., Moyer, R. P., and Muller-Karger, F. E.:
Enabling efficient, large-scale high-spatial resolution wetland mapping
using satellites, Remote Sens. Environ., 208, 189–201,
https://doi.org/10.1016/j.rse.2018.02.021, 2018.
McOwen, C. J., Weatherdon, L. V., Bochove, J. V., Sullivan, E., Blyth, S.,
Zockler, C., Stanwell-Smith, D., Kingston, N., Martin, C. S., Spalding, M.,
and Fletcher, S.: A global map of saltmarshes, Biodivers. Data J.,
5, e11764, https://doi.org/10.3897/BDJ.5.e11764, 2017.
Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons,
M. B., Clinton, N., Thau, D., and Fuller, R. A.: The global distribution and
trajectory of tidal flats, Nature, 565, 222–225,
https://doi.org/10.1038/s41586-018-0805-8, 2019.
Murray, N. J., Worthington, T. A., Bunting, P., Duce, S., Hagger, V.,
Lovelock, C. E., Lucas, R., Saunders, M. I., Sheaves, M., and Spalding, M.:
High-resolution mapping of losses and gains of Earth's tidal wetlands,
Science, 376, 744–749, https://doi.org/10.1126/science.abm9583, 2022.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and
Wulder, M. A.: Good practices for estimating area and assessing accuracy of
land change, Remote Sens. Environ., 148, 42–57,
https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418–422, https://doi.org/10.1038/nature20584, 2016.
Radoux, J., Lamarche, C., Van Bogaert, E., Bontemps, S., Brockmann, C., and
Defourny, P.: Automated Training Sample Extraction for Global Land Cover
Mapping, Remote Sens.-Basel, 6, 3965–3987, https://doi.org/10.3390/rs6053965,
2014.
Richardson, D. C., Holgerson, M. A., Farragher, M. J., Hoffman, K. K., King,
K. B. S., Alfonso, M. B., Andersen, M. R., Cheruveil, K. S., Coleman, K. A.,
Farruggia, M. J., Fernandez, R. L., Hondula, K. L., Lopez Moreira Mazacotte,
G. A., Paul, K., Peierls, B. L., Rabaey, J. S., Sadro, S., Sanchez, M. L.,
Smyth, R. L., and Sweetman, J. N.: A functional definition to distinguish
ponds from lakes and wetlands, Sci. Rep.-UK, 12, 10472,
https://doi.org/10.1038/s41598-022-14569-0, 2022.
Sexton, J., Feng, M., Channan, S., Song, X., Kim, D., Noojipady, P., Song,
D., Huanga, C., Annand, A., and Collins, K.: Earth Science Data Records of
Global Forest Cover and Change, User guide, 38,
https://lpdaac.usgs.gov/documents/1370/GFCC_ATBD.pdf (last
access: 22 November 2022), 2016.
Sexton, J. O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C.,
Kim, D.-H., Collins, K. M., Channan, S., DiMiceli, C., and Townshend, J. R.:
Global, 30 m resolution continuous fields of tree cover: Landsat-based
rescaling of MODIS vegetation continuous fields with lidar-based estimates
of error, Int. J. Digit. Earth, 6, 427–448,
https://doi.org/10.1080/17538947.2013.786146, 2013.
Slagter, B., Tsendbazar, N.-E., Vollrath, A., and Reiche, J.: Mapping
wetland characteristics using temporally dense Sentinel-1 and Sentinel-2
data: A case study in the St. Lucia wetlands, South Africa, Int. J. Appl. Earth Observ., 86, 102009,
https://doi.org/10.1016/j.jag.2019.102009, 2020.
Spalding, M.: World atlas of mangroves, Routledge, A collaborative project
of ITTO, ISME, FAO, UNEP-WCMC, UNESCO-MAB, UNU-INWEH and TNC, London (UK),
Earthscan, London, https://doi.org/10.4324/9781849776608, 2010.
Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A.: Characteristics of ASTER
GDEM Version 2, Geoscience and Remote Sensing Symposium (IGARSS), 24–29 July 2011, Vancouver, 12477285, 3657–3660,
https://doi.org/10.1109/IGARSS.2011.6050017, 2011a.
Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D. B., Oimoen, M. J., Zhang,
Z., Danielson, J., Krieger, T., Curtis, B., and Haase, J.: ASTER Global
Digital Elevation Model Version 2 – Summary of validation results, Kim
Fakultas Sastra Dan Budaya,
https://doi.org/10.1093/oxfordjournals.pubmed.a024792, 2011b.
Thomas, N., Lucas, R., Bunting, P., Hardy, A., Rosenqvist, A., and Simard,
M.: Distribution and drivers of global mangrove forest change, 1996–2010,
PloS One, 12, e0179302, https://doi.org/10.1371/journal.pone.0179302, 2017.
Tootchi, A., Jost, A., and Ducharne, A.: Multi-source global wetland maps combining surface water imagery and groundwater constraints, Earth Syst. Sci. Data, 11, 189–220, https://doi.org/10.5194/essd-11-189-2019, 2019.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N., Deghaye, P.,
Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R.,
Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1 mission,
Remote Sens. Environ., 120, 9–24,
https://doi.org/10.1016/j.rse.2011.05.028, 2012.
Townshend, J. R., Masek, J. G., Huang, C., Vermote, E. F., Gao, F., Channan,
S., Sexton, J. O., Feng, M., Narasimhan, R., Kim, D., Song, K., Song, D.,
Song, X.-P., Noojipady, P., Tan, B., Hansen, M. C., Li, M., and Wolfe, R.
E.: Global characterization and monitoring of forest cover using Landsat
data: opportunities and challenges, Int. J. Digit. Earth,
5, 373–397, https://doi.org/10.1080/17538947.2012.713190, 2012.
Veci, L., Prats-Iraola, P., Scheiber, R., Collard, F., Fomferra, N., and
Engdahl, M.: The sentinel-1 toolbox,
https://sentinels.copernicus.eu/web/sentinel/toolboxes/sentinel-1 (last
access: 25 May 2022), 2014.
Vermote, E., Justice, C., Claverie, M., and Franch, B.: Preliminary analysis
of the performance of the Landsat 8/OLI land surface reflectance product,
Remote Sens. Environ., 185, 46–56,
https://doi.org/10.1016/j.rse.2016.04.008, 2016.
Wang, X., Xiao, X., Zou, Z., Hou, L., Qin, Y., Dong, J., Doughty, R. B.,
Chen, B., Zhang, X., Chen, Y., Ma, J., Zhao, B., and Li, B.: Mapping coastal
wetlands of China using time series Landsat images in 2018 and Google Earth
Engine, ISPRS J. Photogramm., 163, 312–326,
https://doi.org/10.1016/j.isprsjprs.2020.03.014, 2020.
Wang, X., Xiao, X., Xu, X., Zou, Z., Chen, B., Qin, Y., Zhang, X., Dong, J.,
Liu, D., Pan, L., and Li, B.: Rebound in China's coastal wetlands following
conservation and restoration, Nature Sustainability, 4, 1076–1083,
https://doi.org/10.1038/s41893-021-00793-5, 2021.
Wilen, B. O. and Bates, M.: The US fish and wildlife service's national
wetlands inventory project, in: Classification and inventory of the world's
wetlands, Springer, https://doi.org/10.1007/BF00045197, 1995.
Worthington, T. A., Zu Ermgassen, P. S., Friess, D. A., Krauss, K. W.,
Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., and
Cormier, N.: A global biophysical typology of mangroves and its relevance
for ecosystem structure and deforestation, Sci. Rep.-UK, 10, 1–11,
https://doi.org/10.1038/s41598-020-71194-5, 2020.
Xi, Y., Peng, S., Ciais, P., and Chen, Y.: Future impacts of climate change
on inland Ramsar wetlands, Nat. Clim. Change, 11, 45–51,
https://doi.org/10.1038/s41558-020-00942-2, 2020.
Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N.,
Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., and Vergnaud,
S.: ESA WorldCover 10 m 2020 v100, Zenodo,
https://doi.org/10.5281/zenodo.5571936, 2021.
Zhang, H., Wang, T., Liu, M., Jia, M., Lin, H., Chu, L. M., and Devlin, A.:
Potential of Combining Optical and Dual Polarimetric SAR Data for Improving
Mangrove Species Discrimination Using Rotation Forest, Remote Sens.-Basel, 10,
467, https://doi.org/10.3390/rs10030467, 2018.
Zhang, H. K. and Roy, D. P.: Using the 500 m MODIS land cover product to
derive a consistent continental scale 30 m Landsat land cover
classification, Remote Sens. Environ., 197, 15–34,
https://doi.org/10.1016/j.rse.2017.05.024, 2017.
Zhang, X., Liu, L., Wu, C., Chen, X., Gao, Y., Xie, S., and Zhang, B.: Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform, Earth Syst. Sci. Data, 12, 1625–1648, https://doi.org/10.5194/essd-12-1625-2020, 2020.
Zhang, X., Liu, L., Chen, X., Gao, Y., and Jiang, M.: Automatically
Monitoring Impervious Surfaces Using Spectral Generalization and Time Series
Landsat Imagery from 1985 to 2020 in the Yangtze River Delta,
Journal of Remote Sensing, 2021, 1–16, https://doi.org/10.34133/2021/9873816, 2021a.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021b.
Zhang, X., Liu, L., Zhao, T., Gao, Y., Chen, X., and Mi, J.: GISD30: global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform, Earth Syst. Sci. Data, 14, 1831–1856, https://doi.org/10.5194/essd-14-1831-2022, 2022.
Zhang, Z., Xu, N., Li, Y., and Li, Y.: Sub-continental-scale mapping of
tidal wetland composition for East Asia: A novel algorithm integrating
satellite tide-level and phenological features, Remote Sens. Environ., 269, 112799, https://doi.org/10.1016/j.rse.2021.112799, 2022.
Zhu, P. and Gong, P.: Suitability mapping of global wetland areas and
validation with remotely sensed data, Science China Earth Sciences, 57,
2283–2292, https://doi.org/10.1007/s11430-014-4925-1, 2014.
Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow detection
in Landsat imagery, Remote Sens. Environ., 118, 83–94,
https://doi.org/10.1016/j.rse.2011.10.028, 2012.
Zhu, Z., Wang, S. X., and Woodcock, C. E.: Improvement and expansion of the
Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7,
8, and Sentinel 2 images, Remote Sens. Environ., 159, 269–277,
https://doi.org/10.1016/j.rse.2014.12.014, 2015.
Zhu, Z., Gallant, A. L., Woodcock, C. E., Pengra, B., Olofsson, P.,
Loveland, T. R., Jin, S., Dahal, D., Yang, L., and Auch, R. F.: Optimizing
selection of training and auxiliary data for operational land cover
classification for the LCMAP initiative, ISPRS J. Photogramm., 122, 206–221,
https://doi.org/10.1016/j.isprsjprs.2016.11.004, 2016.
Short summary
An accurate global 30 m wetland dataset that can simultaneously cover inland and coastal zones is lacking. This study proposes a novel method for wetland mapping and generates the first global 30 m wetland map with a fine classification system (GWL_FCS30), including five inland wetland sub-categories (permanent water, swamp, marsh, flooded flat and saline) and three coastal wetland sub-categories (mangrove, salt marsh and tidal flats).
An accurate global 30 m wetland dataset that can simultaneously cover inland and coastal zones...
Altmetrics
Final-revised paper
Preprint