Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-651-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-651-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global seamless 1 km resolution daily land surface temperature dataset (2003–2020)
Tao Zhang
Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011, USA
Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011, USA
Zhengyuan Zhu
Department of Statistics, Iowa State University, Ames, IA, 50011, USA
Xiaoma Li
College of Landscape Architecture and Art Design, Hunan Agricultural University, Changsha, Hunan, 410128, China
Ghassem R. Asrar
Universities Space Research Association, Columbia, MD, 21046, USA
Related authors
Tao Zhang, Yuyu Zhou, Kaiguang Zhao, Zhengyuan Zhu, Gang Chen, Jia Hu, and Li Wang
Earth Syst. Sci. Data, 14, 5637–5649, https://doi.org/10.5194/essd-14-5637-2022, https://doi.org/10.5194/essd-14-5637-2022, 2022
Short summary
Short summary
We generated a global 1 km daily maximum and minimum near-surface air temperature (Tmax and Tmin) dataset (2003–2020) using a novel statistical model. The average root mean square errors ranged from 1.20 to 2.44 °C for Tmax and 1.69 to 2.39 °C for Tmin. The gridded global air temperature dataset is of great use in a variety of studies such as the urban heat island phenomenon, hydrological modeling, and epidemic forecasting.
Wanru He, Xuecao Li, Yuyu Zhou, Zitong Shi, Guojiang Yu, Tengyun Hu, Yixuan Wang, Jianxi Huang, Tiecheng Bai, Zhongchang Sun, Xiaoping Liu, and Peng Gong
Earth Syst. Sci. Data, 15, 3623–3639, https://doi.org/10.5194/essd-15-3623-2023, https://doi.org/10.5194/essd-15-3623-2023, 2023
Short summary
Short summary
Most existing global urban products with future projections were developed in urban and non-urban categories, which ignores the gradual change of urban development at the local scale. Using annual global urban extent data from 1985 to 2015, we forecasted global urban fractional changes under eight scenarios throughout 2100. The developed dataset can provide spatially explicit information on urban fractions at 1 km resolution, which helps support various urban studies (e.g., urban heat island).
Zhiqiang Liu, Ning Zeng, Yun Liu, Eugenia Kalnay, Ghassem Asrar, Qixiang Cai, and Pengfei Han
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-15, https://doi.org/10.5194/gmd-2023-15, 2023
Revised manuscript not accepted
Short summary
Short summary
We introduced a novel algorithm that assimilates a better a priori knowledge to improve the estimation of global surface carbon flux. The algorithm aims at separating the first-order systematic biases in the a priori "bottom-up" flux estimations out of the inversion framework from a comprehensive data assimilation perspective.
Tao Zhang, Yuyu Zhou, Kaiguang Zhao, Zhengyuan Zhu, Gang Chen, Jia Hu, and Li Wang
Earth Syst. Sci. Data, 14, 5637–5649, https://doi.org/10.5194/essd-14-5637-2022, https://doi.org/10.5194/essd-14-5637-2022, 2022
Short summary
Short summary
We generated a global 1 km daily maximum and minimum near-surface air temperature (Tmax and Tmin) dataset (2003–2020) using a novel statistical model. The average root mean square errors ranged from 1.20 to 2.44 °C for Tmax and 1.69 to 2.39 °C for Tmin. The gridded global air temperature dataset is of great use in a variety of studies such as the urban heat island phenomenon, hydrological modeling, and epidemic forecasting.
Zhiqiang Liu, Ning Zeng, Yun Liu, Eugenia Kalnay, Ghassem Asrar, Bo Wu, Qixiang Cai, Di Liu, and Pengfei Han
Geosci. Model Dev., 15, 5511–5528, https://doi.org/10.5194/gmd-15-5511-2022, https://doi.org/10.5194/gmd-15-5511-2022, 2022
Short summary
Short summary
We described the application of a constrained ensemble Kalman filter (CEnKF) in a joint CO2 and surface carbon fluxes estimation study. By assimilating the pseudo-surface and OCO-2 observations, the annual global flux estimation is significantly biased without mass conservation. With the additional CEnKF process, the CO2 mass is strictly constrained, and the estimation of annual fluxes is significantly improved.
Min Zhao, Changxiu Cheng, Yuyu Zhou, Xuecao Li, Shi Shen, and Changqing Song
Earth Syst. Sci. Data, 14, 517–534, https://doi.org/10.5194/essd-14-517-2022, https://doi.org/10.5194/essd-14-517-2022, 2022
Short summary
Short summary
We generated a unique dataset of global annual urban extents (1992–2020) using consistent nighttime light observations and analyzed global urban dynamics over the past 3 decades. Evaluations using other urbanization-related ancillary data indicate that the derived urban areas are reliable for characterizing spatial extents associated with intensive human settlement and high-intensity socioeconomic activities. This dataset can provide unique information for studying urbanization and its impacts.
Nirasindhu Desinayak, Anup K. Prasad, Hesham El-Askary, Menas Kafatos, and Ghassem R. Asrar
Ann. Geophys., 40, 67–82, https://doi.org/10.5194/angeo-40-67-2022, https://doi.org/10.5194/angeo-40-67-2022, 2022
Short summary
Short summary
The study presents long-term altitudinal changes and variability (spatial and temporal; during 2000–2017) in the coverage of snow and glaciers in one of the world’s largest mountainous regions, i.e., the Hindu Kush Himalayan (HKH) region. The western zone and high-altitude regions (above 6000 m) show no significant decline in snow cover, whereas the lower-altitude regions (< 6000 m) show a variable but statistically significant decline in snow cover in the central and eastern zones (5 %–15 %).
Zuoqi Chen, Bailang Yu, Chengshu Yang, Yuyu Zhou, Shenjun Yao, Xingjian Qian, Congxiao Wang, Bin Wu, and Jianping Wu
Earth Syst. Sci. Data, 13, 889–906, https://doi.org/10.5194/essd-13-889-2021, https://doi.org/10.5194/essd-13-889-2021, 2021
Short summary
Short summary
An extended time series (2000–2018) of NPP-VIIRS-like nighttime light (NTL) data was proposed through a cross-sensor calibration from DMSP-OLS NTL data (2000–2012) and NPP-VIIRS NTL data (2013–2018). Compared with the annual composited NPP-VIIRS NTL data, our extended NPP-VIIRS-like NTL data have a high accuracy and also show a good spatial pattern and temporal consistency. It could be a useful proxy to monitor the dynamics of urbanization for a longer time period compared to existing NTL data.
Cited articles
Aguilar-Lome, J., Espinoza-Villar, R., Espinoza, J. C., Rojas-Acuña, J., Willems, B. L., and Leyva-Molina, W. M.:
Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000–2017),
Int. J. Appl. Earth Obs. Geoinf.,
77, 119–128, https://doi.org/10.1016/j.jag.2018.12.013, 2019.
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst. Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011.
Bai, L., Long, D., and Yan, L.:
Estimation of Surface Soil Moisture With Downscaled Land Surface Temperatures Using a Data Fusion Approach for Heterogeneous Agricultural Land,
Water Resour. Res.,
55, 1105–1128, https://doi.org/10.1029/2018WR024162, 2019.
Cheng, J., Dong, S., and Shi, J.:
1 km seamless land surface temperature dataset of China (2002-2020),
edited by: Natl. Tibet. Plateau Data Center, https://doi.org/10.11888/Meteoro.tpdc.271657,
National Tibetan Plateau Data Center, 2021.
Choi, Y. Y. and Suh, M. S.:
Development of Himawari-8/Advanced Himawari Imager (AHI) land surface temperature retrieval algorithm,
Remote Sens.-Basel,
10, 1–20, https://doi.org/10.3390/rs10122013, 2013.
Crosson, W. L., Al-Hamdan, M. Z., Hemmings, S. N. J., and Wade, G. M.:
A daily merged MODIS Aqua-Terra land surface temperature data set for the conterminous United States,
Remote Sens. Environ.,
119, 315–324, https://doi.org/10.1016/j.rse.2011.12.019, 2012.
Duan, S. B., Li, Z. L., and Leng, P.:
A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,
Remote Sens. Environ.,
195, 107–117, https://doi.org/10.1016/j.rse.2017.04.008, 2017.
Duguay-Tetzlaff, A., Bento, V. A., Göttsche, F. M., Stöckli, R., Martins, J. P. A., Trigo, I., Olesen, F., Bojanowski, J. S., da Camara, C., and Kunz, H.:
Meteosat land surface temperature climate data record: Achievable accuracy and potential uncertainties,
Remote Sens.-Basel,
7, 13139–13156, https://doi.org/10.3390/rs71013139, 2015.
Fan, X. M., Liu, H. G., Liu, G. H., and Li, S. B.:
Reconstruction of MODIS land-surface temperature in a flat terrain and fragmented landscape,
Int. J. Remote Sens.,
35, 7857–7877, https://doi.org/10.1080/01431161.2014.978036, 2014.
Ford, T. W. and Quiring, S. M.:
Comparison of Contemporary In Situ, Model, and Satellite Remote Sensing Soil Moisture With a Focus on Drought Monitoring,
Water Resour. Res.,
55, 1565–1582, https://doi.org/10.1029/2018WR024039, 2019.
Garcia, D.:
Robust smoothing of gridded data in one and higher dimensions with missing values,
Comput. Stat. Data An.,
54, 1167–1178, https://doi.org/10.1016/j.csda.2009.09.020, 2010.
Garcia, D.:
A fast all-in-one method for automated post-processing of PIV data,
Exp. Fluids,
50, 1247–1259, https://doi.org/10.1007/s00348-010-0985-y, 2011.
Gerber, F., De Jong, R., Schaepman, M. E., Schaepman-Strub, G., and Furrer, R.:
Predicting Missing Values in Spatio-Temporal Remote Sensing Data,
IEEE T. Geosci. Remote,
56, 2841–2853, https://doi.org/10.1109/TGRS.2017.2785240, 2018.
Ghent, D. J., Corlett, G. K., Göttsche, F. M., and Remedios, J. J.:
Global Land Surface Temperature From the Along-Track Scanning Radiometers,
J. Geophys. Res.-Atmos.,
122, 12167–12193, https://doi.org/10.1002/2017JD027161, 2017.
Green, P. J. and Silverman, B. W.:
Nonparametric regression and generalized linear models: a roughness penalty approach,
CRC Press, ISBN 0-412-30040-0, 1994.
Guillevic, P. C., Biard, J. C., Hulley, G. C., Privette, J. L., Hook, S. J., Olioso, A., Göttsche, F. M., Radocinski, R., Román, M. O., Yu, Y., and Csiszar, I.:
Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements,
Remote Sens. Environ.,
154, 19–37, https://doi.org/10.1016/j.rse.2014.08.013, 2014.
Hong, F., Zhan, W., Göttsche, F.-M., Lai, J., Liu, Z., Hu, L., Fu, P., Huang, F., Li, J., Li, H., and Wu, H.:
A simple yet robust framework to estimate accurate daily mean land surface temperature from thermal observations of tandem polar orbiters,
Remote Sens. Environ.,
264, 112612, https://doi.org/10.1016/j.rse.2021.112612, 2021.
Hulley, G. C., Hook, S. J., Abbott, E., Malakar, N., Islam, T., and Abrams, M.:
The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth's emissivity at 100 meter spatial scale,
Geophys. Res. Lett.,
42, 7966–7976, https://doi.org/10.1002/2015GL065564, 2015.
Jia, A., Ma, H., Liang, S., and Wang, D.:
Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface energy balance-based method,
Remote Sens. Environ.,
263, 112566, https://doi.org/10.1016/j.rse.2021.112566, 2021.
Jiang, G. M. and Liu, R.:
Retrieval of sea and land surface temperature from SVISSR/FY-2C/D/E measurements,
IEEE T. Geosci. Remote,
52, 6132–6140, https://doi.org/10.1109/TGRS.2013.2295260, 2014.
Ke, L., Ding, X., and Song, C.:
Reconstruction of time-series modis lst in central qinghai-tibet plateau using geostatistical approach,
IEEE Geosci. Remote S.,
10, 1602–1606, https://doi.org/10.1109/LGRS.2013.2263553, 2013.
Kilibarda, M., Hengl, T., Heuvelink, G. B. M., Gräler, B., Pebesmatadić, E. P., and Bajat, B.:
Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution,
J. Geophys. Res.,
119, 2294–2313, https://doi.org/10.1002/2013JD020803, 2014.
Li, B., Liang, S., Liu, X., Ma, H., Chen, Y., Liang, T., and He, T.:
Estimation of all-sky 1 km land surface temperature over the conterminous United States,
Remote Sens. Environ.,
266, 112707, https://doi.org/10.1016/j.rse.2021.112707, 2021.
Li, H., Zhou, Y., Jia, G., Zhao, K., and Dong, J.:
Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model,
Geosci. Front.,
13, 101141, https://doi.org/10.1016/j.gsf.2021.101141, 2021.
Li, X., Zhou, Y., Asrar, G. R., Mao, J., Li, X., and Li, W.:
Response of vegetation phenology to urbanization in the conterminous United States,
Glob. Change Biol.,
23, 2818–2830, https://doi.org/10.1111/gcb.13562, 2017.
Li, X., Zhou, Y., Asrar, G. R., and Zhu, Z.:
Creating a seamless 1 km resolution daily land surface temperature dataset for urban and surrounding areas in the conterminous United States,
Remote Sens. Environ.,
206, 84–97, https://doi.org/10.1016/j.rse.2017.12.010, 2018a.
Li, X., Zhou, Y., Asrar, G. R., and Zhu, Z.:
Developing a 1 km resolution daily air temperature dataset for urban and surrounding areas in the conterminous United States,
Remote Sens. Environ.,
215, 74–84, https://doi.org/10.1016/j.rse.2018.05.034, 2018b.
Li, X., Gong, P., Zhou, Y., Wang, J., Bai, Y., Chen, B., Hu, T., Xiao, Y., Xu, B., Yang, J., Liu, X., Cai, W., Huang, H., Wu, T., Wang, X., Lin, P., Li, X., Chen, J., He, C., Li, X., Yu, L., Clinton, N., and Zhu, Z.:
Mapping global urban boundaries from the global artificial impervious area (GAIA) data,
Environ. Res. Lett.,
15, 094044, https://doi.org/10.1088/1748-9326/ab9be3, 2020.
Liu, H., Lu, N., Jiang, H., Qin, J., and Yao, L.:
Filling Gaps of Monthly Terra / MODIS Daytime Land Surface Temperature Using Discrete Cosine Transform Method,
Remote Sens.-Basel,
12, 1–16,
https://doi.org/10.3390/rs12030361, 2020.
Liu, X., Zhou, Y., Yue, W., Li, X., Liu, Y., and Lu, D.:
Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature,
J. Clean. Prod.,
257, 120529, https://doi.org/10.1016/j.jclepro.2020.120529, 2020.
Long, D., Yan, L., Bai, L., Zhang, C., Li, X., Lei, H., Yang, H., Tian, F., Zeng, C., Meng, X., and Shi, C.:
Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach,
Remote Sens. Environ.,
246, 111863, https://doi.org/10.1016/j.rse.2020.111863, 2020.
Metz, M., Andreo, V., and Neteler, M.:
A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data,
Remote Sens.-Basel,
9, 1333, https://doi.org/10.3390/rs9121333, 2017.
Parastatidis, D., Mitraka, Z., Chrysoulakis, N., and Abrams, M.:
Online global land surface temperature estimation from landsat,
Remote Sens.-Basel,
9, 1–16, https://doi.org/10.3390/rs9121208, 2017.
Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., Nan, H., Zhou, L., and Myneni, R. B.:
Surface urban heat island across 419 global big cities,
Environ. Sci. Technol.,
46, 696–703, https://doi.org/10.1021/es2030438, 2012.
Peng, S. S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z. X., Myneni, R. B., Yin, Y., and Zeng, H.:
Afforestation in China cools local land surface temperature,
Proc. Natl. Acad. Sci. USA,
111, 2915–2919, https://doi.org/10.1073/pnas.1315126111, 2014.
Pham, H. T., Kim, S., Marshall, L., and Johnson, F.:
Using 3D robust smoothing to fill land surface temperature gaps at the continental scale,
Int. J. Appl. Earth Obs.,
82, 101879, https://doi.org/10.1016/j.jag.2019.05.012, 2019.
Phan, T. N. and Kappas, M.:
Application of MODIS land surface temperature data: a systematic literature review and analysis,
J. Appl. Remote Sens.,
12, 1, https://doi.org/10.1117/1.jrs.12.041501, 2018.
Roy, D. P., Wulder, M. A., Loveland, T. R., C. E., W., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F., Hipple, J. D., Hostert, P., Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee, Z. P., Lymburner, L., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R. H., and Zhu, Z.:
Landsat-8: Science and product vision for terrestrial global change research,
Remote Sens. Environ.,
145, 154–172, https://doi.org/10.1016/j.rse.2014.02.001, 2014.
Sandeep, P., Obi Reddy, G. P., Jegankumar, R., and Arun Kumar, K. C.:
Monitoring of agricultural drought in semi-arid ecosystem of Peninsular India through indices derived from time-series CHIRPS and MODIS datasets,
Ecol. Indic.,
121, 107033, https://doi.org/10.1016/j.ecolind.2020.107033, 2021.
Sheffield, J., Wood, E. F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A., and Verbist, K.:
Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions,
Water Resour. Res.,
54, 9724–9758, https://doi.org/10.1029/2017WR022437, 2018.
Shen, H., Li, X., Cheng, Q., Zeng, C., Yang, G., Li, H., and Zhang, L.:
Missing Information Reconstruction of Remote Sensing Data: A Technical Review,
IEEE Geosci. Remote Sens. Mag.,
3, 61–85, https://doi.org/10.1109/MGRS.2015.2441912, 2015.
Shiff, S., Helman, D., and Lensky, I. M.:
Worldwide continuous gap-filled MODIS land surface temperature dataset,
Sci. Data,
8, 1–10, https://doi.org/10.1038/s41597-021-00861-7, 2021.
Sims, D. A., Rahman, A. F., Cordova, V. D., El-Masri, B. Z., Baldocchi, D. D., Bolstad, P. V., Flanagan, L. B., Goldstein, A. H., Hollinger, D. Y., Misson, L., Monson, R. K., Oechel, W. C., Schmid, H. P., Wofsy, S. C., and Xu, L.:
A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS,
Remote Sens. Environ.,
112, 1633–1646, https://doi.org/10.1016/j.rse.2007.08.004, 2008.
Sulla-Menashe, D. and Friedl, M. A.:
User Guide to Collection 6 MODIS Land Cover Dynamics (MCD12Q2) Product, User Guid., NASA EOSDIS Land Processes DAAC: Missoula, MT, USA, https://modisrest-dev.ornl.gov/documentation/guides/mcd12q2_v6_user_guide.pdf (updated 15 January 2019), 6, 1–18, 2018.
Sun, L., Chen, Z., Gao, F., Anderson, M., Song, L., Wang, L., Hu, B., and Yang, Y.:
Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data,
Comput. Geosci.,
105, 10–20, https://doi.org/10.1016/j.cageo.2017.04.007, 2017.
Tang, J., Di, L., Xiao, J., Lu, D., and Zhou, Y.:
Impacts of land use and socioeconomic patterns on urban heat island,
Int. J. Remote Sens.,
38, 3445–3465, https://doi.org/10.1080/01431161.2017.1295485, 2017.
Trigo, I. F., Peres, L. F., DaCamara, C. C., and Freitas, S. C.:
Thermal land surface emissivity retrieved from SEVIRI/Meteosat,
IEEE T. Geosci. Remote,
46, 307–315, https://doi.org/10.1109/TGRS.2007.905197, 2008.
Wan, Z.:
Collection-6 MODIS Land Surface Temperature Products Users' Guide,
Earth Research Institute, University of California, Santa Barbara, 2013.
Wan, Z.:
New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product,
Remote Sens. Environ.,
140, 36–45, https://doi.org/10.1016/j.rse.2013.08.027, 2014.
Weiss, D. J., Atkinson, P. M., Bhatt, S., Mappin, B., Hay, S. I., and Gething, P. W.:
An effective approach for gap-filling continental scale remotely sensed time-series,
ISPRS J. Photogramm.,
98, 106–118, https://doi.org/10.1016/j.isprsjprs.2014.10.001, 2014.
Xu, S. and Cheng, J.:
A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering,
Remote Sens. Environ.,
254, 112256, https://doi.org/10.1016/j.rse.2020.112256, 2021.
Xu, Y. and Shen, Y.:
Reconstruction of the land surface temperature time series using harmonic analysis,
Comput. Geosci.,
61, 126–132, https://doi.org/10.1016/j.cageo.2013.08.009, 2013.
Yang, J. S.:
Estimation of Land Surface Temperature Using Spatial Interpolation and Satellite-Derived Surface Emissivity,
J. Environ. Inform.,
4, 40–47, https://doi.org/10.3808/jei.200400035, 2004.
Yu, Y., Tarpley, D., Privette, J. L., Goldberg, M. D., Rama Varma Raja, M. K., Vinnikov, K. Y., and Xu, H.:
Developing algorithm for operational GOES-R land surface temperature product,
IEEE T. Geosci. Remote,
47, 936–951, https://doi.org/10.1109/TGRS.2008.2006180, 2009.
Yue, W., Liu, X., Zhou, Y., and Liu, Y.:
Impacts of urban configuration on urban heat island: An empirical study in China mega-cities,
Sci. Total Environ.,
671, 1036–1046, https://doi.org/10.1016/j.scitotenv.2019.03.421, 2019.
Zhan, W., Hong, F., and Chen, Y.:
Global daily average 1 km resolution land surface temperature dataset from 2003 to 2019[DB/OL],
https://doi.org/10.12199/nesdc.ecodb.2016YFA0600200.01.005, Chinese Ecosyst. Sci. Data Cent., 2021.
Zhang, L., Jiao, W., Zhang, H., Huang, C., and Tong, Q.:
Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices,
Remote Sens. Environ.,
190, 96–106, https://doi.org/10.1016/j.rse.2016.12.010, 2017.
Zhang, T., Zhou, Y., Zhu, Z., Li, X., and Asrar, G. R.:
A global seamless 1 km resolution daily land surface temperature dataset (2003–2020),
Iowa State University [data set], https://doi.org/10.25380/iastate.c.5078492, 2021.
Zhang, X., Pang, J., and Li, L.:
Estimation of Land Surface temperature under cloudy skies using combined diurnal solar radiation and surface temperature evolution,
Remote Sens.-Basel,
7, 905–921, https://doi.org/10.3390/rs70100905, 2015.
Zhang, X., Zhou, J., Göttsche, F. M., Zhan, W., Liu, S., and Cao, R.: A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations, IEEE T. Geosci. Remote, 57, 4670–4691, https://doi.org/10.1109/TGRS.2019.2892417, 2019.
Zhang, X., Zhou, J., Liang, S., Chai, L., Wang, D., and Liu, J.:
Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data,
ISPRS J. Photogramm.,
167, 321–344, https://doi.org/10.1016/j.isprsjprs.2020.07.014, 2020.
Zhang, X., Zhou, J., Liang, S., and Wang, D.:
A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature,
Remote Sens. Environ.,
260, 112437, https://doi.org/10.1016/j.rse.2021.112437, 2021a.
Zhang, X., Zhou, J., Tang, W., Ding, L., Ma, J., and Zhang, X.:
Daily 1-km all-weather land surface temperature dataset for the Chinese landmass and its surrounding areas (TRIMS LST; 2000–2020),
National Tibetan Plateau Data Center,
https://doi.org/10.11888/Meteoro.tpdc.271252, 2021b.
Zhao, B., Mao, K., Cai, Y., Shi, J., Li, Z., Qin, Z., Meng, X., Shen, X., and Guo, Z.: A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017, Earth Syst. Sci. Data, 12, 2555–2577, https://doi.org/10.5194/essd-12-2555-2020, 2020.
Zhao, J., Yu, L., Xu, Y., Li, X., Zhou, Y., Peng, D., Liu, H., Huang, X., Zhou, Z., Wang, D., Ren, C., and Gong, P.:
Exploring difference in land surface temperature between the city centres and urban expansion areas of China's major cities,
Int. J. Remote Sens.,
41, 8963–8983, https://doi.org/10.1080/01431161.2020.1797216, 2020.
Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., and Sobrino, J. A.:
Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives,
Remote Sens.-Basel,
11, 1–36, https://doi.org/10.3390/rs11010048, 2019.
Zhou, J., Zhang, X., Zhan, W., Göttsche, F. M., Liu, S., Olesen, F. S., Hu, W., and Dai, F.:
A Thermal Sampling Depth Correction Method for Land Surface Temperature Estimation From Satellite Passive Microwave Observation Over Barren Land,
IEEE T. Geosci. Remote,
55, 4743–4756, https://doi.org/10.1109/TGRS.2017.2698828, 2017.
Zhou, Y., Smith, S. J., Elvidge, C. D., Zhao, K., Thomson, A., and Imhoff, M.:
A cluster-based method to map urban area from DMSP/OLS nightlights,
Remote Sens. Environ.,
147, 173–185, https://doi.org/10.1016/j.rse.2014.03.004, 2014a.
Zhou, Y., Clarke, L., Eom, J., Kyle, P., Patel, P., Kim, S. H., Dirks, J., Jensen, E., Liu, Y., Rice, J., Schmidt, L., and Seiple, T.:
Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework,
Appl. Energ.,
113, 1077–1088, https://doi.org/10.1016/j.apenergy.2013.08.034, 2014b.
Zhou, Y., Li, X., Asrar, G. R., Smith, S. J., and Imhoff, M.:
A global record of annual urban dynamics (1992–2013) from nighttime lights,
Remote Sens. Environ.,
219, 206–220, https://doi.org/10.1016/j.rse.2018.10.015, 2018.
Short summary
We generated a global seamless 1 km daily (mid-daytime and mid-nighttime) land surface temperature (LST) dataset (2003–2020) using MODIS LST products by proposing a spatiotemporal gap-filling framework. The average root mean squared errors of the gap-filled LST are 1.88°C and 1.33°C, respectively, in mid-daytime and mid-nighttime. The global seamless LST dataset is unique and of great use in studies on urban systems, climate research and modeling, and terrestrial ecosystem studies.
We generated a global seamless 1 km daily (mid-daytime and mid-nighttime) land surface...
Altmetrics
Final-revised paper
Preprint