Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-171-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-171-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large freshwater-influx-induced salinity gradient and diagenetic changes in the northern Indian Ocean dominate the stable oxygen isotopic variation in Globigerinoides ruber
Rajeev Saraswat
CORRESPONDING AUTHOR
Micropaleontology Laboratory, Geological Oceanography Division, National Institute of Oceanography, Goa, India
Thejasino Suokhrie
Micropaleontology Laboratory, Geological Oceanography Division, National Institute of Oceanography, Goa, India
Dinesh K. Naik
Department of Geology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
Dharmendra P. Singh
Department of Earth Sciences, Indian Institute of Technology–Roorkee (IIT–Roorkee), Roorkee, Uttarakhand, India
Syed M. Saalim
Antarctic Science Division, National Center for Polar and Ocean Research, Goa, India
Mohd Salman
Micropaleontology Laboratory, Geological Oceanography Division, National Institute of Oceanography, Goa, India
School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, India
Gavendra Kumar
Micropaleontology Laboratory, Geological Oceanography Division, National Institute of Oceanography, Goa, India
School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, India
Sudhira R. Bhadra
Micropaleontology Laboratory, Geological Oceanography Division, National Institute of Oceanography, Goa, India
Mahyar Mohtadi
Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany
Sujata R. Kurtarkar
Micropaleontology Laboratory, Geological Oceanography Division, National Institute of Oceanography, Goa, India
Abhayanand S. Maurya
Department of Earth Sciences, Indian Institute of Technology–Roorkee (IIT–Roorkee), Roorkee, Uttarakhand, India
Related authors
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
D. K. Naik, R. Saraswat, N. Khare, A. C. Pandey, and R. Nigam
Clim. Past, 10, 745–758, https://doi.org/10.5194/cp-10-745-2014, https://doi.org/10.5194/cp-10-745-2014, 2014
Nestor Gaviria-Lugo, Charlotte Läuchli, Hella Wittmann, Anne Bernhardt, Patrick Frings, Mahyar Mohtadi, Oliver Rach, and Dirk Sachse
Biogeosciences, 20, 4433–4453, https://doi.org/10.5194/bg-20-4433-2023, https://doi.org/10.5194/bg-20-4433-2023, 2023
Short summary
Short summary
We analyzed how leaf wax hydrogen isotopes in continental and marine sediments respond to climate along one of the strongest aridity gradients in the world, from hyperarid to humid, along Chile. We found that under extreme aridity, the relationship between hydrogen isotopes in waxes and climate is non-linear, suggesting that we should be careful when reconstructing past hydrological changes using leaf wax hydrogen isotopes so as to avoid overestimating how much the climate has changed.
Raúl Tapia, Sze Ling Ho, Hui-Yu Wang, Jeroen Groeneveld, and Mahyar Mohtadi
Biogeosciences, 19, 3185–3208, https://doi.org/10.5194/bg-19-3185-2022, https://doi.org/10.5194/bg-19-3185-2022, 2022
Short summary
Short summary
We report census counts of planktic foraminifera in depth-stratified plankton net samples off Indonesia. Our results show that the vertical distribution of foraminifera species routinely used in paleoceanographic reconstructions varies in hydrographically distinct regions, likely in response to food availability. Consequently, the thermal gradient based on mixed layer and thermocline dwellers also differs for these regions, suggesting potential implications for paleoceanographic reconstructions.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
D. K. Naik, R. Saraswat, N. Khare, A. C. Pandey, and R. Nigam
Clim. Past, 10, 745–758, https://doi.org/10.5194/cp-10-745-2014, https://doi.org/10.5194/cp-10-745-2014, 2014
Related subject area
Domain: ESSD – Ocean | Subject: Marine geology
Demersal fishery Impacts on Sedimentary Organic Matter (DISOM): a global harmonized database of studies assessing the impacts of demersal fisheries on sediment biogeochemistry
Predictive mapping of organic carbon stocks in surficial sediments of the Canadian continental margin
The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: Contribution of ICESat-2 laser altimetry
SCShores: a comprehensive shoreline dataset of Spanish sandy beaches from a citizen-science monitoring programme
The Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC): version 2.0
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
Graham Epstein, Susanna D. Fuller, Dipti Hingmire, Paul G. Myers, Angelica Peña, Clark Pennelly, and Julia K. Baum
Earth Syst. Sci. Data, 16, 2165–2195, https://doi.org/10.5194/essd-16-2165-2024, https://doi.org/10.5194/essd-16-2165-2024, 2024
Short summary
Short summary
Improved mapping of surficial seabed sediment organic carbon is vital for best-practice marine management. Here, using systematic data review, data unification process and machine learning techniques, the first national predictive maps were produced for Canada at 200 m resolution. We show fine-scale spatial variation of organic carbon across the continental margin and estimate the total standing stock in the top 30 cm of the sediment to be 10.9 Gt.
Zhen Li, Jinyun Guo, Chengcheng Zhu, Xin Liu, Cheinway Hwang, Sergey Lebedev, Xiaotao Chang, Anatoly Soloviev, and Heping Sun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-484, https://doi.org/10.5194/essd-2023-484, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
A new global marine gravity model, SDUST2022GRA, is recovered from radar and laser altimeter data. The accuracy of SDUST2022GRA is 4.43 mGal on a global scale, which is at least 0.22 mGal better than that of others models. The spatial resolution of SDUST2022GRA is approximately 20 km in a certain region, slightly better superior others models. These assessments suggests that SDUST2022GRA is a reliable global marine gravity anomaly model.
Rita González-Villanueva, Jesús Soriano-González, Irene Alejo, Francisco Criado-Sudau, Theocharis Plomaritis, Àngels Fernàndez-Mora, Javier Benavente, Laura Del Río, Miguel Ángel Nombela, and Elena Sánchez-García
Earth Syst. Sci. Data, 15, 4613–4629, https://doi.org/10.5194/essd-15-4613-2023, https://doi.org/10.5194/essd-15-4613-2023, 2023
Short summary
Short summary
Sandy beaches, shaped by tides, waves, and winds, constantly change. Studying these changes is crucial for coastal management, but obtaining detailed shoreline data is difficult and costly. Our paper introduces a unique dataset of high-resolution shorelines from five Spanish beaches collected through the CoastSnap citizen-science program. With 1721 shorelines, our dataset provides valuable information for coastal studies.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Cited articles
Achyuthan, H., Deshpande, R. D., Rao, M. S., Kumar, B., Nallathambi, T.,
Shashi Kumar, K., Ramesh, R., Ramachandran, P., Maurya, A. S., and Gupta,
S. K.: Stable isotopes and salinity in the surface waters of the Bay of
Bengal: Implications for water dynamics and palaeoclimate, Mar. Chem., 149,
51–62, 2013.
Anderson, D. M.: Attenuation of millennial-scale events by bioturbation in
marine sediments, Paleoceanography, 16, 352–357, 2001.
Bé, A. W. H. and Hutson, W. H.: Ecology of planktonic foraminifera and
biogeographic patterns of life and fossil assemblages in the Indian Ocean,
Micropaleontology, 23, 369–414, 1977.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
oxygen isotopic composition of planktonic foraminifera: Experimental results
and revised paleotemperature equations, Paleoceanography, 13, 150–160, 1998.
Berger, W. H.: Sedimentation of planktonic foraminifera, Mar. Geol., 11,
325–358, 1971.
Berger, W. H. and Gardner, J. V.: On the determination of Pleistocene temperatures from planktonic foraminifera, J. Foram. Res. 5, 102–113, 1975.
Berger, W. H. and Killingley, J. S.: Glacial-Holocene transition in deep-sea
carbonates: selective dissolution and the stable isotope signal, Science,
197, 563–566, 1977.
Bhadra, S. R. and Saraswat, R.: Assessing the effect of riverine discharge
on planktic foraminifera: A case study from the marginal marine regions of
the western Bay of Bengal, Deep-Sea Res. Pt. II, 183,
104927, https://doi.org/10.1016/j.dsr2.2021.104927, 2021.
Bhattacharya, S. K., Gupta, S. K., and Krishnamurthy, R. V.: Oxygen and hydrogen
isotopic ratios in ground waters and river waters from India, Proc. Indian
Acad. Sci. (Earth Planet. Sci.), 94, 283–295, 1985.
Bhonsale, S. and Saraswat, R.: Abundance and size variation of
Globorotalia menardii in the northeastern Indian Ocean during the late Quaternary, J. Geol. Soc.
India, 80, 771–782, 2012.
Bijma, J., Spero, H. J., and Lea, D. W.: Reassessing foraminiferal stable
isotope geochemistry: Impact of the oceanic carbonate system (experimental
results), in: Use of Proxies in
Paleoceanography: Examples from the South Atlantic, edited by: Fischer, G. and Wefer, G., Springer, Berlin, pp.
489–512, 1999.
Bonneau, M.-C., Vergnaud-Grazzini, C., and Berger, W. H.: Stable isotope
fractionation and differential dissolution in Recent planktonic foraminifera
from Pacific box-cores, Oceanol. Ac., 3, 377–382, 1980.
Boyer, T. P., Antonov, J. I., Baranova, O. K., Garcia, H. E., Johnson, D.
R., Mishonov, A. V., O'Brien, T. D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., and Zweng, M. M.: edited by: Levitus, S., and Mishonov, A.: NOAA Atlas NESDIS 72, World Ocean Database, 209 pp., https://doi.org/10.7289/V5NZ85MT, 2013.
Bristow, L. A., Callbeck, C. M., Larsen, M., Altabet, M. A., Dekaezemacker, J.,
Forth, M., Gauns, M., Glud, R. N., Kuypers, M. M. M., Lavik, G., Milucka, J.,
Naqvi, S. W. A., Pratihary, A., Revsbech, N. P., Thamdrup, B., Treusch, A. H.,
and Canfield, D. E.: N2 production rates limited by nitrite
availability in the Bay of Bengal oxygen minimum zone, Nat. Geosci., 10,
24–29, 2017.
Broecker, W. S.: Oxygen isotope constraints on surface ocean temperatures,
Quat. Res., 26, 121–134, https://doi.org/10.1016/0033-5894(86)90087-6,
1986.
Chaitanya, A. V. S., Lengaigne, M., Vialard, J., Gopalakrishna, V. V., Durand,
F., Kranthikumar, C., Amritash, S., Suneel, V., Papa, F., and Ravichandran,
M.: Salinity measurements collected by fishermen reveal a “river in the
sea” flowing along the eastern coast of India, B. Am Meteorol. Soc.,
95, 1897–1908, 2014.
Chakraborty, K., Valsala, V., Bhattacharya, T., and Ghosh, J.: Seasonal
cycle of surface ocean pCO2 and pH in the northern Indian Ocean and
their controlling factors, Progr. Oceanogra., 198, 102683, https://doi.org/10.1016/j.pocean.2021.102683, 2021.
Chatterjee, A., Kumar, B. P., Prakash, S., and Singh, P.: Annihilation of the
Somali upwelling system during summer monsoon, Sci. Rep.-UK, 9, 1–14, 2019.
Dämmer, L. K., de Nooijer, L., van Sebille, E., Haak, J. G., and Reichart, G.-J.: Evaluation of oxygen isotopes and trace elements in planktonic foraminifera from the Mediterranean Sea as recorders of seawater oxygen isotopes and salinity, Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, 2020.
De Deckker, P.: The Indo-Pacific Warm Pool: critical to world oceanography
and world climate, Geosci. Lett., 3, 20, https://doi.org/10.1186/s40562-016-0054-3, 2016.
Delaygue, G., Jouzel, J., and Dutay, J. C.: Oxygen 18–salinity relationship
simulated by an oceanic general circulation model, Earth Planet. Sc. Lett.,
178, 113–123, 2000.
Delaygue, G., Bard, E., Rollion, C., Jouzel, J., Stievenard, M., and
Duplessy, J.-C.: Oxygen isotope/salinity relationship in the northern Indian
Ocean, J. Geophys. Res., 106, 4565–4574, 2001.
Duplessy, J. C.: Glacial to interglacial contrasts in the northern Indian
Ocean, Nature, 295, 494–498, 1982.
Duplessy, J. C., Bé, A. W. H., and Blanc, P. L.: Oxygen and carbon isotopic
composition and biogeographic distribution of planktonic foraminifera in the
Indian Ocean, Palaeogeogr. Palaeocl., 33, 9–46, 1981a.
Duplessy, J. C., Blanc, P. L., and Bé, A. W. H.: Oxygen-18 enrichment of
planktonic foraminifera due to gametogenic calcification below the euphotic
zone, Science, 213, 1247–1250, 1981b.
Emiliani, C.: Depth habitat of some species of pelagic foraminifera as
indicated by oxygen isotope ratio, Am. J. Sci., 252, 149–158, 1954.
Fairbanks, R. G. and Wiebe, P. H.: Foraminifera and chlorophyll maximum:
vertical distribution, seasonal succession, and paleoceanographic
significance, Science, 209, 1524–1526,
https://doi.org/10.1126/science.209.4464.1524, 1980.
Farmer, E. C., Kaplan, A., de Menocal, P. B., and Lynch-Stieglitz, J.: Corroborating ecological depth preferences of planktonic foraminifera in the tropical Atlantic with the stable oxygen isotope ratios of core top specimens, Paleoceanography, 22, PA3205, https://doi.org/10.1029/2006PA001361, 2007.
Fraile, I., Schulz, M., Mulitza, S., and Kucera, M.: Predicting the global distribution of planktonic foraminifera using a dynamic ecosystem model, Biogeosciences, 5, 891–911, https://doi.org/10.5194/bg-5-891-2008, 2008.
Ganssen, G. and Kroon, D.: Evidence for Red Sea surface water circulation
from oxygen isotopes of modern surface waters and planktonic foraminiferal
tests, Paleoceanography, 6, 73–82, 1991.
Gerino, M., Aller, R. C., Lee, C., Cochran, J. K., Aller, J. Y., Green, M. A.,
and Hirschberg, D.: Comparison of different tracers and methods used to
quantify bioturbation during a spring bloom: 234-Thorium, luminophores and
chlorophyll a, Estuarine Coast. Shelf Sci., 46, 531–547, 1998.
Guptha, M. V. S., Curry, W. B., Ittekkot, V., and Muralinath, A. S.: Seasonal
variation in the flux of planktic foraminifera: Sediment trap results from
the Bay of Bengal, northern Indian Ocean, J. Foraminiferal Res., 27, 5–19,
1997.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern Planktonic
Foraminifera, Springer-Verlag, New York, https://doi.org/10.1007/978-1-4612-3544-6, 1989.
Hollstein, M., Mohtadi, M., Rosenthal, Y., Moffa Sanchez, P., Oppo, D.,
Martínez Méndez, G., Steinke, S., and Hebbeln, D.: Stable oxygen
isotopes and Mg/Ca in planktic foraminifera from modern surface sediments of
the Western Pacific Warm Pool: Implications for thermocline reconstructions,
Paleoceanography, 32, 1174–1194, 2017.
Horikawa, K., Kodaira, T., Zhang, J., and Murayama, M.: δ18Osw estimate for Globigerinoides ruber from core-top sediments in the East China
Sea, Progr. Earth Planet. Sci., 2, 19, https://doi.org/10.1186/s40645-015-0048-3, 2015.
Howden, S. D. and Murtugudde, R.: Effects of river inputs into the Bay of
Bengal, J. Geophys. Res., 106, 19825–19844, 2001.
Hut, G.: Consultants group meeting on stable isotope reference samples for
geochemical and hydrological investigations, Report to the Director General,
International Atomic Energy Agency, Vienna, 42 pp., 1987.
Jørgensen, B. B., Erez, J., Revsbech, P., and Cohen, Y.: Symbiotic
photosynthesis in a planktonic foraminiferan, Globigerinoides sacculifer (Brady), studied with
microelectrodes, Limnol. Oceanogr., 30, 1253–1267, 1985.
Joseph, S. and Freeland, H. J.: Salinity variability in the Arabian Sea,
Geophys. Res. Lett., 32, L09607, https://doi.org/10.1029/2005GL022972, 2005.
Kallel, N., Paterne, M., Duplessy, J., Vergnaudgrazzini, C., Pujol, C.,
Labeyrie, L., Arnold, M., Fontugne, M., and Pierre, C.: Enhanced rainfall in
the Mediterranean region during the last Sapropel Event, Oceanol. Ac.,
20, 697–712, 1997.
Kathayat, G., Sinha, A., Tanoue, M., Yoshimura, K., Li, H., Zhang, H., and
Cheng, H.: Interannual oxygen isotope variability in Indian summer monsoon
precipitation reflects changes in moisture sources, Comm. Earth Environ., 2,
96, https://doi.org/10.1038/s43247-021-00165-z, 2021.
Kemle-von-Mücke, S. and Hemleben, C.: Planktic Foraminifera, in: South Atlantic zooplankton, edited by:
Boltovskoy, E., Backhuys Publishers, Leiden,
43–67, 1999.
Kessarkar, P. M., Purnachadra Rao, V., Naqvi, S. W. A., and Karapurkar, S. G.:
Variation in the Indian summer monsoon intensity during the
Bølling-Ållerød and Holocene, Paleoceanography, 28, 413–425, 2013.
Kroon, D. and Ganssen, G.: Northern Indian Ocean upwelling cells and the
stable isotope composition of living planktonic foraminifers, Deep-Sea Res.,
36, 1219–1236, 1989.
Kumar, B., Rai, S. P., Saravana Kumar, U., Verma, S. K., Garg, P., Vijaya
Kumar, S. V., Jaiswal, R., Purendra, B. K., Kumar, S. R., and Pande, N. G.: Isotopic
characteristics of Indian precipitation, Water Resource Res., 46, W12548, https://doi.org/10.1029/2009WR008532,
2010.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and
global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl.
Acad. Sci. USA, 111, 15296–15303, 2014.
Lea, D. W.: Elemental and isotopic proxies of past ocean temperatures,
Treatise Geochem., 8, 373–397, 2014.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M.
M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R., and
Smolyar, I.: World Ocean Atlas 2018, Volume 1: Temperature, edited by: Mishonov, A., NOAA Atlas NESDIS 81, 52 pp., 2018.
Lohmann, G. P.: A model for variation in the chemistry of planktonic
foraminifera due to secondary calcification and selective dissolution,
Paleoceanography, 10, 445–457, 1995.
Löwemark, L. and Grootes, P. M.: Large age differences between planktic
foraminifers caused by abundance variations and Zoophycos bioturbation,
Paleoceanography, 19, PA2001, https://doi.org/10.1029/2003PA000949, 2004.
Löwemark, L., Hong, W.-L., Yui, T.-F., and Hung, G.-W.: A test of
different factors influencing the isotopic signal of planktonic foraminifera
in surface sediments from the northern South China Sea, Mar. Micropaleontol.,
55, 49–62, 2005.
Madhu, N. V., Jyothibabu, R., Maheswaran, P. A., Gerson, V. J., Gopalakrishnan,
T. C., and Nair, K. K. C.: Lack of seasonality in phytoplankton standing stock
(chlorophyll a) and production in the western Bay of Bengal, Cont. Shelf
Res., 26, 1868–1883, 2006.
Madhupratap, M., Kumar, S. P., Bhattathiri, P. M. A., Kumar, M. D., Raghukumar, S., Nair,
K. K. C., and Ramaiah, N.: Mechanism of the biological response to winter
cooling in the northeastern Arabian Sea, Nature, 384, 549–552, 1996.
Mahesh, B. S. and Banakar, V. K.: Change in the intensity of low-salinity
water inflow from the Bay of Bengal into the Eastern Arabian Sea from the
Last Glacial Maximum to the Holocene: Implications for monsoon variations,
Palaeogeogr. Palaeocl., 397, 31–37, 2014.
McCorkle, D. C., Martin, P. A., Lea, D. W., and Klinkhammer, G. P.: Evidence
of a dissolution effect on benthic foraminiferal shell chemistry: δ13C, , , and results from the Ontong Java Plateau,
Paleoceanography, 10, 699–714, 1997.
Metcalfe, B., Feldmeijer, W., and Ganssen, G. M.: Oxygen isotope variability
of planktonic foraminifera provide clues to past upper ocean seasonal
variability, Paleoceanogr. Paleocl., 34, 374–393, 2019.
Mohtadi, M., Oppo, D. W., Lückge, A., DePol-Holz, R., Steinke, S.,
Groeneveld, J., Hemme, N., and Hebbeln, D.: Reconstructing the thermal
structure of the upper ocean: Insights from planktic foraminifera shell
chemistry and alkenones in modern sediments of the tropical eastern Indian
Ocean, Paleoceanography, 26, PA3219, https://doi.org/10.1029/2011PA002132, 2011.
Mulitza, S., Dürkoop, A., Hale, W., Wefer, G., and
Niebler, H. S.: Planktonic foraminifera as recorders of past surface-water
stratification, Geology, 25, 335–338, 1997.
Mulitza, S., Wolff, T., Pätzold, J., Hale, W., and Wefer, G.:
Temperature sensitivity of planktic foraminifera and its influence on the
oxygen isotope record, Mar. Micropaleontol., 33, 223–240, 1998.
Mulitza, S., Boltovskoy, D., Donner, B., Meggers, H., Paul, A., and Wefer,
G.: Temperature:δ18O relationships of planktonic foraminifera
collected from surface waters, Palaeogeogr. Palaeocl.,
202, 143–152, 2003.
Naqvi, S. W. A.: Deoxygenation in marginal seas of the Indian Ocean, Front.
Mar. Sci., 8, 624322, https://doi.org/10.3389/fmars.2021.624322, 2021.
Naqvi, S. W. A., Naik, H., Pratihary, A., D'Souza, W., Narvekar, P. V., Jayakumar, D. A., Devol, A. H., Yoshinari, T., and Saino, T.: Coastal versus open-ocean denitrification in the Arabian Sea, Biogeosciences, 3, 621–633, https://doi.org/10.5194/bg-3-621-2006, 2006.
Narvekar, J. and Prasanna Kumar, S.: Mixed layer variability and chlorophyll a biomass in the Bay of Bengal, Biogeosciences, 11, 3819–3843, https://doi.org/10.5194/bg-11-3819-2014, 2014.
Panchang, R. and Nigam, R.: High resolution climatic records of the
past ∼489 years from Central Asia as derived from benthic
foraminiferal species, Asterorotalia trispinosa, Mar. Geol., 307, 88–104, 2012.
Pearson, P. N.: Oxygen isotopes in foraminifera: Overview and historical
review, in: Reconstructing Earth's Deep-Time Climate – The State of the Art
in 2012, Paleontological Society Short Course, 3 November 2012, The
Paleontological Society Papers, vol. 18, edited by: Ivany, L. C. and Huber, B. T., 1–38, 2012.
Prasanna Kumar, S. and Prasad, T. G.: Formation and spreading of Arabian Sea
high-salinity water mass, J. Geophys. Res.-Oceans, 104, 1455–1464, 1999.
Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, D. S., De
Souza, S. N., Gauns, M., Ramaiah, N., and Madhupratap, M.: Are eddies nature's trigger
to enhance biological productivity in the Bay of Bengal?, Geophys. Res.
Lett., 31, L07309, https://doi.org/10.1029/2003GL019274, 2004.
Prasanna Kumar, S., Narvekar, J., Nuncio, M., Gauns, M., and Sardesai, S.: What
drives the biological productivity of the northern Indian Ocean?, Washington
D.C. American Geophysical Union Geophysical Monograph Series, 185, 33–56,
2009.
Prasanna Kumar, S., Narvekar, J., Nuncio, M., Kumar, A., Ramaiah, N.,
Sardesai, S., Gauns, M., Fernandes, V., and Paul J.: Is the biological
productivity in the Bay of Bengal light limited?, Curr. Sci., 98, 1331–1339,
2010.
Prell, W. L. and Curry, W. B.: Faunal and isotopic indices of monsoonal
upwelling: Western Arabian Sea, Oceanol. Ac., 4, 91–98, 1981.
Qasim, S. Z.: Biological productivity of the Indian Ocean, Indian J. Mar.
Sci., 6, 122–137, 1977.
Rai, S. P., Noble, J., Singh, D., Rawat, Y. S., and Kumar, B.: Spatiotemporal
variability in stable isotopes of the Ganga River and factors affecting
their distributions, Catena, 204, 105360, https://doi.org/10.1016/j.catena.2021.105360, 2021.
Ramaswamy, V., Gaye, B., Shirodkar, P. V., Rao, P. S., Chivas, A. R., Wheeler,
D., and Thwin, S.: Distribution and sources of organic carbon, nitrogen and
their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy)
continental shelf, northern Andaman Sea, Mar. Chem., 111, 137–150, 2008.
Ramesh, R. and Sarin, M. M.: Stable isotope study of the Ganga (Ganges) river
system, J. Hydrology, 139, 49–62, 1992.
Rao, R. R. and Sivakumar, R.: Seasonal variability of sea surface salinity
and salt budget of the mixed layer of the northIndian Ocean, J. Geophys.
Res., 108, 3009, https://doi.org/10.1029/2001JC000907, 2003.
Rixen, T., Cowie, G., Gaye, B., Goes, J., do Rosário Gomes, H., Hood, R. R., Lachkar, Z., Schmidt, H., Segschneider, J., and Singh, A.: Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean, Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, 2020.
Rochford, D. J.: Salinity maximum in the upper 100 meters of the north
Indian Ocean, Aust. J. Mar. Freshwater Res., 15, 1–24, 1964.
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R.: Isotopic
Patterns in Modern Global Precipitation, in: Climate Change in Continental
Isotopic Records, edited by: Swart, P. K., Lohmann, K. C., Mckenzie, J., and
Savin, S., American Geophysical Union, Washington, D.C., 1–36,
https://doi.org/10.1029/GM078p0001, 1993.
Saalim, S. M., Saraswat, R., and Nigam, R.: Ecological preferences of living
benthic foraminifera from the Mahanadi river-dominated north-western Bay of
Bengal: A potential environmental impact assessment tool, Mar. Poll. Bull.,
175, 113158, https://doi.org/10.1016/j.marpolbul.2021.113158, 2022.
Sánchez, A., Sánchez-Vargas, L., Balart, E., and
Domínguez-Samalea, Y.: Stable oxygen isotopes in planktonic
foraminifera from surface sediments in the California Current system, Mar.
Micropaleontol., 173, 102127, https://doi.org/10.1016/j.marmicro.2022.102127, 2022.
Saraswat, R., Nigam, R., Mackensen, A., and Weldeab, S.: Linkage between
seasonal insolation gradient in the tropical northern hemisphere and the sea
surface salinity of the equatorial Indian Ocean during the last glacial
period, Acta Geol. Sinica, 86, 801–811, 2012.
Saraswat, R., Lea, D. W., Nigam, R., Mackensen, A., and Naik, D. K.:
Deglaciation in the tropical Indian Ocean driven by interplay between the
regional monsoon and global teleconnections, Earth Planet. Sc. Lett., 375,
166–175, 2013.
Saraswat, R., Singh, D. P., Lea, D. W., Mackensen, A., and Naik, D. K.:
Indonesian throughflow controlled the westward extent of the Indo-Pacific
Warm Pool during glacial-interglacial intervals, Global Planet. Changes, 183,
103031, https://doi.org/10.1016/j.gloplacha.2019.103031, 2019.
Saraswat, R., Suokhrie, T., Naik, D. K., Singh, D. P., Saalim, S. M., Salman,
M., Kumar, G., Bhadra, S. R., Mohtadi, M., Kurtarkar, S. R., and Maurya, A. S.:
Oxygen isotopic ratio of Globigerinoides ruber (white variety) in the surface sediments of the
northern Indian Ocean, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.945401,
2022.
Sarma, V. V. and Aswanikumar, V.: Subsurface chlorophyll maxima in the
north-western Bay of Bengal, J. Plankton Res., 11, 339–352, 1991.
Sarma, V. V. S. S., Chopra, M., Rao, D. N., Priya, M. M. R., Rajula, G. R.,
Lakshmi, D. S. R., and Rao, V. D.: Role of eddies on controlling total and
size-fractionated primary production in the Bay of Bengal, Cont. Shelf Res.,
204, 104186, https://doi.org/10.1016/j.csr.2020.104186, 2020.
Schlitzer, R.: Ocean Data View, https://odv.awi.de (last access: 5 November 2022), 2018.
Schmidt, G. A., Bigg, G. R., and Rohling, E. J.: Global Seawater Oxygen-18
Database – v1.22, https://data.giss.nasa.gov/o18data/ (last access: 30 October 2021), 1999.
Schmidt, M. W., Spero, H. J., and Lea, D. W.: Links between salinity variation
in the Caribbean and North Atlantic thermohaline circulation, Nature, 428,
160–163, 2004.
Schrag, D. P., DePaolo, D. J., Richter, F. M.: Reconstructing past sea surface
temperatures: Correcting for diagenesis of bulk marine carbonate, Geochim.
Cosmochim. Ac., 59, 2265–2278, 1995.
Sengupta, D., Bharath Raj, G. N., and Shenoi, S. S. C.: Surface freshwater from
Bay of Bengal runoff and Indonesian Throughflow in the tropical Indian
Ocean, Geophys. Res. Lett., 33, L22609, https://doi.org/10.1029/2006GL027573, 2006.
Shackleton, N. J.: Oxygen isotopes, ice volume and sea level, Quaternay Sci.
Rev., 6, 183–190, 1987.
Shackleton, N. J.: The 100,000-year Ice-Age cycle identified and found to lag
temperature, carbon dioxide, and orbital eccentricity, Science, 289,
1897–1902, 2000.
Shackleton, N. J. and Vincent, E.: Oxygen and carbon isotope studies in
recent foraminifera from the southwest Indian ocean, Mar. Micropaleontol.,
3, 1–13, https://doi.org/10.1016/0377-8398(78)90008-7, 1978.
Shankar, D., Vinayachandran, P. N., and Unnikrishnan, A. S.: The monsoon
currents in the north Indian Ocean, Progr. Oceanogr., 52, 63–120, 2002.
Shetye, S. R., Shenoi, S. S. C., Gouveia, A. D., Michael, G. S., Sundar, D., and
Nampoothiri, G.: Wind-driven coastal upwelling along the western boundary of
the Bay of Bengal during the southwest monsoon, Cont. Shelf Res., 11,
1397–1408, 1991.
Shetye, S. R., Gouveia, A. D., and Shenoi, S. S. C.: Circulation and water
masses of the Arabian Sea, Proc. Indian Acad. Sci. (Earth Planet. Sci.),
103, 107–123, 1994.
Singh, A., Jani, R. A., and Ramesh, R.: Spatiotemporal variations of the
δ18O–salinity relation in the northern Indian Ocean, Deep-Sea
Res. Pt. I, 57, 1422–1431, 2010.
Singh, D. P., Saraswat, R., and Naik, D. K.: Does glacial-interglacial
transition affect sediment accumulation in monsoon dominated regions?, Acta
Geol. Sinica, 91, 1079–1094, 2017.
Singh, D. P., Saraswat, R., and Nigam, R.: Untangling the effect of organic
matter and dissolved oxygen on living benthic foraminifera in the
southeastern Arabian Sea, Mar. Poll. Bull., 172, 112883, https://doi.org/10.1016/j.marpolbul.2021.112883, 2021.
Sirocko, F.: Zur Akkumulation von Staubsedimenten im nördlichen
Indischen Ozean, Anzeiger der Klimageschichte Arabiens und Indiens.
Dissertation, Berichte-Reports, Geologisch-Paläontologisches Institut
der Universität Kiel, 27, 185 pp., 1989.
Smitha, A., Joseph, K. A., Jayaram, C., and Balchand, A. N.: Upwelling in the
southeastern Arabian Sea as evidenced by Ekman mass transport using wind
observations from OCEANSAT–II Scatterometer, Indian J. Geo-Mar. Sci., 43,
111–116, 2014.
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. B.: Effect of seawater
carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature,
390, 497–500, 1997.
Sridevi, B. and Sarma, V. V. S. S.: A revisit to the regulation of oxygen
minimum zone in the Bay of Bengal, J. Earth Syst. Sci., 129, 1–7, 2020.
Stainbank, S., Kroon, D., Rüggeberg, A., Raddatz, J., de Leau, E. S., Zhang,
M., and Spezzaferri, S.: Controls on planktonic foraminifera apparent calcification
depths for the northern equatorial Indian Ocean, PLoS ONE 14, e0222299, https://doi.org/10.1371/journal.pone.0222299,
2019.
Steph, S., Regenberg, M., Tiedemann, R., Mulitza, S., and Nürnberg, D.: Stable isotopes of planktonic foraminifera from tropical Atlantic/Caribbean coretops: Implications for reconstructing upper ocean stratification, Mar. Micropaleontol., 71, 1–19, 2009.
Suokhrie, T., Saraswat, R., and Nigam, R.: Multiple ecological parameters
affect living benthic foraminifera in the river-influenced west-central Bay
of Bengal, Front. Mar. Sci., 8, 467, https://doi.org/10.3389/fmars.2021.656757, 2021.
Suokhrie, T., Saraswat, R., and Saju, S.: Strong solar influence on
multi-decadal periodic productivity changes in the central-western Bay of
Bengal, Quaternary Int., 629, 16–26, https://doi.org/10.1016/j.quaint.2021.04.015, 2022.
Thirumalai, K., Richey, J. N., Quinn, T. M., and Poore, R. Z.: Globigerinoides ruber morphotypes in
the Gulf of Mexico: A test of null hypothesis, Sci. Rep.-UK, 4, 6018, https://doi.org/10.1038/srep06018, 2014.
Thompson, P. R., Bé, A. W. H., Duplessy, J.-C., and Shackleton, N. J.:
Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific
oceans, Nature, 280, 554–558, 1979.
Thunell, R., Tappa, E., Pride, C., and Kincaid, E.: Sea-surface temperature
anomalies associated with the 1997–1998 El Niño recorded in the oxygen
isotope composition of planktonic foraminifera, Geology, 27, 843,
https://doi.org/10.1130/0091-7613(1999)027<0843:SSTAAW>2.3.CO;2, 1999.
Tiwari, M., Nagoji, S. S., Kartik, T., Drishya, G., Parvathy, R. K., and
Rajan, S.: Oxygen isotope–salinity relationships of discrete oceanic
regions from India to Antarctica vis-à-vis surface hydrological
processes, J. Mar. Syst., 113–114, 88–93, 2013.
Urey, H. C.: The thermodynamic properties of isotopic substances, J. Chem.
Soc., 12, 562–569, 1947.
Vergnaud-Grazzini, C.: Non-equilibrium isotopic compositions of shells of
planktonic foraminifera in the Mediterranean Sea, Palaeogeogr.
Palaeocl., 20, 263–276, 1976.
Vinayachandran, P. N. and Shetye, S. R.: The warm pool in the Indian Ocean,
Proc. Indian Acad. Sci. (Earth Planet Sci.), 100, 165–175, 1991.
Waelbroeck, C., Mulitza, S., Spero, H., Dokken, T., Kiefer, T., and Cortijo,
E.: A global compilation of late Holocene planktonic foraminiferal δ18O: relationship between surface water temperature and δ18O, Quaternay Sci. Rev., 24, 853–868,
https://doi.org/10.1016/j.quascirev.2003.10.014, 2005.
Wang, L., Sarnthein, M., Duplessy, J.-C., Erlenkeuser, H., Jung, S., and
Pflaumann, U.: Paleo sea surface salinities in the low-latitude Atlantic:
The δ18O record of Globigerinoides ruber (white), Paleoceanography, 10, 749–761,
1995.
Weinkauf, M. F. G., Groeneveld, J., Waniek, J. J., Vennemann, T., and Martini, R.: Stable oxygen isotope composition is biased by shell calcification intensity in planktonic foraminifera, Paleoceanogr. Paleocl., 35, e2020PA003941, https://doi.org/10.1029/2020PA003941, 2020.
Wu, G. and Berger, W. H.: Planktonic foraminifera: differential dissolution
and the quaternary stable isotope record in the west equatorial Pacific,
Paleoceanography, 4, 181–198, 1989.
Wycech, J. B., Kelly, D. C., Kitajima, K., Kozdon, R., Orland, I. J., and
Valley, J. W.: Combined effects of gametogenic calcification and dissolution
on δ18O measurements of the planktic foraminifer Trilobatus sacculifer, Geochem.
Geophys. Geosys., 19, 4487–4501, https://doi.org/10.1029/2018GC007908, 2018.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A.,
Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K., Paver, C. R.,
and Smolyar, I.: World Ocean Atlas 2018, Volume 2: Salinity, edited by: Mishonov, A., NOAA Atlas NESDIS 82, 50 pp., 2018.
Short summary
Much effort is made to project monsoon changes by reconstructing the past. The stable oxygen isotopic ratio of marine calcareous organisms is frequently used to reconstruct past monsoons. Here, we use the published and new stable oxygen isotopic data to demonstrate a diagenetic effect and a strong salinity influence on the oxygen isotopic ratio of foraminifera in the northern Indian Ocean. We also provide updated calibration equations to deduce monsoons from the oxygen isotopic ratio.
Much effort is made to project monsoon changes by reconstructing the past. The stable oxygen...
Altmetrics
Final-revised paper
Preprint