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Abstract. Wetlands, often called the “kidneys of the earth”, play an important role in maintaining ecological
balance, conserving water resources, replenishing groundwater and controlling soil erosion. Wetland mapping
is very challenging because of its complicated temporal dynamics and large spatial and spectral heterogeneity.
An accurate global 30 m wetland dataset that can simultaneously cover inland and coastal zones is lacking. This
study proposes a novel method for wetland mapping by combining an automatic sample extraction method, ex-
isting multi-sourced products, satellite time-series images and a stratified classification strategy. This approach
allowed for the generation of the first global 30 m wetland map with a fine classification system (GWL_FCS30),
including five inland wetland sub-categories (permanent water, swamp, marsh, flooded flat and saline) and three
coastal tidal wetland sub-categories (mangrove, salt marsh and tidal flats), which was developed using Google
Earth Engine platform. We first combined existing multi-sourced global wetland products, expert knowledge,
training sample refinement rules and visual interpretation to generate large and geographically distributed wet-
land training samples. Second, we integrated the Landsat reflectance time-series products and Sentinel-1 syn-
thetic aperture radar (SAR) imagery to generate various water-level and phenological information to capture the
complicated temporal dynamics and spectral heterogeneity of wetlands. Third, we applied a stratified classifi-
cation strategy and the local adaptive random forest classification models to produce the wetland dataset with
a fine classification system at each 5◦× 5◦geographical tile in 2020. Lastly, GWL_FCS30, mosaicked by 961
5◦× 5◦ regional wetland maps, was validated using 25 708 validation samples, which achieved an overall ac-
curacy of 86.44 % and a kappa coefficient of 0.822. The cross-comparisons with other global wetland products
demonstrated that the GWL_FCS30 dataset performed better in capturing the spatial patterns of wetlands and had
significant advantages over the diversity of wetland sub-categories. The statistical analysis showed that the global
wetland area reached 6.38 million km2, including 6.03 million km2 of inland wetlands and 0.35 million km2 of
coastal tidal wetlands, approximately 72.96 % of which were distributed poleward of 40◦ N. Therefore, we can
conclude that the proposed method is suitable for large-area wetland mapping and that the GWL_FCS30 dataset
is an accurate wetland mapping product that has the potential to provide vital support for wetland manage-
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ment. The GWL_FCS30 dataset in 2020 is freely available at https://doi.org/10.5281/zenodo.7340516 (Liu et
al., 2022).

1 Introduction

The Ramsar Convention defines wetlands as “areas of marsh,
fen, peatland or water, whether natural or artificial, perma-
nent or temporary, with water that is static or flowing, fresh,
brackish or salt, including areas of marine water the depth of
which at low tide does not exceed six meters” (Gardner and
Davidson, 2011). Wetlands not only provide humans with
a large amount of food, raw materials and water resources
(Ludwig et al., 2019; Z. Zhang et al., 2022) but also play an
important role in maintaining ecological balance, conserving
water resources, replenishing groundwater and controlling
soil erosion (Hu et al., 2017a; Mao et al., 2021; Wang et al.,
2020; Zhu and Gong, 2014). Therefore, they are also called
the “kidneys of the earth” (Guo et al., 2017). However, due
to increasing human activities, including agriculturalization,
industrialization and urbanization (McCarthy et al., 2018; Xi
et al., 2020), and climatic changes, such as sea-level rise and
coastal erosion (Cao et al., 2020; Wang et al., 2021), wet-
lands have been seriously degraded and threatened over the
past few decades (Mao et al., 2020). Thus, having access to
timely and accurate wetland mapping information is pivotal
for protecting biodiversity and supporting the sustainable de-
velopment goals.

Along with the rapid development of remote sensing tech-
niques and computing abilities, a variety of regional and
global wetland datasets have been produced with spatial res-
olutions ranging from 30 m to 1◦ (∼ 112 km) (Chen et al.,
2022; Gumbricht et al., 2017; Lehner and Döll, 2004; Mao
et al., 2020; Matthews and Fung, 1987; Tootchi et al., 2019).
Recently, Tootchi et al. (2019) and Hu et al. (2017a) have sys-
tematically reviewed the generation process of global wet-
land datasets with various spatial and temporal resolutions
and wetland categories and found significant uncertainties
and inconsistencies among these datasets. For example, the
global total wetland area reviewed by Hu et al. (2017a)
ranged from 2.12 to 7.17 million km2 based on remote sens-
ing products. Therefore, great uncertainties among global
wetland datasets directly hindered wetland applications and
analysis. Furthermore, from the perspective of spatial reso-
lution, although many wetland products have been produced
at regional or global scales using various remote sensing im-
agery and different methods (Guo et al., 2017; Tootchi et al.,
2019), most of them were coarse-spatial-resolution datasets,
ranging from 100 m to 25 km. Recently, with the improve-
ment in computing power and storage abilities, three global
30 m land-cover products (including GlobeLand30; Chen et
al., 2015; FROM_GLC; Gong et al., 2013; and GLC_FCS30;
Zhang et al., 2021b) and several 10 m land-cover products

(WorldCover; Zanaga et al., 2021; Dynamic World; Brown
et al., 2022; and FROM_GLC10; Gong et al., 2019), contain-
ing an independent wetland layers, were produced, but their
classification algorithms were not specifically designed for
the wetland environment, so wetlands usually suffered from
low accuracy in these products. In addition, several global
coastal tidal wetland products have been developed, includ-
ing the global mangrove extent (Bunting et al., 2018; Hamil-
ton and Casey, 2016) and global 30 m tidal flat datasets from
1984 to 2016 (Murray et al., 2019), but these only covered
the intertidal zones. Thus, an accurate global 30 m thematic
wetland dataset, with fine wetland categories and covering
both inland and coastal zones, is still lacking.

One of the largest challenges of current state-of-the-art
methods for large-area wetland mapping is to collect a mas-
sive number of training samples (Liu et al., 2021; Ludwig et
al., 2019). Zhang et al. (2021b) mentioned two options for
collecting training samples, including the visual interpreta-
tion method and deriving training samples from pre-existing
products. First, since the visual interpretation method had
significant advantages over the confidence of training sam-
ples, it was widely used for local or regional wetland map-
ping (Amani et al., 2019; Wang et al., 2020). However, col-
lecting accurate and sufficient training samples is usually a
time-consuming process and involves a large amount of man-
ual work, so it was impractical and nearly impossible to use
the visual interpretation for collecting global wetland sam-
ples. Comparatively, the process of deriving training sam-
ples from existing products and applying some rules or re-
finement methods to identify these high-confidence samples
from existing products shows promise (Zhang et al., 2021b).
So this approach is practical in that it could quickly produce a
large and geographically diverse distribution of training sam-
ples without much manual effort. Thus, the second option at-
tracted increasing attention and has been successfully used
for large-area land-cover mapping (Zhang and Roy, 2017;
Zhang et al., 2020, 2021b). For example, Zhang et al. (2021b)
used global training samples derived from the combination
of the CCI_LC and MCD43A4 Distribution Function Ad-
justed Reflectance (NBAR) datasets to produce a global 30 m
land-cover product with a fine classification system in 2015
and 2020 (GLC_FCS30) with an overall accuracy of 82.5 %.
Therefore, if we take effective measures to fuse these existing
products and then derive high-confidence training samples
using some refinement rules, the deriving approach would
hold great potential for global wetland mapping.

Another major challenge inherent to wetland mapping is
the complicated temporal dynamics and the spatial and spec-
tral heterogeneity. The spectral characteristics of the wet-
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lands would quickly change with the seasonal or daily water
levels of the underlying surface (Ludwig et al., 2019; Mah-
dianpari et al., 2020). Therefore, many studies proposed to
combine multi-sourced, time-series remote sensing imagery
to capture the spatial extent and temporal dynamics of wet-
lands (LaRocque et al., 2020; Ludwig et al., 2019; Murray et
al., 2019; Wang et al., 2021; Z. Zhang et al., 2022). For ex-
ample, Z. Zhang et al. (2022) and Murray et al. (2019) used
the Landsat time-series imagery to generate tidal-level and
phenological features for identifying coastal tidal wetlands
and successfully produced the coastal tidal wetlands in China
with an overall accuracy of 97.2 % (Z. Zhang et al., 2022)
and global trajectory tidal flats with the overall map accuracy
of 82.3 % (Murray et al., 2019). Except for optical imagery,
synthetic aperture radar (SAR) data, which were sensitive to
soil moisture, vegetation structure and inundation, enabled
data acquisition regardless of solar illumination, clouds or
haze and were also widely used for wetland mapping, espe-
cially after the Sentinel-1 data became open-access (Li et al.,
2020; Slagter et al., 2020; Zhang et al., 2018). For example,
Li et al. (2020) used the Sentinel-1 time-series imagery to
discriminate wetlands with and without trees and achieved
an overall accuracy of 86.0± 0.2%. Therefore, the fusion of
multi-sourced and time-series remote sensing imagery is vi-
tal for accurate wetland mapping.

Due to the complicated temporal dynamics and the spa-
tial and spectral heterogeneity of wetlands, there are very
few global thematic wetland datasets covering both inland
and coastal regions with a fine classification system and
high spatial resolution, which also cause global 30 m wet-
land mapping with a fine classification system to remain a
challenging task. In this study, we combined several exist-
ing wetland products and multi-sourced time-series remote
sensing imagery to (1) derive large and geographically dis-
tributed wetland training samples from pre-existing multi-
sourced global wetland products to minimize the manual
participation; (2) develop a robust method to capture the
temporal dynamics of wetlands and then produce the first
global 30 m wetland dataset with a fine classification sys-
tem (GWL_FCS30); and (3) quantitatively analyze the spa-
tial distribution of different wetland categories and assess the
accuracy of GWL_FCS30 in 2020.

2 Datasets

2.1 Multi-sourced remote sensing imagery

Three types of remote sensing imagery were collected to cap-
ture the temporal dynamics and spatial and spectral hetero-
geneity of wetlands. These include Landsat optical data and
Sentinel-1 SAR and ASTER Global Digital Elevation Model
(GDEM) topographical data. First, all available Landsat im-
agery, including Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) and Landsat 8 Operational Land Imager (OLI) mis-
sions, during 2019–2021 was obtained for the nominal year

of 2020 via the Google Earth Engine platform for minimiz-
ing the influence of frequent cloud contamination in the trop-
ics and snow and ice in the high latitudes. To minimize the
effect of atmosphere, each Landsat image was atmospheri-
cally corrected to the surface reflectance by the United States
Geological Survey using the Land Surface Reflectance Code
(LaSRC) method (Vermote et al., 2016) and then archived
on the Google Earth Engine (GEE) platform. These “bad-
quality” observations (shadow, cloud, snow and saturated
pixels) in Landsat imagery were masked using the CFmask
cloud detection method, which built a series of decision
rules, using temperature, spectral variability, brightness and
geometric relationship between cloud and shadow, to identify
these “poor-quality” pixels and achieved the overall accuracy
of 96.4 % (Zhu et al., 2015; Zhu and Woodcock, 2012). In
this study, six optical bands, including blue, green, red, NIR
(near infrared), SWIR1 (shortwave infrared 1) and SWIR2
(shortwave infrared 2) bands, were used for wetland map-
ping. In total, 764 239 Landsat scenes were collected to cap-
ture various water-level and phenological features according
to the spectral characteristics of various land-cover types,
presented in Sect. 4. Figure 1a illustrates the spatial distri-
bution of all clear-sky observations for all Landsat scenes,
and it can be seen that there were more than 10 clear observa-
tions after masking these “poor-quality” observations in each
region and even in the tropics.

Then, the Sentinel-1 SAR data, which were demonstrated
to be sensitive to the soil moisture, vegetation structure
and inundation information (Li et al., 2020), used dual-
polarization C-band backscatter coefficients to measure the
incident microwave radiation scattered by the land surface
(Torres et al., 2012). This study obtained the Sentinel-1 time-
series imagery archived on the GEE platform in 2020 in
Interferometric Wide swath mode with a dual-polarization
of VV and VH. Notably, all Sentinel-1 SAR imagery on
the GEE platform has been pre-processed by the Sentinel-
1 Toolbox with thermal noise removal, radiometric calibra-
tion and terrain correction using 30 m elevation data (Veci
et al., 2014). Figure 1b also illustrates the spatial distribu-
tion of all available Sentinel-1 SAR imagery; there were
enough Sentinel-1 SAR observations in each area to cap-
ture the water-level dynamics of wetlands because it was im-
mune to cloud and shadow and had a revisit time of 6 d after
launching the Sentinel-1B mission. Lastly, as many studies
have demonstrated that the topography would directly affect
the spatial distribution of wetlands, which are mainly dis-
tributed in low-lying areas (Hu et al., 2017b; Ludwig et al.,
2019; Tootchi et al., 2019), the ASTER GDEM elevation and
derived slope and aspect were used as auxiliary information
for wetland mapping. It had a spatial resolution of 30 m and
covered the entire global land area (Tachikawa et al., 2011a).
Quantitative assessment indicated that the GDEM achieved
an absolute vertical accuracy of 0.7 m over bare areas and
7.4 m over forested areas (Tachikawa et al., 2011b).
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Figure 1. The spatial distribution of clear observations after masking these “poor-quality” observations during 2019–2021 (a) and availability
of Sentinel-1 SAR time-series observations in 2020 (b).

2.2 Prior global wetland datasets

To achieve the goal of deriving a large and geographically
diverse distribution of training samples with minimum man-
ual labor, we propose combining various prior global wet-
land datasets for generating high-confidence training sam-
ples. Table 1 lists the characteristics of several global wet-
land datasets. Specifically, we collected five global mangrove
forest products with different spatial resolutions and time
spans, and all of them achieved desirable accuracy. For ex-
ample, the Global Mangrove Watch (GMW) was validated to
reach an overall accuracy of 95.25 %, and the user and pro-
ducer accuracies of mangrove forest were 97.5 % and 94.0 %,
respectively (Thomas et al., 2017). Furthermore, to derive
the samples of salt marsh and tidal flats, we collected the
global 30 m tidal flat time-series products from 1984 to 2016

with an interval of 3 years, achieving an overall map accu-
racy of 82.3 % (Murray et al., 2019). The global salt marsh
dataset, containing 350 985 individual occurrence polygon
shapefiles, helped generate the global salt marsh estimation
(McOwen et al., 2017).

Except for the coastal tidal wetland products, two thematic
wetland products (TROP-SUBTROP Wetland and Global
Lakes and Wetlands Database (GLWD) contained various
wetland sub-categories), three global land-cover products
(GlobeLand30, GLC_FCS30 and CCI_LC contained an in-
dependent layer) and the 30 m water dynamic time-series
dataset (JRC_GSW) were combined to determine the inland
maximum wetland extents and generate the wetland train-
ing samples after using a series of refinement rules given
in Sect. 3. Specifically, the TROP-SUBTROP was produced
by combining the hydrological model and annual time series
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of soil moisture, mainly covering the tropics and subtropics
(40◦ N–60◦ S) with a resolution of 231 m (Gumbricht, 2015).
The GLWD, combining the GIS functionality and a variety of
existing maps and information, was developed with 12 wet-
land sub-categories at a resolution of 1 km (Lehner and Döll,
2004). The JRC_GSW dynamic water dataset achieved a pro-
ducer accuracy of 98.5 % for these seasonal waters (Pekel
et al., 2016) and was used to identify inundated pixels. Fur-
thermore, three global land-cover products, simultaneously
containing wetland and non-wetland land-cover types, were
used to determine the non-wetland samples and then served
as the auxiliary datasets to improve the confidence of inland
wetland samples.

2.3 Global 30 m tree cover product

The global 30 m forest cover change in tree cover
(GFCC30TC) data in 2015 was produced by downscaling
the 250 m MODIS VCF (Vegetation Continuous Fields) tree
cover product using Landsat imagery and then incorporating
the MODIS cropland layer to guarantee the tree cover accu-
racy in agricultural areas (Sexton et al., 2016, 2013). This
product was used to accurately distinguish between inland
swamp and marsh wetlands because both of them reflected
obvious vegetation spectral characteristics. It was validated
to achieve an overall accuracy of 91 %; the average pro-
ducer and user accuracies for stable forests were 92.5 % and
95.4 %, respectively (Sexton et al., 2016; Townshend et al.,
2012).

2.4 National wetland products

Three national wetland products, including NLCD (National
Land Cover Database) (Homer et al., 2020), NWI (Na-
tional Wetlands Inventory) (Wilen and Bates, 1995) and
CLC (CORINE Land Cover) (Büttner, 2014), were used
as the comparative datasets to analyze the performance
of developed global wetland maps in Sect. 6.2. Specifi-
cally, the NLCD contained open water, woody wetlands and
emergent herbaceous wetlands, the NWI contained eight
sub-categories (estuarine and marine deepwater, estuarine
and marine wetland, freshwater emergent wetland, freshwa-
ter forest/shrub wetland, freshwater pond, lake, other and
riverine), and the CLC identified the wetlands in 10 sub-
categories: inland marshes, peat bogs, salt marshes, saline,
intertidal flats, water courses, waterbodies, coastal lagoons,
estuaries, and sea and oceans.

3 Collecting training samples and determining
maximum wetland extent

In this study, after considering the applicability of moderate
resolution (10–30 m) imagery, their practical use for ecosys-
tem management and the available pre-existing global wet-
land dataset, the fine wetland classification system, contain-

ing eight sub-categories (three coastal tidal sub-categories
and five inland sub-categories), was proposed to comprehen-
sively depict the spatial patterns of global wetlands (Table 2).
Specifically, the sub-categories of coastal tidal wetlands con-
sist of mangroves, salt marshes and tidal flats. By importing
the vegetation and water cover information associated with
this land cover, these categories were widely recognized in
many previous studies (Wang et al., 2021; Z. Zhang et al.,
2022). The inland wetland types shared similar characteris-
tics and were grouped into swamp, marsh and flooded flat.
Meanwhile, in order to capture saline soils and halophytic
plant species along saline lakes, the inland saline wetland,
inherited from the GLWD (Lehner and Döll, 2004), was also
imported. Lastly, the permanent water, including lakes, rivers
and streams that are always flooded, was widely identified as
a wetland layer in previous studies (Davidson, 2014; Dixon
et al., 2016; Hu et al., 2017b) and was also added into our
fine wetland classification system.

Many studies have explained that the quality and confi-
dence of training samples directly affected the classification
performance (Zhang et al., 2021b; Zhu et al., 2016). The
previously mentioned process of collecting sufficient train-
ing samples via visual interpretation was time-consuming
and involved a lot of manual labor. Fortunately, a variety
of regional and global wetland products have been devel-
oped and released over the past few decades (Table 1), and
many studies have demonstrated that deriving training sam-
ples from existing products could be used for large-area clas-
sification and mapping (Huang et al., 2021; Zhang et al.,
2021b). Therefore, we propose to combine existing global
wetland datasets to independently derive coastal and inland
wetland training samples and their maximum distribution ex-
tents (Fig. 2).

3.1 Deriving coastal tidal wetland training samples and
maximum extents

This study divided the coastal tidal wetlands into three sub-
categories: mangrove forest, salt marsh and tidal flat. The
previously existing products have been collected in Table 1.
For the mangrove training samples, we collected five global
mangrove products with different spatiotemporal resolutions,
all of which achieved good performances. For example,
Hamilton and Casey (2016) stated that their continuous man-
grove forest cover (CGMFC) dataset could cover 99 % of
all mangrove forests from 2000 to 2012, and Thomas et
al. (2017) validated their Global Mangrove Watch (GMW)
products from 1996 to 2016 and reached an overall accuracy
of 95.25 %. Therefore, we first measure the temporal con-
sistency of the three mangrove forest time-series products
(CGMFC, GMW and GBTM mangroves), and only these
temporally stable mangrove forest pixels were selected as
the primary candidate points (P Tstable

mangrove). Meanwhile, to min-
imize the influence of classification error in each mangrove
forest product, the cross-consistency of five mangrove prod-
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Table 1. The characteristics of 13 global wetland products with various spatiotemporal resolutions (unit of area: million km2).

Dataset name and reference Wetland categories Year Resolution Total area Coverage

World Atlas of Mangroves
(WAM)
Spalding (2010) Mangrove

2010 1 : 1000000 0.152 Global

Global Mangrove Watch
(GWM) Thomas et al. (2017)

1996–2016 ∼ 25 m ∼ 0.136 Global

A global biophysical typology
of mangroves (GBTM)
Worthington et al. (2020)

1996–2016 ∼ 25 m ∼ 0.136 Global

Continuous global mangrove
forest cover (CGMFC)
Hamilton and Casey (2016)

2000–2010 30 m 0.083 Global

Global Distribution of Man-
groves USGS (GDM_USGS)
Giri et al. (2011)

2011 30 m ∼ 0.138 Global

Global distribution of tidal flat
ecosystems
Murray et al. (2019)

Tidal flat 1984–2016 30 m 0.124–0.132 60◦ S–60◦ N

Global distribution of salt
marsh
McOwen et al. (2017)

Salt marsh 1973–2015 1 : 10000 ∼ 0.05 Global

Tropical and Subtropical Wet-
land Distribution (CIFOR)
Gumbricht (2015)

Open water, mangrove,
swamps, fens, riverine,
floodplains, marshes

2011 ∼ 231 m 4.7 60◦ S–40◦ N

Global Lakes and Wetlands
Database (GLWD)
Lehner and Döll (2004)

Lake, reservoir, river,
marsh, swamps, coastal
tidal wetland, saline
wetland and peatland

2004 ∼ 1 km 10.7–12.7 Global

JRC_GSW
Pekel et al. (2016)

Water 1984–2021 30 m ∼ 4.46 Global

ESA CCI_LC
Defourny et al. (2018)

Swamps, mangrove, and
shrub or herbaceous cov-
ered wetlands

1992–2020 300 m 6.1 Global

GlobeLand30
Chen et al. (2015)

Wetland 2000–2020 30 m 7.01–7.17 Global

GLC_FCS30
Zhang et al. (2021b)

Wetland 2015, 2020 30 m 6.36 Global

ucts was analyzed, and only the pixel simultaneously iden-
tified as mangrove forest in all five products was labeled as
stable and consistent candidate points (P Tstable,Scons

mangrove ). Fur-
thermore, considering that there was a temporal interval be-
tween prior mangrove products and our study and that man-
grove deforestation usually followed the pattern of edge-to-
center contraction, a morphological erosion filter with a lo-
cal window of 3× 3 was applied to the P Tstable,Scons

mangrove points
to further ensure the confidence of mangrove training sam-
ples. Lastly, as for the maximum mangrove forest extents

(MaxExtentmangrove), the union operation was applied to five
global mangrove products as shown in Eq. (1).

MaxExtentmangrove =MWAM
⋃
MGMW

⋃
MGBTM⋃

MCGMFC
⋃
MGDM_USGS, (1)

where MWAM, MGMW, MGBTM, MCGMFC and MGDM_USGS
are the spatial distributions of five global mangrove forest
products listed in Table 1. It should be noted that these prior
mangrove products were demonstrated to cover almost all
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Table 2. The description of the wetland classification system in this study.

Category I Category II Description

Tidal wetland
Mangrove The forest or shrubs which grow in the coastal

brackish or saline water

Salt marsh Herbaceous vegetation (grasses, herbs and low
shrubs) in the upper coastal intertidal zone

Tidal flat The tidal flooded zones between the coastal high
and low tide levels including mudflats and sand-
flats.

Inland wetland

Swamp The forest or shrubs which grow in the inland
freshwater

Marsh Herbaceous vegetation (grasses, herbs and low
shrubs) grows in the freshwater

Flooded flat The non-vegetated flooded areas along the rivers
and lakes

Saline Characterized by saline soils and halophytic (salt
tolerant) plant species along saline lakes

Permanent water Lakes, rivers and streams that are always flooded

Figure 2. The flowchart of deriving coastal and inland wetland samples from multiple pre-existing datasets.

mangroves over the world, so the MaxExtentmangrove can be
used as the boundary for mangrove mapping; namely, only
the pixel within the maximum mangrove extent was labeled
as mangrove forest.

Regarding the collection of tidal flat samples, the prior
global 30 m tidal flat time-series products (Gtidalflat) from
1984 to 2016 were validated to achieve an overall map ac-
curacy of 82.3 % and user accuracies for the non-tidal and
tidal flat of 83.3 % and 81.1 %, respectively (Murray et al.,
2019). To ensure the accuracy of tidal flat samples, we first
applied temporal consistency analysis to the time series of
tidal flat datasets from 2000 to 2016 and identified the tem-
porally stable tidal flat pixels (P Tstable

tidal ) during 16 consecutive
years. The reason why we discarded the tidal flat datasets be-
fore 2000 was that the available Landsat imagery was sparse
and could not accurately capture the high-tidal and low-tidal
information and suffered lower monitoring accuracy. Next,
Radoux et al. (2014) found that transition zones between

two different land-cover types are likely to be misclassified;
therefore, the candidate tidal flat samples P Tstable

tidal were fur-
ther refined by the morphological erosion filter with a lo-
cal window of 3× 3. Furthermore, as a tidal flat is a non-
vegetated coastal tidal wetland, we combined the empirical
rule (enhanced vegetation index (EVI)≥ 0.1, normalized dif-
ference vegetation index (NDVI) ≥ 0.2 and land surface wa-
ter index (LSWI) > 0) proposed by Wang et al. (2020) and
Landsat time-series imagery in 2020 (approximately 142 000
Landsat scenes) to exclude all vegetated pixels from tidal
flat training samples. Lastly, to derive the maximum tidal flat
extents (MaxExtenttidalflat), the union operation was applied
to the tidal flat time-series products from 1984 to 2016. It
should be noted that Murray’s global 30 m tidal flat datasets
only covered the regions of 60◦ N–60◦ S (Murray et al.,
2019); therefore, we used the coastal shorelines (Linecoastal)
to create a 50 km buffer (applied by Wang et al., 2020, and
Murray et al., 2019) as the potential tidal flat zones in the
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high-latitude regions (> 60◦ N) as in Eq. (2). It should be
noted that we only identified and then retained these tidal flat
pixels within the maximum extents by using the classification
models in Sect. 4.2.

MaxExtenttidalflat =

{ ⋃2016
t=1984Gtidalflatt, s , s ∈ [60◦ S, 60◦N]

Linecoastal± 50km, s ∈ [60◦N, 90◦N] (2)

Compared with mangrove forest and tidal flat, the pre-
existing global or regional salt marsh products were rela-
tively sparse. The global distribution of the salt marsh dataset
contained 350 985 individual vector polygons and was the
most complete dataset on salt marsh occurrence and extent
at the global scale (McOwen et al., 2017). However, after
careful review, we found some mislabeled salt marsh poly-
gons, so this dataset cannot be used directly to derive training
samples. This study first used the random sampling method
to generate 35 099 salt marsh points (approximately 10 % of
the total polygons) based on prior datasets. We combined the
visual interpretation method and high-resolution imagery to
check each salt marsh point. After discarding the incorrect
and uncertain samples, a total of 32 712 salt marsh points
were retained. However, the prior dataset only captured the
extent of salt marshes in 99 countries worldwide (McOwen et
al., 2017), further noting that the distribution of salt marshes
was spatially correlated with tidal flat and mangrove for-
est (Wang et al., 2021). Consequently, the maximum extents
of tidal flat and mangrove forest, in addition to the prior
salt marsh extent, were used for salt marsh mapping. Mean-
while, as the wetland layer in the global land-cover prod-
ucts (GLC_FCS30, GlobeLand30 and CCI_LC) also covered
some coastal tidal wetlands, the saline-water wetland layer in
the CCI_LC and the wetland data in the other two products
close to the coastal shorelines were also imported as sup-
plementary material when determining the maximum coastal
tidal wetland extents.

3.2 Deriving inland wetland training samples and
maximum extents

The pre-existing inland wetland datasets usually suffered
from lower accuracy compared to coastal tidal wetland prod-
ucts; for example, the wetland layer in GlobeLand30-2010
and GLC_FCS30-2015 was validated to achieve a user ac-
curacy of 74.9 % (Chen et al., 2015) and 43.4 % (Zhang et
al., 2021b), respectively. Therefore, we first generated high-
confidence inland wetland samples and then determined their
sub-categories (swamp, marsh, inland flat, saline wetland
and permanent water). Specifically, the consistency analysis
of five global wetland datasets (TROP-SUBTROP Wetland,
GLWD, CCI_LC, GlobeLand30 and GLC_FCS30) and the
temporal stability checking for CCI_LC (1992–2020), Glo-
beLand30 (2000–2020) and GLC_FCS30 (2015–2020) were
applied to identify these temporally stable and high-cross-
consistency wetland points (P Tstable,Scons

inlandWet ). It should be noted
that the coarse wetland products (GLWD, TROP-SUBTROP

and CCI_LC) were resampled to 30 m using the nearest-
neighbor method on the GEE platform, and the coastal tidal
wetland layers in these products were excluded. Namely,
only the pixel identified as inland wetland in all five products
was retained. Then, the morphological erosion filter with a
local window of 3×3 was also used to decrease the sampling
uncertainty over these land-cover transition areas because the
transition zones between two different land-cover types are
likely to be misclassified (Lu and Wang, 2021; Radoux et al.,
2014).

Afterward, to determine the wetland sub-category for each
inland wetland sample, we first used the empirical vegetation
rule (EVI ≥ 0.1, NDVI ≥ 0.2 and LSWI > 0) proposed by
Wang et al. (2020) and Landsat time-series imagery to split
candidate samples into two parts: vegetated wetland sam-
ples (swamp and marsh) and non-vegetated wetland sam-
ples (flooded flat, saline and permanent water). Then, as
the swamp was defined as the forest or shrubs which grow
in the inland freshwater, the global 30 m tree cover dataset
(GFCC30TC) was adopted to distinguish the swamp and
marsh from vegetated wetland samples. Specifically, if the
tree cover of the sample was greater than 30 % (Hansen et
al., 2013), it was labeled as swamp, and the remaining veg-
etated wetland samples were labeled as marsh. Furthermore,
to distinguish between the inland flat, saline samples and per-
manent water, the saline blocks in the prior GLWD products
were first checked by visual interpretation and then imported
as the reference dataset to identify all saline wetland samples.
The remaining non-vegetated wetland samples were further
refined using the time series of the JRC_GSW datasets; only
the remaining samples whose water probability was less than
the threshold of 0.95 (suggested by Wang et al., 2020) were
labeled as flooded flat. Lastly, regarding the permanent wa-
ter samples, the JRC_GSW water dynamic dataset was val-
idated and achieved producer and user accuracies of 99.7 %
and 99.1 % for permanent water (Pekel et al., 2016). The per-
manent water training samples were directly derived from the
JRC_GSW dataset without any refinement rules.

Lastly, as for determining the maximum inland wetland
extents (MextentinWet), the union operation was conducted
with six pre-existing global wetland datasets as in Eq. (3).

MextentinWet =WTROP-SUBTROP
⋃
WGLWD

⋃
WCCI_LC⋃

WGLC_FCS30
⋃
WGlobeland30⋃

WJRC_GSW (3)

Here WTROP−SUBTROP, WGLWD, WCCI_LC, WGLC_FCS30 and
WGlobeland30 are wetland distributions of five pre-existing
global wetland products, and WJRC_GSW is the JRC_GSW
water dynamic time-series datasets, which identified the in-
undated probability at a monthly scale during 1984–2021
(Pekel et al., 2016). It should be noted that the omission error
can be ignored for derived maximum inland wetland extents
(MextentinWet) because the GLWD and TROP-SUBTROP
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Wetland datasets captured almost all potential wetlands us-
ing compilation and model simulation methods (Gumbricht,
2015; Lehner and Döll, 2004).

3.3 Deriving non-wetland training samples from prior
land-cover products

Except for inland and coastal tidal wetland samples, the non-
wetland samples were also necessary because some non-
wetland land-cover types were shown to have a similar
spectrum to wetlands. For example, swamp and forest or
shrubs exhibited the same vegetation reflectance character-
istics in optical imagery, and marsh and grassland shared
similar spectral curves during the growing season (Z. Zhang
et al., 2022). Except for eight fine wetland sub-categories
training samples, we also divided the non-wetlands into
forest/shrubland, grassland, cropland and others (bare land,
impervious surfaces and snow). To automatically derive
these non-wetland samples, the multi-epoch GlobeLand30,
GLC_FCS30 and CCI_LC global land-cover products were
integrated. Specifically, the temporal stability and cross-
consistency analyses were applied to three land-cover prod-
ucts to identify temporally stable forest/shrubland, grassland,
cropland and other candidate samples. Furthermore, the mor-
phological erosion filter with the local window of 3× 3 was
also adopted to decrease the sampling uncertainty over land-
cover transition areas.

3.4 Determining the sample size and distributions using
stratified random sampling strategy

Except for the confidence of training samples, many studies
also found that the size and distribution of training samples
also affected classification performances (Jin et al., 2014;
Zhu et al., 2016). As this study aimed to identify wetlands
instead of all land-cover types, the equal allocation sam-
ple distribution would perform better than the proportional
distribution (the sample size determined by the area) (Jin
et al., 2014; Zhang et al., 2020). Namely, the approximate
proportion of inland wetland, coastal tidal wetland and non-
wetland samples was 5 : 3 : 4 in the coexisting areas be-
cause the classification system was composed of five inland
and three coastal tidal wetland sub-categories and four non-
wetland land-cover types. Regarding the sample size, Zhu et
al. (2016) had analyzed the quantitative relationships of sam-
ple size and the mapping accuracy and found that the map-
ping accuracies slowly increased and then remained stable
with any further increase in the number of samples and sug-
gested using a total of 20 000 samples in the Landsat scene.
In this study, we used the stratified random sampling strat-
egy to collect the training samples (excluding salt marsh be-
cause it was collected globally using visual interpretation in
Sect. 3.1) at each 5◦× 5◦ geographical grid (corresponding
to the local adaptive modeling in Sect. 4.2) using an approx-
imate sample size of 2000 for each category. According to

our statistics, this study derived more than 20 million train-
ing samples for mapping global fine wetlands.

4 Mapping wetland using the stratified classification
strategy and the water-level and phenological
features

Figure 3 illustrates the flowchart of the proposed method
for generating the global 30 m fine wetland maps. First, we
combined the Landsat 8 and Sentinel-1 SAR time-series ob-
servations and ASTER DEM topographical images to de-
rive multi-sourced and multi-temporal features, including
three topographical and various water-level and phenologi-
cal features. Then, the training samples (coastal tidal, inland
wetlands and non-wetlands) and derived multi-sourced and
multi-temporal features were combined to train the stratified
random forest classifiers (a classic and widely used machine
learning classification model; Breiman, 2001) at each local
region. Next, using the trained random forest models and de-
rived multi-sourced and multi-temporal features, we could
develop corresponding coastal tidal wetland and inland wet-
land maps. Finally, the post-processing step was used to gen-
erate the global 30 m fine wetland map in 2020.

4.1 Generating various water-level and phenological
composites

Before generating various water-level and phenological fea-
tures, four spectral indices, including normalized difference
water index (NDWI), LSWI, NDVI and EVI, were imported
because many studies have demonstrated that they were of
great help in wetland mapping (Mao et al., 2020; Wang et
al., 2020).

LSWI=
ρnir− ρswir1

ρnir+ ρswir1
, NDWI=

ρgreen− ρswir1

ρgreen+ ρswir1
,

NDVI=
ρnir− ρred

ρnir+ ρred
,

EVI= 2.5×
ρnir− ρred

ρnir+ 6× ρred− 7.5× ρblue+ 1
, (4)

where ρblue, ρgreen, ρred, ρnir and ρswir1 are the blue, green,
red, near-infrared and shortwave infrared bands of Landsat
imagery, respectively.

Then, the spectral characteristics of the wetlands would
quickly change along with the seasonal or daily water lev-
els of the underlying surface. For example, the tidal flat was
the status of seawater at the high tidal stage and mudflats or
sandflats at low tidal stages (Wang et al., 2021); therefore, it
was necessary to extract the highest- and lowest-water-level
composites to completely capture these inundated wetlands.
Over the past several years, the time-series compositing strat-
egy has been widely used to capture phenological and cloud-
free composites (Jia et al., 2020; Ludwig et al., 2019; Mur-
ray et al., 2019; Zhang et al., 2021a). In this study, consider-
ing that NDWI was sensitive to open surface water and that
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Figure 3. The flowchart of wetland mapping using water-level, phenological and topographical features and a stratified classification strategy.

Z. Zhang et al. (2022) found a positive relationship between
tidal height and NDWI using field survey data, the maximum
NDWI compositing was applied to the clear-sky Landsat
time-series imagery to capture the highest-water-level opti-
cal composites illustrated in Fig. 4b. As for the lowest water-
level features, considering that the tidal and flooded flat or
marsh usually reflected higher NDVI and EVI values than
waterbodies and that Z. Zhang et al. (2022) also used the field
data to demonstrate that there was a negative relationship
between tidal-level height and NDVI, the maximum NDVI
composite was applied to capture the lowest-water-level op-
tical information illustrated in Fig. 4a. Considering that opti-
cal observations were usually contaminated by clouds, espe-
cially during the rainy seasons, and that the SAR back coef-
ficients had a great advantage in the presence of cloud cover-
age and were found to be sensitive to the soil moisture, veg-
etation structure and inundation information, the Sentinel-1
SAR time-series imagery could be used as a complemen-
tary dataset for capturing the highest- and lowest-water-level
composites (DeVries et al., 2020; Li et al., 2020; Mahdian-
pari et al., 2018). Specifically, as the SAR active transmitting
signals were heavily absorbed when they reached the water-
body, the corresponding SAR back coefficients in the water-
body had lower values compared to other land-cover types.
To capture the high-water-level features from the Sentinel-1
time-series imagery, the percentile compositing method us-
ing the 5th percentile was applied, as illustrated in Fig. 4d.
Conversely, the 95th percentiles of Sentinel-1 VV and VH
were generated to capture the lowest-water-level information
(Fig. 4c). It should be noted that the minimum and maxi-
mum percentiles were not used because the Sentinel-1 time-
series imagery still contained the residual errors caused by
the quantitative processing.

Many studies also demonstrated that a multi-temporal phe-
nology was also essential for classifying the vegetated wet-
lands and excluding these non-wetland land-cover types (Li
et al., 2020; Ludwig et al., 2019). There were usually two op-
tions for capturing phenological features from Landsat time-
series imagery. These included seasonal-based compositing
(Zhang et al., 2021a, 2022) and percentile-based composit-
ing (Hansen et al., 2014; Zhang and Roy, 2017; Zhang et
al., 2021b). The former used the phenological calendar for
selecting time-matched imagery. It then adopted the com-
positing rule to capture the seasonal features, while the lat-
ter directly used the statistical distributions to select various
percentiles. Azzari and Lobell (2017) quantitatively analyzed
the performance of two compositing methods and found
that both of them had similar mapping accuracy for land-
cover mapping. Meanwhile, the seasonal-based composit-
ing method needed the prior phenological calendar, while
the percentile compositing method did not require any prior
knowledge or explicit assumptions regarding the timing of
the season; therefore, the percentile compositing method
was more suitable for generating phenological features. This
study composited Landsat reflectance time-series bands and
four spectral indices into five percentiles (15th, 30th, 50th,
70th and 85th) because we wanted to capture as many of
the phenological changes in wetlands as possible when com-
paring with the four seasonal composites (Zhang and Roy,
2017). It should be noted that the minimum and maximum
percentiles were excluded because they were usually affected
by residual clouds, shadows and saturated observations.

Lastly, the topographical variables were also important
factors for determining the spatial distribution of wetlands
(Ludwig et al., 2019; Tootchi et al., 2019). For example,
the widely used topographical wetness index (TWI) uses the
local slope to reveal soil wetness, which improves wetland
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Figure 4. The lowest- and highest-water-level features derived from (a–b) Landsat optical reflectance time-series data and (c–d) the Sentinel-
1 SAR imagery using the time-series compositing method in Poyang Lake, China.

classification performance and reduces commission errors
within upland areas (Ludwig et al., 2019). Therefore, the ele-
vation, aspect and slope, calculated from the ASTER GDEM
dataset, were included in the multi-sourced features. In sum-
mary, there are a total of 77 multi-sourced training features
(listed in Table 3), including 70 optical features from Land-
sat imagery, 4 SAR features from Sentinel-1 imagery and 3
topographical features from ASTER GDEM.

4.2 The stratified classification strategy for wetland
mapping

Since we have simultaneously extracted the maximum
coastal and inland wetland extents when deriving training
samples from prior wetland datasets, the stratified classifi-
cation strategy was adopted to fully use the maximum extent
constraint. If a pixel was classified as a coastal tidal wetland
outside the maximum coastal tidal wetland extents, it would
be identified as a misclassification. Furthermore, there were
two ideas for the large-area land-cover mapping, including
global classification modeling (using one universal model
for entire areas) and local adaptive modeling (using various
models for different local zones) (Zhang et al., 2020). For ex-
ample, Zhang and Roy (2017) demonstrated that local adap-
tive modeling outperformed the global classification model-
ing strategy. Therefore, the global land surface was first di-
vided into 961 5◦×5◦ geographical tiles illustrated in Fig. 5,
which were inherited from the global 30 m land-cover map-
ping by Zhang et al. (2021b). Then, we trained the local adap-
tive classification models using derived training samples in
Sect. 3 and multi-sourced and multi-temporal features (the
highest water level, lowest water level, phenological compos-
ites and topographical variables) at each 5◦× 5◦ geographi-
cal tile. It should be noted that we used the training samples
from neighboring 3× 3 geographical tiles to train the clas-
sification model and classify the central tile for guarantee-
ing the spatially continuous transition over adjacent regional
wetland maps. Namely, we trained 961 local adaptive classi-
fication models and then produced 961 5◦×5◦ wetland maps.

Finally, we spatially mosaicked these 961 regional wetland
maps into the global 30 m wetland map in 2020.

Afterward, the random forest (RF) classifier was demon-
strated to have obvious advantages, including dealing with
high-dimensional data, robustness for training noise and fea-
ture selection, as well as achieving higher classification when
compared to other widely used machine learning classifiers
(e.g., support vector machines, neural networks, decision
trees) (Belgiu and Drăguţh, 2016; Gislason et al., 2006).
Therefore, the RF classifier was selected for mapping inland
and coastal tidal wetlands using multi-sourced features on the
GEE platform. It should be noted that the RF classifier had
two key parameters: the number of selected prediction vari-
ables (Mtry) and the number of decision trees (Ntree). Belgiu
and Drăguţh (2016) and Z. Zhang et al. (2022) have demon-
strated the quantitative relationship of Ntree against classi-
fication accuracy and found that the classification accuracy
stabilized when Ntree was greater than 100. Meanwhile, Bel-
giu and Drăguţh (2016) suggested that Mtry should take its
default value of the square root of the number of all input
features. Therefore, Ntree and Mtry took 100 and the square
root of the number of all input features, respectively.

The inland and coastal tidal wetland maps were pro-
duced by combining water-level and phenological features,
the stratified classification strategy, local adaptive modeling,
and the derived wetland and non-wetland training samples.
As the inland and coastal tidal wetlands were independently
produced, some pixels in the overlapping area of maximum
inland and coastal tidal wetland extents were simultaneously
labeled as inland wetlands and coastal tidal wetlands. How-
ever, as the final global wetland map was a hard classifica-
tion, these pixels should be post-processed into one label.
As the random forest classifier could provide the posterior
probability for each pixel, we determined the labels of the
confused pixels by comparing the posterior probabilities. In
addition, as the tidal flats were demonstrated to overestimate
some coastal ponds as tidal flats, the global lake and reservoir
dataset, developed by Khandelwal et al. (2022), was applied
to optimize the tidal flat.
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Table 3. The multi-sourced and multi-temporal training features for wetland mapping.

Data Derived training features from multi-sourced remote
sensing imagery

Landsat
Water-level features: the lowest and highest com-
posites with blue, green, red, NIR, SWIR1, SWIR2,
LSWI, NDWI, NDVI and EVI bands
Phenological features: 15th, 30th, 50th, 70th and
85th percentiles with blue, green, red, NIR, SWIR1,
SWIR2, LSWI, NDWI, NDVI and EVI bands

Sentinel-1 SAR Water-level features: the lowest and highest compos-
ites using 5th and 95th percentiles for VV and VH
bands.

ASTER GDEM Topographical features: elevation, slope and aspect.

Figure 5. The spatial distribution of 961 5◦× 5◦ geographical tiles used for local adaptive modeling, which was inherited from the global
30 m land-cover mapping by Zhang et al. (2021b). The background imagery came from the National Aeronautics and Space Administration
(https://visibleearth.nasa.gov, last access: 10 November 2022).

4.3 Accuracy assessment

To quantitatively analyze the performance of our
GWL_FCS30 wetland map, a total of 25 709 validation
samples (illustrated in Fig. 6), including 10 558 non-wetland
points and 15 151 wetland points, were collected. Firstly, as
the wetland was a sparse land-cover type compared to the
non-wetlands (forest, cropland, grassland and bare land), the
stratified random strategy was applied to randomly derive
validation points at each stratum as

ni = n×
Wi ×pi (1−pi)∑
Wi ×pi (1−pi)

,

n=

(∑
Wi

√
pi(1−pi)

)2
V +

∑
Wipi(1−pi)/N

, (5)

where Wi and pi are the area proportion and expected accu-
racy of class i, ni and n are the sample size of class i and total
sample size, V is the standard error of the estimated overall
accuracy, and N is the number of pixel units in the study re-
gion. Then, as the wetlands had a significant correlation with
the water levels (Z. Zhang et al., 2022), the time-series op-
tical observations archived on the GEE cloud platform were
used as the auxiliary dataset to interpret these water-level-
sensitive wetlands, such as tidal flat and flooded flat. It should
be noted that the visual interpretation was implemented on
the GEE cloud platform because it archives a large number
of satellite images with various time spans and spatiotempo-
ral resolution (X. Zhang et al., 2022). Meanwhile, each val-
idation point is independently interpreted by five experts for
minimizing the effect of an expert’s subjective knowledge,
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and only these complete agreement points were retained; oth-
erwise, they were discarded. Then, we employed four met-
rics typically used to evaluate accuracy, which include the
kappa coefficient, overall accuracy, user accuracy (measuring
the commission error) and producer accuracy (measuring the
omission error) (Gómez et al., 2016; Olofsson et al., 2014),
for calculations using 25 709 global wetland validation sam-
ples.

5 Results

5.1 The reliability analysis of derived training samples

This study proposed combining pre-existing multi-sourced
wetland products, refinement rules and expert knowledge to
automatically derive these massive inland and coastal tidal
wetland training samples globally. To demonstrate the relia-
bility of the derived training samples for wetland mapping,
we randomly selected approximately 10 000 points from the
sample pool and checked their confidence using visual in-
terpretation. It should be noted that we cannot check all the
training samples because the number of derived samples was
massive (exceeding 20 million training samples in Sect. 3).
After a point-to-point inspection, these selected training sam-
ples achieved an overall accuracy of 91.53 % in 2020. Mean-
while, we also used 10 000 selected wetland training samples
and many non-wetland samples to analyze the overall and
producer accuracies of coastal and inland wetlands vs. num-
ber of erroneous training samples. Specifically, we gradually
increased the “contaminated” samples by randomly altering
the label of a certain percentage of training samples in steps
of 0.01 and then used these “contaminated” samples to build
the RF classification model. After repeating the process 100
times, the quantitative relationship between mapping accu-
racies and erroneous samples is illustrated in Fig. 7. Obvi-
ously, the overall accuracy and producer accuracy of wet-
lands (merging seven sub-categories into one wetland) were
insensitive to the erroneous training samples when the per-
centage of erroneous samples was controlled within 20 %.
Beyond this threshold, the accuracies slowly decreased along
with the increase in erroneous training samples. Similarly,
previous studies by Zhang et al. (2021b, 2022) quantitatively
analyzed the relationship between overall accuracy and the
erroneous training sample size. They found that the overall
accuracy stabilized when the percentage of erroneous train-
ing samples was controlled within the threshold and then
rapidly decreased after exceeding the threshold. Therefore,
the derived training samples in Sect. 3 were accurate enough
to support large-area fine wetland mapping.

5.2 The importance of multi-sourced phenological
features for wetland mapping

The complicated temporal dynamics and spectral hetero-
geneity caused great uncertainties in wetland mapping be-

cause their spectral characteristics quickly changed with the
seasonal or daily water levels of the underlying surface (Lud-
wig et al., 2019). To quantitatively analyze the importance
of these multi-sourced and multi-temporal features, we used
the random forest classification model, which calculated the
increased mean squared error by permuting the out-of-bag
data of a variable while keeping the remaining variables con-
stant (Breiman, 2001; Zhang et al., 2020) in an effort to com-
pute their importance. Figure 8 illustrates the importance of
all multi-sourced and phenological features, and it can be
found that the phenological features which made the most
significant contribution mainly did so because they used the
multi-temporal percentiles to comprehensively capture vege-
tation phenology (EVI and NDVI) and water-level dynamics
(NDWI and LSWI) for the various land-cover types. Then,
the combination of optical and Sentinel-1 SAR water-level
features was ranked as the second-most-important role in dis-
tinguishing the fine wetlands and non-wetlands. Based on
the lowest- and highest-water-level features in Fig. 4, the
highest- and lowest-water-level features greatly contributed
to determining these water-sensitive wetlands (marsh, tidal
flat and flooded flat). For example, Z. Zhang et al. (2022)
quantitatively analyzed the contribution of multi-sourced
features to mapping accuracy. They found that importing
water-level features significantly improved the ability to sep-
arate tidal flats from non-wetlands. Lastly, three topograph-
ical variables also contributed to wetland mapping because
the spatial distribution of wetlands had a significant relation-
ship with topography and was mainly distributed in low-lying
areas (Zhu and Gong, 2014).

5.3 The spatial pattern of global wetlands in 2020

Figure 9 illustrates the spatial distributions of our
GWL_FCS30 wetland map and their area statistics in lat-
itudinal and longitudinal directions in 2020. Overall, the
GWL_FCS30 map accurately captured the spatial patterns
of wetlands. It mainly concentrated on the high-latitude areas
in the Northern Hemisphere and the rainforest areas (Congo
Basin and Amazon rainforest in South America). Quantita-
tively, according to the latitudinal statistics, approximately
72.96 % of wetlands were distributed poleward of 40◦ N (a
large number of wetlands are located in Canada and Rus-
sia), and 10.6 % of wetlands were located in equatorial areas,
between 10◦ S–10◦ N, within which the Congo and Ama-
zon rainforest wetlands are located. As for the longitudinal
direction, there were mainly four statistical peak intervals:
120–50◦W (Canada wetlands and Amazon wetlands), 15–
25◦ E (Congo wetlands), 40–55◦ E (the Caspian Sea) and 60–
90◦ E (Russia wetlands). Afterward, to more intuitively un-
derstand the performance of our GWL_FCS30 wetland map,
four local enlargements in Florida, the Congo Basin, Sun-
darbans and Poyang Lake were also illustrated. All of them
comprehensively captured the wetland patterns in these lo-
cal areas. For example, there was significant consistency be-
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Figure 6. The spatial distribution of 25 709 global wetland validation samples using the stratified sampling strategy.

Figure 7. The relationship between mapping accuracies with the percentage of erroneous training samples with a step of 1 %.

tween our results and Hansen’s regional wetland maps in
the Congo Basin (Bwangoy et al., 2010); both results in-
dicated that the wetlands occurred closer to major rivers
and floodplains. Next, according to the lowest- and highest-
water-level features derived from Sentinel-1 SAR and Land-
sat optical imagery in Fig. 4, the inland wetlands, varied
with the water levels, were also comprehensively identified
in the Poyang wetland map (Fig. 9d). Figure 9c illustrates
the spatial distributions of the world’s largest mangrove for-
est in the Sundarbans (Fig. 9c), and the cross-comparison
in Fig. 14 also demonstrates the great performance of the
GWL_FCS30 dataset. Lastly, the Florida wetlands simulta-
neously contained six sub-categories (mangrove, tidal flat,
salt marsh, marsh, permanent water and swamp). These were
distributed along the coastlines and rivers and are accurately
captured in Fig. 9a.

Figure 10 illustrates the spatial distribution of eight wet-
land sub-categories after aggregating to the 0.5◦× 0.5◦ grid
cell. Intuitively, permanent waterbody, swamp and marsh ac-
counted for most inland wetlands, while the flooded tidal
and inland saline wetlands had obviously lower proportions,
and the latter was only distributed along the surroundings
of several saline lakes. In terms of the spatial distribution,
it can be found that (1) the swamp wetlands mainly were
concentrated in the Congo and Amazon rainforests, south-
ern United States, and northern Canada; (2) most marsh wet-
lands were located in high-latitude areas in the Northern
Hemisphere including northern Canada, Russia and Sweden;
and (3) there were significant coexistent relationships be-
tween flooded flat, permanent water, swamp and marsh wet-
lands. Then, as for three coastal tidal wetlands, the mangrove
forests were only found in coastal areas below 30◦ N and
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Figure 8. The importance of multi-sourced and multi-temporal features derived from the random forest classification model.

were mainly concentrated in regions between 30◦ N–30◦ S,
including Southeast Asia, West Africa and the east coast of
South America. The salt marshes and tidal flats shared sim-
ilar spatial distributions. They were widely distributed glob-
ally and can be observed along most coastlines. In addition,
the tidal flat distributions were closely related to the slope
of coastlines, tidal ranges and sediment inflows. For exam-
ple, the tidal flats in Asia and Europe usually were located in
the tide-dominated estuaries and deltas. Similarly, Murray et
al. (2019) also demonstrated that there were often more tidal
flats where the river flowed into the sea.

To quantitatively summarize the distribution of the eight
wetland sub-categories, the total area and area percentages
of eight fine wetland sub-categories over each continent are
calculated in Fig. 11 and Table 4. The total wetland area
was 6.38 million km2, including 6.03 million km2 of inland
wetlands and 0.35 million km2 of coastal tidal wetlands, and
the distribution of wetlands varied across different conti-
nents. Intuitively, approximately 60 % of coastal tidal wet-
lands (tidal flat, salt marsh and mangrove) and 70 % of per-
manent water, flooded flat and marsh wetlands were dis-
tributed in the Northern Hemisphere, especially on the Asian
and North American continents. Comparatively, more than
85 % of saline wetlands were located in the Southern Hemi-
sphere, especially the Oceanian continent. Then, in terms
of specific wetland sub-categories, most permanent water
was concentrated in the Northern Hemisphere and s espe-
cially in North America (nearly 50 % of the world’s per-
manent waterbodies). The swamp was mainly distributed
on the North American, African and South American con-
tinents, which contained many rainforest wetlands, with cor-
responding swamp areas of 0.39, 0.18 and 0.32 million km2,
respectively. Swamp areas on the Oceanian continent were
the smallest, covering only 6572 km2 mainly because the for-
est cover in Oceania was smaller than on other continents.
The marsh and flooded flats shared similar areal proportions

on all six continents and were mainly concentrated in the
Northern Hemisphere (exceeding 70 %), where many lakes
and rivers were distributed. Next, as the mangrove forests
only covered regions south of 30◦ N and were mostly con-
centrated in tropical regions near the Equator, such as South-
east Asia, East Africa and Central America, this sub-category
was absent on the Europe continent and sparse in Oceania.

5.4 Accuracy assessment of global 30 m fine wetland
map

Using 25 709 global validation samples, the confusion ma-
trix of the novel GMW_FCS30 wetland map was calculated
in Table 5. Overall, our wetland map achieved an overall ac-
curacy of 86.44 % and a kappa coefficient of 0.82 across the
fine wetland classification system. In terms of the producer
and user accuracies, the non-wetlands achieved the highest
producer accuracy of 94.24 % mainly because we combined
pre-existing multi-sourced wetland datasets to determine the
maximum wetland boundary and further used multi-sourced
and time-series imagery to distinguish between wetlands and
non-wetlands. The permanent water achieved the highest
user accuracy of 95.99 % because the permanent water had
unique and stable spectral characteristics, and the training
samples were directly from the JRC_GSW database (Pekel
et al., 2016). Then, as for the coastal tidal wetlands, man-
grove forest and tidal flat achieved higher accuracies than
salt marsh, with producer accuracies of 91.43 % and 88.12 %
and user accuracies of 95.69 % and 94.81 %, respectively.
The salt marsh had a lower producer accuracy of 74.09 %
because its reflectance spectra were affected by both water
levels and vegetation cover with considerable spatiotempo-
ral heterogeneity, and the sparser prior salt marsh products
were adopted. Next, as for inland sub-categories, the swamp
and marsh obviously performed better than the flooded flat,
with producer accuracies of 72.03 % and 78.09 %, respec-
tively. It can be seen that the confusion between swamp and
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Figure 9. The overview of global 30 m fine wetland maps and their area statistics in latitudinal and longitudinal directions in 2020. Four
local enlargements in (a) Florida, (b) Congo Basin, (c) Sundarbans and (d) Poyang Lake are also illustrated.

Table 4. The total wetland area (unit: 104
× km2) of eight wetland sub-categories for six continents and the globe.

Permanent water Swamp Marsh Flooded flat Saline Mangrove Salt marsh Tidal flat

Asia 90.529 13.227 58.229 7.244 1.215 6.636 1.852 5.347
North America 123.754 39.314 45.350 11.867 0.008 2.590 2.619 2.697
Europe 27.111 7.010 22.513 3.601 0.005 0.000 0.717 1.408
Africa 24.214 18.393 14.926 1.318 1.248 3.105 0.688 0.731
South America 18.310 32.337 21.640 5.242 1.888 2.175 0.520 1.238
Oceania 1.330 0.657 6.151 0.233 4.355 1.219 1.094 0.875

Total 285.247 110.938 168.810 29.504 8.719 15.725 7.491 12.296

marsh was the main source of the misclassification error of
swamp and that the marsh was simultaneously confused with
non-wetland, swamp and flooded flat because the spectra of
marsh changed along with the water levels. For example, the
marsh in Poyang Lake, shown in Fig. 4b, was flooded at its
highest water levels. Then, the flooded flat achieved a low
producer accuracy of 65.83 % because it usually coexisted

with the marsh and shared similar spectral characteristics, so
approximately 10.89 % of flooded flat points were labeled as
marsh in our wetland map. The saline wetland was mainly
concentrated along the edge of salt lakes and demonstrated
great performance in our mapping, with producer and user
accuracies of 91.96 % and 91.66 %, respectively.
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Figure 10. The spatial distributions of the eight wetland sub-categories after aggregating them to a resolution of 0.5◦× 0.5◦.

Figure 11. The area proportions of eight wetland sub-categories over each continent.

6 Discussion

6.1 Cross-comparisons with other global wetland maps

To comprehensively understand the performance of the
GWL_FCS30 wetland maps, four existing global wetland
datasets (GLC_FCS30, GlobeLand30, CCI_LC and GLWD),
listed in Table 1, were selected. Figure 12 quantitatively il-
lustrates the total wetland area of five products over each
continent. Specifically, the total wetland area of differ-
ent wetland products varied. The GLWD obviously over-
estimated the wetland area on each continent mainly be-
cause it was derived from the compilation model instead
of actual remote sensing observations (Lehner and Döll,
2004). Namely, the GLWD classified a large amount of non-

wetlands as potential wetlands. The remaining four wet-
land products, derived from the Landsat and PROBE-V re-
mote sensing imagery, shared a total wetland area of 4.128–
7.364 million km2, and our GWL_FCS30 wetland dataset
had a total area of 6.387 million km2 among these datasets.
The CCI LC wetland layer contained the smallest wetland
area of 4.128 million km2, and the estimated area in North
America was profoundly lower than the other datasets mainly
because the CCI LC heavily underestimated the wetland
distribution in Canada after a comparison with the Cana-
dian Wetland Inventory (Amani et al., 2019). Next, the to-
tal wetland area in the GlobeLand30 and GLC_FCS30 wet-
land layer was higher than the developed GWL_FCS30
wetland dataset because some water-level-sensitive non-
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Table 5. The confusion matrix of the global 30 m fine wetland map using 25 709 validation points.

NWT PW SWP MSH FFT SAL MGV SMH TFT Total P.A.

NWT 9950 17 254 224 39 3 12 33 26 10 588 94.24
PW 69 2251 4 15 63 0 0 8 9 2419 93.06
SWP 272 5 2127 452 74 11 3 9 0 2953 72.03
MSH 546 18 135 3218 149 18 2 34 1 4121 78.09
FFT 145 21 26 95 574 3 1 5 2 872 65.83
SAL 26 1 0 43 5 846 0 0 0 921 91.86
MGV 65 4 11 2 2 1 1109 15 3 1213 91.43
SMH 157 15 6 85 9 30 26 998 22 1347 74.09
TFT 78 13 0 11 7 11 6 29 1150 1305 88.12

Total 11 308 2345 2563 4145 922 923 1159 1131 1213 25 709
U.A. 87.99 95.99 82.99 79.56 62.26 91.66 95.69 88.24 94.81

O.A. 86.44
Kappa 0.822

Note: NWT: non-wetlands; PW: permanent water; SWP: swamp; MSH: marsh; FFT: flooded flat; SAL: saline; SMH: salt marsh; MGV:
mangrove forest; TFT: tidal flat; O.A.: overall accuracy; P.A.: producer accuracy; U.A.: user accuracy.

wetlands (such as irrigated cropland) were also captured in
these two datasets.

Figure 13 illustrates the performances of five wetland
products for two typical wetland regions (Poyang Lake in
China and Pantanal wetland in Brazil). The reasons for
choosing these two regions were that the wetlands in Poyang
Lake quickly changed with water levels, and the Pantanal
wetland was the largest wetland in the world. Intuitively, the
GWL_FCS30 wetland maps had the greatest performance
in capturing the spatial patterns of various wetland sub-
categories. Comparatively, the GLC_FCS30 wetland layer
suffered serious underestimation and misclassification prob-
lems in these two regions, which obviously misclassified
many water-sensitive wetlands (swamp and marsh) as wa-
terbodies in Poyang Lake and also missed a large number of
marsh and swamp wetlands in the Pantanal wetland. Zhang
et al. (2021b) also stated that the wetland in GLC_FCS30
suffered from low accuracy because of a lack of enough
wetland samples and multi-sourced wetland-sensitive fea-
tures. Then, the GlobeLand30 wetland layer performed bet-
ter in the Pantanal wetland than in Poyang Lake, which also
obviously misclassified many marsh wetlands as waterbod-
ies in the Poyang Lake mainly because the low-water-level
features were not captured during the development of Glo-
beLand30 (Chen et al., 2015). In addition, the wetland layer
of GlobeLand30 in Pantanal still suffered from the over-
estimation problem, and some non-wetlands in Pantanal Wet-
land Park were mislabeled as wetland, so the wetland layer
in GlobeLand30 only achieved a user accuracy of 74.87 %
(Chen et al., 2015). The CCI LC was highly consistent with
the GWL_FCS30 wetland maps in spatial distribution when
comparing with GLC_FCS30 and Globeland30; however,
details show that the wetlands in the CCI LC were still un-
derestimated in the Poyang Lake wetland and overestimated

in the Pantanal wetland based on the highest- and lowest-
water-level composites. Lastly, the GLWD dataset signifi-
cantly overestimated the wetlands in two regions; namely,
the mapped marsh area was obviously greater than its actual
area, and it also misclassified these water-sensitive wetlands
as waterbodies near Poyang Lake.

Figure 14 illustrates the comparisons between the
GWL_FCS30 map with three widely used global man-
grove forest products (World Atlas of Mangroves, GMW_V3
(Global Mangrove Watch Version3) and USGS Global Dis-
tribution of Mangroves) listed in Table 1 in two typical man-
grove regions (coastal Indonesia and Sundarbans). Overall,
there was great consistency over four mangrove datasets be-
cause the mangrove forest reflected obvious and strong veg-
etation reflectance characteristics and was easier to iden-
tify than other wetland sub-categories. In detail, the Atlas
mangrove dataset suffers from the underestimation problem;
namely, the mangrove area in the Atlas mangrove dataset
was obviously lower than the other three products, especially
in coastal Indonesia (local enlargements). The USGS man-
grove product can comprehensively and accurately capture
the spatial distribution of mangroves over two regions. Still,
it missed small and isolated fragments of mangrove forests in
two regions (green rectangle) based on high-resolution im-
agery. The GMW_V3 dataset was validated to achieve an
overall accuracy of 95.25 %, with user and producer accura-
cies of mangrove forests of 97.5 % and 94.0 %, respectively
(Bunting et al., 2018; Thomas et al., 2017), which shows
the greatest agreement with our GWL_FCS30 maps in these
two regions and enlargements. Using the high-resolution im-
agery, it can be found that GWL_FCS30 and GWM_V3 ac-
curately identified the spatial patterns of mangrove forest in
both regions.
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Figure 12. The total wetland area (unit: million km2) of five global wetland products on six continents.

Figure 15 illustrated the comparisons between the
GWL_FCS30 tidal flat layer with Murray’s tidal flat V1.1
in 2016 (Murray et al., 2019) and the updated Murray’s tidal
flat V1.2 in 2019 (Murray et al., 2022) in two local regions,
and the corresponding highest- and lowest-tidal-level com-
posites are also listed. Overall, three products can compre-
hensively capture the spatial patterns of tidal flats in these
two regions, and GWL_FCS30-2020 and Murray’s tidal flat
V1.2 performed with a higher spatial consistency, while Mur-
ray’s tidal flat V1.1 suffered the obvious omission error in
three typical areas (red rectangles). In detail, we can find that
Murray’s tidal flat products misclassified some coastal ponds
and lakes as tidal flats especially in the first region, while
GWL_FCS30-2020 achieved the best performance and ac-
curately excluded these coastal ponds and lakes. In addition,
GWL_FCS30 also distinguished between the salt marshes
and tidal flats especially in the Yellow River estuary, while
Murray’s tidal flat V1.2 database misclassified a lot of salt
marshes as tidal flats.

6.2 Comparisons with the national wetland products

Using 1835 validation points (from the global validation
points in Sect. 4.3) over the contiguous United States, we
quantitatively assessed the accuracy metrics of NLCD (Na-
tional Land Cover Database) with GWL_FCS30 after merg-
ing the wetland sub-categories into four classes in Table 6.
Overall, GWL_FCS30 achieved a higher performance than
that of the NLCD mainly because a lot of herbaceous wet-
lands were misclassified as open water in the NLCD, so
the user accuracy of herbaceous wetland and producer ac-
curacy of open water in NLCD were lower than those of
GWL_FCS30. Then, as the NWI had a different wetland sys-
tem with the NLCD and GWL_FCS30, we also analyzed the

metrics of the NWI with GWL_FCS30 after merging into
five classes. It can be found that the NWI shared similar per-
formances with GWL_FCS30 on the non-wetlands and ma-
rine wetlands, but the user accuracies of forest wetland and
herbaceous wetland of the NWI were lower than those of
GWL_FCS30 mainly because some non-wetlands and open
water were overestimated as wetland in the NWI. Similarly,
Gage et al. (2020) also demonstrated that the NWI more eas-
ily overestimated the wetland areas.

Figure 16 illustrates the comparisons between our
GWL_FCS30-2020, the NLCD wetland layer and the NWI
in San Francisco and Florida. It should be noted that the
ocean was excluded in GWL_FCS30-2020, while the NLCD
and the NWI still retained it. Overall, three wetland prod-
ucts performed with a great spatial consistency and accu-
rately captured the spatial patterns of wetlands over two re-
gions. From the perspective of the diversity of the wetland
sub-category, GWL_FCS30 and the NWI had obvious advan-
tages over the NLCD, which simply divided the wetlands into
open water, woody wetlands and emergent herbaceous wet-
lands. Afterwards, the NWI had the largest wetland areas in
San Francisco because it included the irrigated cropland (red
color), while the other two datasets excluded irrigated crop-
land. Then, the local enlargement showed that GWL_FCS30
and the NWI also had better performance than the NLCD be-
cause they comprehensively captured the coastal tidal wet-
lands, and our GWL_FCS30 further distinguished between
the tidal flats and salt marshes, which also demonstrated
that GWL_FCS30 performed better than the NWI over the
coastal tidal wetlands. In Florida, the NWI and GWL_FCS30
accurately divided the inland and coastal tidal wetlands, and
GWL_FCS30 further identified the coastal tidal wetlands
as mangrove forest. Meanwhile, the local enlargement also
demonstrated the great consistency of three wetland prod-
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Figure 13. The cross-comparisons between our GWL_FCS30 wetland maps with four existing wetland products: GLC_FCS30 generated
by Zhang et al. (2021b), GlobeLand30 generated by Chen et al. (2015), CCI LC generated by Defourny et al. (2018) and GLWD generated
by Lehner and Döll (2004) at Pantanal and Poyang Lake wetland. The false-color composited Landsat imagery (SWIR1, NIR and red bands)
at the highest and lowest water levels is also illustrated.

ucts. However, it can be found that there was an obvious dif-
ference between GWL_FCS30 and the NWI over the wet-
land categories, in which GWL_FCS30 classified most in-
land wetlands as marshes, while the NWI classified them as
emergent wetlands and forest/shrub wetlands mainly because
of the differences in the definition of the classification system
(GWL_FCS30 defined those low shrubs that grow in fresh-
water as marsh; Table 1).

Table 7 illustrated the accuracy metrics of CLC (CORINE
Land Cover) and GWL_FCS30 after merging the wetland
categories over the European Union area using 1996 vali-
dation points from the global validation points in Sect. 4.3.
Overall, GWL_FCS30 performed better than the CLC, and
the former mainly had fewer commission errors than that of

the CLC for salt marsh and tidal flat. To intuitively under-
stand the overestimation of tidal flat, Fig. 17 illustrates the
comparison between our GWL_FCS30-2020 and the CLC
wetland layer in 2018 over the Nordic Sea, in which mainly
distributed in tidal flats and open water, and these tidal flats
gathered around the coastline. In terms of the specific wet-
land sub-category, it can be found that the CLC database had
a larger tidal flat area than that of GWL_FCS30; however, the
lowest-tidal-level composite from Landsat time-series im-
agery indicated that the CLC overestimated the tidal flats
in the region. For example, the local enlargement showed
that a lot of permanent ocean pixels were wrongly labeled
as tidal flats in CLC and accurately identified as ocean in
GWL_FCS30. The comparison also demonstrated why the
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Figure 14. The cross-comparisons between our GWL_FCS30 wetland maps with three mangrove products (Atlas mangrove developed
by Spalding, 2010; GMW_V3 developed by Bunting et al., 2022; Mangrove USGS developed by Giri et al., 2011) in Sundarbans and
coastal Indonesia. The high-resolution imagery comes from the © Google Earth Engine platform (https://earthengine.google.com; last access:
16 May 2022).

CLC had a low user accuracy of 62.90 % for tidal flat and
producer accuracy of 57.76 % for waterbodies. Then, the lo-
cal enlargement also indicated that the total area of salt marsh
in CLC was lower than that of GWL_FCS30 (green rectan-
gles); namely, some salt marshes were wrongly labeled as
tidal flat and waterbody, so the accuracy metrics in Table 7
showed the user accuracy of salt marsh in CLC was 35.86 %.

6.3 The limitations and prospects of our global fine
wetland map

It should be noted there were still many uncertainties and
limitations to the proposed method and global wetland maps.
First, the proposed method used continuous Landsat re-
flectance and Sentinel-1 SAR imagery to capture various
water-level information. Still, it might fail when the avail-
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Figure 15. The comparisons between the tidal flat of GWL_FCS30 in 2020, Murray’s tidal flat V1.1 in 2016 (Murray et al., 2019) and
Murray’s tidal flat V1.2 in 2019 (Murray et al., 2022) for two local regions. In each case, the highest- and lowest-tidal-level composites,
composited by SWIR1, NIR and red bands, are illustrated.

Table 6. The accuracy metrics of NLCD, NWI and GWL_FCS30 using 1835 validation points over the contiguous United States.

(a) NLCD vs. GWL_FCS30

NWT Open water Woody wetland Emergent herbaceous wetland O.A. Kappa

NLCD
U.A. 96.46 93.98 77.92 61.97

83.58 0.756
P.A. 88.80 53.65 85.96 87.61

NWT PW FFT TFT SWP MGV MSH SMH O.A. Kappa

GWL_FCS30
U.A. 90.55 94.81 69.87 87.61

85.76 0.786
P.A. 85.99 95.52 77.97 88.36

(b) NWI vs. GWL_FCS30

NWT FPD EMD RVR LKE FSSW FEW EMW O.A. Kappa

NWI
U.A. 94.45 94.74 67.58 60.25 85.71

83.49 0.762
P.A. 84.93 63.32 86.62 82.76 91.53

NWT PW SWP MSH TFT MGV SMH TFT O.A. Kappa

GWL_FCS30
U.A. 90.55 94.74 68.96 80.75 90.08

85.23 0.789
P.A. 85.99 95.45 76.76 78.78 94.98

Note: NWT: non-wetlands; PW: permanent water; SWP: swamp; MSH: marsh; FFT: flooded flat; SMH: salt marsh; MGV: mangrove forest; TFT: tidal flat; FPD: freshwater pond;
EMD: estuarine and marine deepwater; RVR: riverine; LKE: lake; FSSW: freshwater forested/shrub wetland; FEW: freshwater emergent wetland; EMW: estuarine and marine
wetland; O.A.: overall accuracy; P.A.: producer accuracy; U.A.: user accuracy.

able Landsat observations were sparse and lacked the aid of
Sentinel-1 SAR data, especially before 2000. Thus, our fu-
ture work would focus on combining a richer multi-sourced
data source, including MODIS, Sentinel-2, SPOT and PAL-
SAR imagery, to develop a more robust wetland mapping
method. For example, Chen et al. (2018) integrated Landsat
and MODIS observations to successfully monitor the wet-
land dynamics from 2000 to 2014 using a spatiotemporal
adaptive fusion model. Then, in this study, we combined
the multi-sourced wetland products and their practical use
for ecosystem management to define a fine wetland clas-

sification system containing eight sub-categories; however,
there are still many wetland sub-categories, such as submer-
gent vegetation (Nymphaea), groundwater-dependent wet-
lands (karst and cave systems) and seagrass beds (Richardson
et al., 2022), that cannot be captured because remote sensing
observations usually had poor performance on penetrating
waterbodies and then capturing underwater characteristics,
and there was currently no prior dataset for global underwa-
ter wetlands. Meanwhile, some coastal swamps (except for
mangrove), which were usually overlooked in most coastal
wetland mapping (Murray et al., 2022; Z. Zhang et al., 2022),
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Figure 16. The comparisons between GWL_FCS30 in 2020, National Land Cover Database (NLCD) wetland layer (Homer et al., 2020)
and National Wetlands Inventory (NWI, https://www.fws.gov/program/national-wetlands-inventory, last access: 12 November 2022) in San
Francisco and Florida. The high-resolution imagery comes from the © Google Earth Engine platform (https://earthengine.google.com; last
access: 12 November 2022).

Table 7. The accuracy metrics between CLC and GWL_FCS30 after merging the wetland categories.

CLC NWT WC WB CL ET SO Peat bogs and inland marshes SMH TFT O.A. Kappa

U.A. 92.94 94.81 68.63 35.86 62.90
80.75 0.706

P.A. 82.80 57.76 83.93 91.23 75.00

NWT PW SWP MSH FFT SMH TFT O.A. Kappa

GWL_FCS30
U.A. 91.22 88.02 80.98 86.21 94.35

88.10 0.816
P.A. 88.54 97.69 80.82 91.91 97.50

Note: NWT: non-wetlands; WC: water courses; WB: waterbodies; CL: coastal lagoons; ET: estuaries; SO: sea and ocean; PW: permanent water; SWP: swamp; MSH: marsh;
FFT: flooded flat; SAL: saline; SMH: salt marsh; MGV: mangrove forest; TFT: tidal flat; O.A.: overall accuracy; P.A.: producer accuracy; U.A.: user accuracy.

were also missed in GWL_FCS30 mainly because there are
no global or large-area coastal swamp datasets that can be
imported, and the coastal swamp is also sparser than the man-
grove forest in the low and middle latitudes. So, our further
work will pay more attention to combine multi-sourced aux-
iliary datasets, such as hydrological, bathymetric and climate
data, to map these special wetland sub-categories in a tar-
geted manner.

We combined the pre-existing global wetland products to
derive the training samples and maximum extents; however,
the salt marsh and saline samples still used the visual in-
terpretation method to ensure their reliability because of a
lack of sufficient pre-existing global products. Additionally,
it was found that the producer accuracy of salt marsh and
saline in Table 4 was relatively poor compared with other
sub-categories mainly because visual interpretation cannot
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Figure 17. The comparisons between GWL_FCS30 and CORINE Land Cover (CLC) wetland layer in 2018 (https://land.copernicus.eu/
pan-european/corine-land-cover/clc2018?tab=metadata, last access: 22 November 2022). The lowest-tidal-level Landsat composite, com-
posited by NIR, red and green bands, is illustrated.

provide massive and geographically distributed salt marsh
and saline training samples. Namely, this study cannot com-
prehensively capture the regional adaptive reflectance char-
acteristics of salt marsh and saline. Fortunately, many stud-
ies have built expert knowledge of these sub-categories over
recent years. For example Mao et al. (2020) combined multi-
scale segmentation, multiple normalized indices and rule-
based classification methods to develop a wetland map of
China with an overall classification accuracy of 95.1 %. Sim-
ilarly, Wang et al. (2020) used the four widely used spectral
indices to successfully identify three sub-categories within
coastal tidal wetlands. Thus, our further work should focus
more effort on the spectral characteristics of salt marsh and
saline wetlands and build expert knowledge of them for au-
tomatically deriving their training samples.

In addition, we used the derived maximum extents as the
boundary for identifying inland and coastal tidal wetlands;
in other words, we assumed that the derived maximum ex-
tents contained all inland and coastal tidal wetlands with
zero omission error. Actually, the inland maximum extents
in Eq. (3) fulfilled the assumption of zero omission error be-
cause the GLWD and TROP-SUBTROP products, produced
by the compilation and model simulation method (Gum-
bricht, 2015; Lehner and Döll, 2004), can capture most wet-
land areas at the expense of a higher commission error. For
example, Fig. 13 illustrates the cross-comparisons between
our GWL_FCS30 wetland maps and four existing wetland
products, and the GLWD obviously overestimated the inland
wetlands. On the other hand, the union of five global wet-
land datasets in Eq. (3) also minimized the omission error of
each dataset for inland wetland sub-categories. Next, as for

the maximum mangrove forest extents (Eq. 1), as the high
producer and user accuracies were achieved by five prior
mangrove products (explained in Sect. 2.2) and the man-
grove time-series products were integrated in order that these
missed mangroves may be complemented by other products
or time-series products, the derived maximum extents can
also be considered as zero omission error and covered almost
all mangrove forests. Recently, Bunting et al. (2022) devel-
oped the newest mangrove products covering 1996–2020, it
can be used as another important prior dataset in our further
works for deriving the maximum mangrove extents. Lastly,
the maximum tidal flat extents, derived from Murray’s time-
series products from 1985–2016 by using the union operation
(Eq. 2), can also contain almost all tidal flats because previ-
ous studies demonstrated that they suffered more commis-
sion errors than omission errors (Jia et al., 2021; Z. Zhang et
al., 2022). The missed tidal flats would concentrate on these
newly increased tidal flats during 2016–2020; fortunately,
new global tidal flat time-series products during 1999–2019
have been developed (Murray et al., 2022) and can be used
as an important supplement in our further work for deriving
the maximum tidal flat extent with zero omission error.

7 Data availability

The GWL_FCS30 wetland dataset in 2020 is freely available
at https://doi.org/10.5281/zenodo.7340516 (Liu et al., 2022).
It is composed of 961 files of 5◦×5◦ geographical grid tiles,
and each tiled file is stored using the geographical projection
system with a spatial resolution of 30 m in the GeoTIFF for-
mat. The fine wetland sub-category information is labeled as
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0, 180, 181, 182, 183, 184, 185 186 and 187, representing
the non-wetland, permanent water, swamp, marsh, flooded
flat, saline, mangrove forest, salt marsh and tidal flat, respec-
tively. The validation samples are available upon request.

8 Conclusions

Over the past few decades, many global and regional wet-
land products have been developed; however, an accurate
global 30 m wetland dataset, with fine wetland categories
and coverage of both inland and coastal zones, is still lack-
ing. In this study, the Landsat reflectance and Sentinel-1 SAR
time-series imagery, together with the stratified classification
strategy and local adaptive random forest classification algo-
rithm, was successfully integrated to produce the first global
30 m wetland product with a fine classification system in
2020. The wetlands were classified as four inland wetlands
(swamp, marsh, flooded flat and saline) and three coastal
tidal wetlands (mangrove, salt marsh and tidal flat). The pro-
duced wetland dataset, GWL_FCS30, accurately captured
the spatial patterns of seven wetland sub-categories with
an overall accuracy of 86.44 % and a kappa coefficient of
0.822 for the fine wetland classification system with fewer
omission and commission errors compared to other global
products. The quantitative statistical analysis showed that
the global wetland area reached 6.38 million km2, including
6.03 million km2 of inland wetlands and 0.35 million km2 of
coastal tidal wetlands. Approximately 72.96 % of wetlands
were distributed poleward of 40◦ N. Therefore, the proposed
method is suitable for large-area fine wetland mapping, and
the GWL_FCS30 dataset can serve as an accurate wetland
map that could potentially provide vital support for wetland
management.
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