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Abstract. Land surface temperature (LST) is one of the most important and widely used parameters for study-
ing land surface processes. Moderate Resolution Imaging Spectroradiometer (MODIS) LST products (e.g.,
MOD11A1 and MYD11A1) can provide this information with moderate spatiotemporal resolution with global
coverage. However, the applications of these data are hampered because of missing values caused by factors such
as cloud contamination, indicating the necessity to produce a seamless global MODIS-like LST dataset, which
is still not available. In this study, we used a spatiotemporal gap-filling framework to generate a seamless global
1 km daily (mid-daytime and mid-nighttime) MODIS-like LST dataset from 2003 to 2020 based on standard
MODIS LST products. The method includes two steps: (1) data pre-processing and (2) spatiotemporal fitting. In
the data pre-processing, we filtered pixels with low data quality and filled gaps using the observed LST at another
three time points of the same day. In the spatiotemporal fitting, first we fitted the temporal trend (overall mean) of
observations based on the day of year (independent variable) in each pixel using the smoothing spline function.
Then we spatiotemporally interpolated residuals between observations and overall mean values for each day.
Finally, we estimated missing values of LST by adding the overall mean and interpolated residuals. The results
show that the missing values in the original MODIS LST were effectively and efficiently filled with reduced
computational cost, and there is no obvious block effect caused by large areas of missing values, especially
near the boundary of tiles, which might exist in other seamless LST datasets. The cross-validation with different
missing rates at the global scale indicates that the gap-filled LST data have high accuracies with the average root
mean squared error (RMSE) of 1.88 and 1.33◦, respectively, for mid-daytime (13:30) and mid-nighttime (01:30).
The seamless global daily (mid-daytime and mid-nighttime) LST dataset at a 1 km spatial resolution is of great
use in global studies of urban systems, climate research and modeling, and terrestrial ecosystem studies. The
data are available at Iowa State University’s DataShare at https://doi.org/10.25380/iastate.c.5078492 (T. Zhang
et al., 2021).
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1 Introduction

Land surface temperature (LST) is an important variable for
studies of energy balance, evapotranspiration, and ecosystem
processes in the monitoring of Earth’s resources (Anderson
et al., 2010; Long et al., 2020). It has been widely used in
various studies such as the urban heat island phenomenon
(H. Li et al., 2021; X. Liu et al., 2020; Tang et al., 2017;
Yue et al., 2019), hydrology (Bai et al., 2019; Zhang et al.,
2017), meteorology (Anderson et al., 2010; Li et al., 2018b),
ecology (Sims et al., 2008), and energy systems (Peng et al.,
2012; Zhou et al., 2014b). LST varies significantly in both
space and time due to the spatiotemporal variation in factors
such as solar radiation, atmospheric conditions, and land sur-
face characteristics (Li et al., 2018a; Peng et al., 2014; Zhang
et al., 2015). LST can be measured in situ, obtained from land
surface modeling, and retrieved by remote sensing (Ford and
Quiring, 2019; Sheffield et al., 2018). Remotely sensed LST
is by far the most widely obtained and used due to its global
spatial coverage, high spatiotemporal resolutions, and avail-
able long-term data records.

LST products with a variety of spatial and temporal reso-
lutions have been developed from different sensors/satellites
such as (1) high spatial resolution of 60–120 m and low
temporal resolution of about every 2–16 d from Landsat
(Parastatidis et al., 2017; Roy et al., 2014) and Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) (Hulley et al., 2015); (2) coarse spatial resolution
of 3–5 km but high sub-daily to sub-hourly temporal res-
olution from geostationary satellites (Choi and Suh, 2013;
Duguay-Tetzlaff et al., 2015; Jiang and Liu, 2014; Trigo
et al., 2008; Yu et al., 2009); and (3) moderate spatial resolu-
tion of about 1 km and moderate daily temporal resolution
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) (Wan, 2013, 2014), Visible Infrared Imaging Ra-
diometer Suite (VIIRS) (Guillevic et al., 2014), and Sea and
Land Surface Temperature Radiometer (SLSTR) LST (Ghent
et al., 2017). Among them, MODIS LST is the most widely
used especially for regional and global studies due to its
global coverage and long-term and well-calibrated and well-
documented data records (since 2000) (Aguilar-Lome et al.,
2019; Li et al., 2017; Peng et al., 2012; Sandeep et al., 2021;
J. Zhao et al., 2020; Zhou et al., 2019). However, MODIS
LST has a large number of missing values due to a vari-
ety of factors such as cloud contamination, non-overlapping
satellite orbits, and instrumental malfunction (Crosson et al.,
2012; Li et al., 2018a; H. Liu et al., 2020; Shen et al., 2015;
Wan, 2013).

Filling the missing values of MODIS LST is an effective
way to overcome this limitation in the MODIS LST prod-
uct. Several seamless datasets have been developed in previ-
ous studies (Cheng et al., 2021; Li et al., 2018a; Metz et al.,
2017; X. Zhang et al., 2021b; B. Zhao et al., 2020); however,
they only cover specific regions or have coarse spatiotempo-
ral resolutions (Table S2). Recently, Zhan et al. (2021) pro-

duced a global 1 km LST dataset (2003–2019), but only a
daily average of LST was included. Shiff et al. (2021) de-
veloped a Google Earth Engine (GEE) code and a web app
for generating 1 km gap-filled LST by using Climate Fore-
cast System Version 2 (CFSv2) modeled air temperature and
MODIS LST data, but they did not consider the naturally
spatial variation in LST. A global daily minimum and max-
imum LST dataset with reasonable spatial pattern that can
be used for a variety of studies and applications by scientists
and practitioners such as city planners and water resources
managers is still not available. Meanwhile, a variety of gap-
filling methods have been proposed to fill gaps in MODIS
LST. These methods can be divided into four groups (Li
et al., 2018a; Weiss et al., 2014; Zhang et al., 2020). The first
group is based on data fusion methods, which combine LST
data from different satellites or different overpass times (e.g.,
morning and afternoon) of the same satellite on the same day
(Crosson et al., 2012; Duan et al., 2017; Long et al., 2020;
Xu and Cheng, 2021; X. Zhang et al., 2020, 2021a). The sec-
ond group is based on empirical relationships among differ-
ent methods that were used to estimate the missing values
by fitting empirical relationship between LST and auxiliary
data (e.g., latitude, longitude, altitude, surface moisture, nor-
malized difference vegetation index, and ground observed
LST) (Fan et al., 2014; Ke et al., 2013; B. Li et al., 2021;
B. Zhao et al., 2020). The third group is based on the internal
spatiotemporal relationship that predicted the missing values
with the available LST using algorithms such as temporal in-
terpolation (Kilibarda et al., 2014; Xu and Shen, 2013), spa-
tial interpolation (Ke et al., 2013; Yang, 2004), spatiotempo-
ral interpolation (Sun et al., 2017; Weiss et al., 2014), and
multi-dimensional smoothing (Garcia, 2010, 2011; H. Liu
et al., 2020; Pham et al., 2019). The fourth group is a hy-
brid method that combined several methods from the groups
mentioned above (Hong et al., 2021; Li et al., 2018a; Metz
et al., 2017; Weiss et al., 2014; Xu and Cheng, 2021).

However, most of the current methods have some short-
comings in accuracy and efficiency for producing globally
consistent and seamless MODIS-like LST. For example, the
data fusion method has the problem of mismatch between
LST from different sources and usually cannot fully fill gaps
(Crosson et al., 2012). The computational cost of the meth-
ods based on the empirical relationship could increase sig-
nificantly with the increase in spatial resolutions and might
not be able to fully capture spatial and temporal variations in
LST as the auxiliary data have low temporal resolutions (Fan
et al., 2014; Ke et al., 2013; B. Zhao et al., 2020). The tem-
poral interpolation and multi-dimensional smoothing meth-
ods are computationally efficient but may miss short-term
temporal variations in LST (Kilibarda et al., 2014; Xu and
Shen, 2013). The spatial interpolation methods may lead to
physically unrealistic features in the interpolated LST when
there are a lot of missing observations (Ke et al., 2013; Yang,
2004). The spatiotemporal interpolation methods can cap-
ture the short-term changes in LST but are time-consuming
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Figure 1. MODIS data tiles used in gap-filling and cross-validation
analysis.

due to the use of local moving windows for each pixel (Li
et al., 2018a; Weiss et al., 2014). The hybrid methods take
the advantages of the methods mentioned above and carry
with them some of shortcomings of these methods, and they
may actually amplify them in the process of merging data
inputted using different methods.

We proposed a spatiotemporal gap-filling framework to
gap-fill missing values in the MODIS LST product with good
accuracies and high efficiencies. This framework includes
two key steps of preprocessing and spatiotemporal fitting.
Based on this framework, we developed a global 1 km daily
(mid-daytime and mid-nighttime) LST dataset from 2003 to
2020 using the 1 km daily MODIS LST product. The remain-
der of this paper describes the study area and data (Sect. 2),
the proposed spatiotemporal gap-filling approach (Sect. 3),
the results and discussion (Sect. 4), data availability (Sect. 5),
and conclusions (Sect. 6).

2 Study area and data

The study area is nearly the entire global land surface, in-
cluding 178 MODIS tiles (Fig. 1). The 1 km daily MODIS
LST product version 6 from 2003 to 2020 is the primary data
used in this study. It was produced based on the National
Aeronautics and Space Administration (NASA) Earth Ob-
serving System (EOS) satellites Terra and Aqua (MOD11A1
and MYD11A1) (Wan, 2013, 2014). There are four observa-
tions each day from the two satellites (i.e., 10:30 and 22:30
for Terra: T1 and T3; 13:30 and 01:30 for Aqua: T2 and
T4 at local time). Another two auxiliary datasets used are
the annual MODIS land cover product (MCD12Q1) (Sulla-
Menashe and Friedl, 2018) and urban extents derived from
nighttime light observations and their surrounding rural areas
(Zhou et al., 2014a, 2018). Water pixels from the MCD12Q1
product were excluded in our analysis.

3 Method

We developed a spatiotemporal gap-filling framework to gap-
fill missing values in the MODIS daily LST to produce a
seamless 1 km spatial resolution global dataset from 2003
to 2020 (Fig. 2). The framework includes two key steps:
(1) data pre-processing (Sect. 3.1) and (2) spatiotemporal
fitting (Sect. 3.2). This gap-filling method was applied to
MODIS LST at T2 (∼ 13:30, Aqua Day in Fig. 2) and T4
(∼ 01:30, Aqua Night in Fig. 2), respectively, to build the
1 km daily LST (maximum and minimum) data. In the sub-
sections below, we describe each of these steps in detail.

3.1 Data pre-processing

Data pre-processing includes two parts: (1) data filtering and
(2) daily merge. We first checked the quality of the original
MODIS data based on their quality assurance (QA) informa-
tion and removed data points with error > 3 K. We applied
this threshold value because a stricter (or lower) value can
exclude most of LST in urban areas (Crosson et al., 2012;
Metz et al., 2017). Second, we conducted a daily merge using
four observations from the two satellites (Terra and Aqua)
on a given day using a modified algorithm from Li et al.
(2018a). Taking a pixel with missing value of T2 as an ex-
ample (Fig. 2), we calculated percent of valid data (PVD) in
a year for all four observations. When PVD of T2 is smaller
than 5 % and one PVD of T1, T4, or T3 is greater than 5 %,
we gap-filled missing values of T2 using data from one of the
other three observations based on the order of T1, T4, and
T3. If PVD of T1 is greater than 5 %, we estimated T2 by T1
using the linear regression method with T2 as the dependent
variable and T1 as the independent variable based on avail-
able time series of LSTs in a year. If PVD of T4 is greater
than 5 %, we estimated T2 by T4 using the shift method (i.e.,
adding T4 and adjusting daily difference between T2 and T4
to get T2). If PVD of T3 is greater than 5 %, we estimated
T2 by T3 using the shift method (i.e., adding T3 and ad-
justing daily difference between T2 and T3 to get T2). Af-
ter the daily merge, we gap-filled the leftover missing values
using the spatiotemporal fitting. We selected the threshold
of PVD at 5 % because the valid data smaller than 5 % are
not enough to capture the spatial pattern of LST in a tile ac-
cording to our experiments. Details of the linear regression
and shift methods can be found in Li et al. (2018a). Specif-
ically, we used the shift method because there is a nonlinear
relationship between daytime and nighttime LSTs (i.e., T2
and T3 or T4) (Crosson et al., 2012). We estimated the daily
shift using temporally interpolating monthly averaged shift,
i.e., monthly mean LST difference between T2 and T3 (or
T4), and then we added the daily shift to T3 (or T4) to esti-
mate T2.
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Figure 2. An overview of the spatiotemporal gap-filling framework (taking T2 as an example).

3.2 Spatiotemporal fitting

The spatiotemporal fitting algorithm includes three steps
(Fig. 3). First, we fitted the overall mean of observations in
each pixel (i.e., the fitted daily values (temporal trend) in a
year using the smoothing spline function for which the inde-
pendent variable is the day of year) using a smoothing spline
function (Green and Silverman, 1994) to capture the over-
all trend. Specifically, the overall means of T2 and T4 were
independently estimated. The time series of daily LST in a
year (e.g., LST of T2) can be divided into two components:
the overall mean (trend) and daily residual with gaps (daily
fluctuations). We used the smoothing spline function for fit-
ting overall trend since this algorithm does not have a hy-
pothesis on the shape of the seasonal trend and is capable of
capturing different seasonal patterns of LST across the globe.
Second, we spatiotemporally interpolated residuals for each
day using a correlation-based method (details in Sect. 3.2.1),
in which the missing residual of a target pixel was estimated
based on the temporally and linearly regressive correlation
between the target pixel and its eight neighboring valid pix-
els (i.e., with good quality). We used the daily residuals of a
year from the target pixel and its neighboring pixels to esti-
mate the missing values. When the value of the target pixels
is missing for a specific day, we can still build linear regres-
sion functions based on the time series data. We selected 1 %
of the uniformly distributed pixels (10 km intervals) as rep-
resentative neighboring pixels to perform the interpolation of
residuals with high efficiency without reducing the accuracy
based on our experiments. Moreover, we divided the global
land surface area into nine overlapped zones to avoid pos-
sible boundary effects (Details in Sect. 3.2.2). Finally, the

seamless overall mean and daily residuals were added to ob-
tain the gap-filled LST data.

3.2.1 Interpolation based on correlation weighting (ICW)

An interpolation based on correlation weighting (ICW) tech-
nique was used to interpolate the residual of land surface
temperature (LST) on each day of a year. This method was
inspired by the inverse distance weighting (IDW) interpola-
tion method. The IDW method uses the weighted average
values of neighboring sites to estimate the missing value, in
which the weight was calculated based on the inverse dis-
tances between the target site and its neighboring sites. In the
ICW method, the weight between the target site and one of
its neighboring sites was calculated based on the correlation
between daily values in a year at two locations.

The missing value of the target site VS0 at the time t
was estimated based on values of the neighboring sites with
Eq. (1).

VS0 (t)=
∑i=n

i=1
w(S0,Si) ·VS0 (Si, t), (1)

where VS0 (t) is the estimated value of target site at the time t ;
w(S0,Si) is the weight of the ith neighboring site Si , which
can be calculated with Eq. (2); VS0 (Si, t) is the estimated
value of the target site at the time t based on the ith neigh-
boring site, which can be estimated with Eq. (3); and n is the
number of neighboring sites.

w(S0,Si)=
cor(S0,Si)∑i=n
i=1cor(S0,Si)

, (2)

where w(S0,Si) and n are the same as those in Eq. (1),
cor(S0,Si) is the Pearson’s correlation coefficient between S0
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Figure 3. An example of the spatiotemporal fitting algorithm for gap-filling LST.

and Si .

VS0 (Si, t)= αi +βi ·VSi (t), (3)

where αi and βi are the intercept and slope of the linear
function between the target site and the ith neighboring site,
which was fitted using ordinary least squares (OLS) method
based on the matched time series (days of a year) of LST in
the two locations, and VSi (t) is the value of the ith neighbor-
ing sites at time t .

3.2.2 Implementation of the ICW method

The ICW method was implemented as follows. First, in or-
der to improve the efficiency, each MODIS tile was divided
into blocks with a size of 10 pixels by 10 pixels, and the
block center pixels were used as neighboring pixels for in-
terpolating missing residuals. That is, missing residuals in a
block can be interpolated based on the values from the eight
neighboring block center pixels. Second, in order to ensure
that all the block center pixels have valid (good-quality) data
for the estimation of other pixels, the missing values in the
block center pixels were interpolated using the IDW method.
The steps used in this process are as follows: (a) computing
the average value of each block; (b) resampling the original
MODIS tile of 1200 by 1200 to 120 by 120 and the value
of each pixel in the new image being the average value of a
block in the original MODIS tile; (c) interpolating missing
values in the resampled image based on the IDW method;
and (d) assigning interpolated values to the block center pix-
els without valid values in the original MODIS tile. Third, in
order to reduce the possible boundary effects of the interpo-
lated residuals between neighboring blocks, for each pixel of

a block, one of the neighboring block center pixels which
has the largest correlation coefficient with the target pixel
was used for estimation. This process can avoid systematic
deviation in the boundary pixels from different blocks that
were estimated based on a different combination of block
center pixels because all the pixels in a block were inter-
polated based on eight center pixels of neighboring blocks.
Equations (1) and (3) can be simplified to Eq. (4).

VS0 (t)= αm+βm ·Vm(t), (4)

where αm and βm are the intercept and slope of the lin-
ear function between the target pixel and its neighboring
pixel with the corresponding maximum correlation coeffi-
cient, which was fitted using the ordinary least squares (OLS)
method based on the matched time series (days of a year) val-
ues of the two locations, and Vm(t) is the value of the neigh-
boring pixel with the maximum correlation coefficient at the
time t .

Finally, in order to mitigate boundary effects between
neighboring tiles, multiple neighboring tiles were mosaicked
as a region, and residuals of the block center pixels in the
region were interpolated at the same time. The overlapped
areas between the two neighboring regions were also con-
sidered to avoid possible boundary effects. The interpolation
was conducted following the order of the region IDs (Fig. 4).
For example, as the ID of North America is 1, it was the first
region to be processed.
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Figure 4. Division of global regions. Dashed and shaded rectangles indicate the extent of input data and output data, respectively.

3.3 Accuracy assessment

We evaluated the accuracy of the gap-filled data using cross-
validation by randomly selecting 15 MODIS tiles in 2005,
2010, and 2015 (Fig. 1). In each year, we selected 19 d with
the maximum observations of high-quality data (i.e., daily
data with valid observations larger than 95 % percentile in a
year) in the cross-validation. For each of the selected days,
we manually introduced gaps under three scenarios (i.e., ex-
cluding 25 %, 50 %, and 75 % of valid pixels) based on the
spatial pattern of missing pixels from another day of the year.
Then we gap-filled these missing values and compared them
with the original values. We calculated root mean square er-
ror (RMSE) as the indicator of accuracy (Eq. 5).

RMSE=

√√√√1
n

n∑
i=1

(
L̂STi −LSTi

)2
, (5)

where LSTi and L̂STi are original MODIS LST and gap-
filled LST values of the ith pixel, and n is the number of the
gap-filled pixels.

4 Results and discussion

4.1 Accuracy of gap-filled LST

The results of cross-validation indicate the gap-filled LST
has high accuracies (Fig. 5 and Table 1). The observed and
gap-filled LSTs of representative pixels for different ratios
of exclusion scattered along the 1 : 1 line with RMSE rang-
ing from 2.05 to 2.31◦ and from 1.35 to 1.62◦, respectively,

for daytime and nighttime (Fig. 5). As shown in Table 1, the
average RMSE at tile level (i.e., calculated based on all the
excluded pixels of each tile) ranges from 1.20 to 2.13◦ with
an average of 1.88 and 1.33◦, respectively, for daytime and
nighttime. The lowest RMSE occurs in 2010 with 25 % ex-
cluding rate for nighttime, while the highest RMSE occurs in
2015 with 75 % excluding rate for daytime. Compared with
the accuracies at tile level, the accuracies for urban areas (i.e.,
calculated based on urban pixels in the excluded areas of
each tile) are always higher with RMSE ranging from 1.14
to 2.06◦ (Table 1).

When the number of missing values in the original LST
increases, the gap-filled LST data tend to reduce in accuracy
(Fig. 5, Table 1). As shown in Fig. 5, when the excluding
rate increases from 25 % to 75 %, the RMSE of LST for day-
time and nighttime increases from 2.05 to 2.31◦ and 1.35 to
1.62◦ for daytime and nighttime, respectively. This is also
true across all years at the tile level and in urban area in Ta-
ble 1. However, the RMSE values are still within reasonable
ranges. When the excluding rate is 75 %, the RMSEs are 2.31
and 1.62◦, respectively, for daytime and nighttime (Fig. 5).
Meanwhile, 88.9 % of the RMSE in Table 1 is lower than 2◦.
Besides, the accuracies of gap-filled LST vary with climate
zones and may be also correlated with landforms (Table S1).

4.2 Spatial and temporal patterns of LST

The examples of global LST data illustrate that the missing
values in the original MODIS LST have been effectively gap-
filled using the proposed gap-filling algorithm (Fig. 6). In
the original MODIS LST, the continuously missing values
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Table 1. Average RMSEs of 15 tiles used in cross-validation analysis of the efficacy of the gap-filling method (unit: ◦C).

Time Year RMSE in excluded area (± standard deviation)

25 % 50 % 75 %

Tile level Urban area Tile level Urban area Tile level Urban area

Daytime 2005 1.77 (± 0.41) 1.68 (± 0.46) 1.78 (± 0.44) 1.74 (± 0.55) 2.06 (± 0.38) 2.01 (± 0.52)
2010 1.74 (± 0.49) 1.67 (± 0.71) 1.76 (± 0.50) 1.69 (± 0.74) 1.91 (± 0.52) 1.87 (± 0.69)
2015 1.90 (± 0.53) 1.82 (± 0.72) 1.91 (± 0.54) 1.95 (± 0.64) 2.13 (± 0.55) 2.06 (± 0.61)

Nighttime 2005 1.21 (± 0.36) 1.15 (± 0.35) 1.30 (± 0.35) 1.23 (± 0.35) 1.45 (± 0.35) 1.42 (± 0.44)
2010 1.20 (± 0.30) 1.14 (± 0.32) 1.29 (± 0.29) 1.29 (± 0.39) 1.43 (± 0.35) 1.38 (± 0.44)
2015 1.28 (± 0.42) 1.19 (± 0.33) 1.37 (± 0.39) 1.25 (± 0.36) 1.48 (± 0.41) 1.47 (± 0.44)

Note: “urban” means the urban and surrounding rural areas. The tile level means the accuracy was calculated based on all the excluded pixels of each tile;
urban area means the accuracy was calculated based on urban pixels in the excluded areas of each tile. Each RMSE value is the mean of RMSEs from all
selected days in 15 selected MODIS tiles.

Figure 5. Scatter plots between gap-filled LST and original MODIS LSTs for daytime and nighttime in the excluded areas used for cross-
validation. We used 855 images (15 tiles× 3 years× 19 d) and selected 11 pixels from the excluded area in each image in the scatter plots.
Meanwhile, we excluded values of water pixels in accuracy assessment. The color of points represents the density of points, in which the red
points represent the highest density, and the blue points represent the lowest density. The solid red line represents the regression line, and the
black line is the 1 : 1 line.

mainly occur in East Asia, South Asia, and Central Africa for
both daytime and nighttime on the example date (Fig. 6). In
the gap-filled data, the missing values in these regions were
fully gap-filled.

The comparisons of spatial patterns between gap-filled and
original MODIS LSTs in representative cities around the
world (Fig. 7) illustrate that the missing values in the orig-
inal MODIS LST have been effectively gap-filled at the city

scale. As shown in Fig. 7, there is no missing value in the
entire land surface area of the gap-filled data (water pixels
were masked as NA). The gap-filled data capture well the ur-
ban heat island (UHI) phenomenon (i.e., higher temperature
in urban than in the surrounding rural areas). The spatial pat-
tern of the gap-filled LST is reasonable with transition from
urban to rural areas, and there are no obvious boundary ef-
fects (more details in Sects. S1 and S2). For example, there is
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Figure 6. Spatial pattern of the original and gap-filled LSTs at global scale on day 200 of year 2020.

Figure 7. Spatial pattern of the original and gap-filled LSTs in five representative cities. NA (gray color) in the gap-filled LST is water pixels.
Solid black lines are the boundary of urban regions extracted by using global artificial impervious area data with 30 m spatial resolution (Li
et al., 2020).

no obvious boundary effect between two MODIS tiles in the
gap-filled LST data in Houston, USA, which suggests the in-
terpolation of residuals (Sect. 3.2.2) in the proposed method
is reliable. The gap-filled LST in the Pearl River Delta region

shows a number of small speckles because this region is an
agglomeration of sub-areas undergoing rapid urbanization.

The comparison of the temporal pattern between gap-filled
and original MODIS LSTs in a mega-city (Fig. 8) illustrates
that the missing data in the original MODIS LST can be ef-
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Figure 8. Temporal pattern of average daytime LST from original and gap-filled data in Beijing in the year 2010. The black circles are
example days showing maps of the original and gap-filled LST data.

fectively and completely gap-filled for the entire period. As
shown in Fig. 8, there are several days with limited valid
(high-quality) observations in the original MODIS LST in
Beijing, China, during daytime in 2010, and these missing
values were fully gap-filled in our data for the entire period.
When there are only a few missing values in the original LST
data (days 28 and 130 in Fig. 8), the gap-filled and origi-
nal LSTs show similar spatial pattern with significant UHI
phenomenon. When there are a large number of missing val-
ues in the original LST data (days 219 and 293 in Fig. 8),
the gap-filled LSTs can still illustrate the UHI phenomenon,
while the original LST data are limited. Therefore, we may
get more accurate estimation of annual average LST based
on the gap-filled LST than the original LST data.

4.3 Comparison with existing seamless LST data

The accuracy of the resulting gap-filled LST from this study
is comparable or better when compared with other reported
seamless LST datasets. Our gap-filled LST data show higher
accuracies compared with the gap-filled LSTs based on the
hybrid spatiotemporal gap-filling method proposed by Li
et al. (2018a). These two datasets are most comparable be-
cause of the use of a similar accuracy evaluation method

(cross-validation at the global scale) in both studies. In the
hybrid method proposed by Li et al. (2018a), about 11 % to
60 % of the valid values (Xiaoma Li, personal communica-
tion, 2019) were excluded for cross-validation purposes in
the urban areas at the global scale, and the average RMSE
is 3.29 and 2.68◦ for daytime and nighttime, respectively. In
this study, the average RMSE is 1.83 and 1.28◦ in the ur-
ban and surrounding areas for daytime and nighttime, respec-
tively (Table 1). The gap-filled LSTs based on the data fusion
method implemented on GEE (Shiff et al., 2021) were also
evaluated at the global scale, but the mean RMSE is 2.7◦,
higher than that of this study. The accuracies of other seam-
less LST datasets were generally evaluated based on a lim-
ited number of in situ LST observations (Zhang et al., 2019;
Zhou et al., 2017), which are not exactly the same as satellite
LSTs (Hong et al., 2021), and the evaluation in these stud-
ies are not directly comparable with our study. For example,
the LST data by B. Zhao et al. (2020) reached the average
RMSE of 1.59◦ at the daily level; the LST data by X. Zhang
et al. (2021b) showed the RMSE ranging from 2.03 to 3.98 K
on the Tibetan Plateau (X. Zhang et al., 2021a); and the LST
data using a hybrid method (Hong et al., 2021) has a mean
absolute error (MAE) of 1.0 K at the daily level (Table S2).
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The gap-filled LST in this study does not have the issue
of boundary effect that might exist in the previous methods.
Li et al. (2018a) combined several techniques including data
fusion (Crosson et al., 2012), spatiotemporal interpolation
(Gerber et al., 2018; Weiss et al., 2014), and temporal inter-
polation methods (Xu and Shen, 2013) to reconstruct daily
(mid-daytime and mid-nighttime) LST. The systematic dif-
ferences between neighboring regions with the use of differ-
ent gap-filling techniques in the hybrid method may lead to
boundary effects (Li et al., 2018a). The data fusion method
implemented on GEE (Shiff et al., 2021) directly filled the
missing values in MODIS LST using the estimated LST val-
ues without consideration of the spatial continuity, which
might lead to boundary effects. The seamless LST data pro-
duced by Zhao et al. (2020) might also contain boundary ef-
fects since different regression methods were used to recon-
struct the missing values according to the number of valid
pixels. There are no obvious boundary effects in the LST data
by X. Zhang et al. (2021b) using the data fusion model pro-
posed by X. Zhang et al. (2021a). However, abrupt changes
might occur between the original valid MODIS LST and the
gap-filled LST using the data fusion model (Figs. 7 and 8 in
the study by X. Zhang et al., 2021a). The gap-filled LST data
in this study using the novel framework consisting of two
key steps (Sect. 3.2.2) can mitigate boundary effects between
neighboring regions (Fig. S1), neighboring tiles (Fig. S2),
and within a given tile (Fig. 7 and Sect. S1).

The gap-filled global 1 km daytime and nighttime LST
data have advantages regarding spatiotemporal resolutions
(i.e., daily minimum and maximum) or coverage (i.e., global)
and have significant potential for use in many disciplines
of Earth system science and applications (Table S2). In
the existing seamless LST datasets, Zhan et al. (2021) pro-
duced a global daily average 1 km resolution LST dataset
from 2003 to 2019, without resolving by daytime and night-
time. B. Zhao et al. (2020) developed monthly average LST
with 5.6 km spatial resolution for China from 2003 to 2017.
Cheng et al. (2021) published a daily (mid-daytime and mid-
nighttime) 1 km seamless LST of China from 2002 to 2020.
X. Zhang et al. (2021b) generated a daily (daytime and
nighttime) 1 km all-weather LST dataset for China and its
surrounding areas for 2000 to 2020. Li et al. (2018a) pro-
duced a 1 km daily (mid-daytime and mid-nighttime) LST
dataset only in urban and surrounding rural areas of the
United States. Shiff et al. (2021) only provided GEE code for
producing global 1 km daily (mean, mid-daytime, and mid-
nighttime) LST data. The LST data in this study have a spa-
tial resolution of 1 km and include daily LST at mid-daytime
and mid-nighttime with a global coverage from 2003 to 2020,
which have higher spatiotemporal resolutions or coverage
than other existing published seamless LST datasets.

The gap-filling framework proposed in this study can be
efficiently implemented and has advantages regarding com-
puting time compared to other algorithms/methods. For ex-
ample, the gap-filling method proposed by B. Zhao et al.

(2020) was used for monthly 5.6 km resolution LST data,
and it may require significant computation time for higher
spatiotemporal resolution (daily, 1 km) LST data because it
needs to calculate the distance between similar valid pix-
els and each target pixel (with missing or low-quality value)
based on a geographically weighted regression method. The
gap-filling method proposed by X. Zhang et al. (2021a) is
also complex and time-consuming due to the involvement of
multi-source data and a complex parameterization process on
a pixel-by-pixel basis. The daily average LST data produced
by Zhan et al. (2021) were calculated based on the nonlin-
ear annual temperature cycle (ATC) and diurnal temperature
cycle (DTC) modeling on a pixel-by-pixel basis, which is
time-consuming for global-scale applications (Hong et al.,
2021). The hybrid gap-filling method proposed by Li et al.
(2018a) is time-consuming due to the use of a spatiotem-
poral interpolation (Gerber et al., 2018; Weiss et al., 2014)
algorithm, in which the missing value of a pixel at a spe-
cific time and location was interpolated by using a quantile
regression in the corresponding local spatial and temporal
window. In the proposed method in this study, the interpo-
lation of the residual for a pixel at a specific time was im-
plemented by calculating correlation coefficients and fitting
linear regression functions using the time series data of the
target pixel and its neighboring pixels in the corresponding
local window (Sect. 3.2.1). Moreover, 1 % of pixels at cen-
tral pixels of blocks (10 pixel× 10 pixel) were used as neigh-
boring pixels for interpolation of residual (Sect. 3.2.2) to re-
duce the amount of calculation, and the relevant parameters
(i.e., correlation coefficients and coefficients of linear regres-
sion function) between the target pixel and its eight nearest
neighboring pixels were calculated only one time for the en-
tire period (365 d for a year) based on the time series of resid-
uals. The reason is that the time series of residuals from two
neighboring pixels within a short distance are highly corre-
lated with each other. Our scheme can significantly improve
the efficiency for global applications without reducing the
accuracy according to our experiments.

The accuracy of the gap-filled LST should not be signif-
icantly affected by the land cover type and elevation differ-
ences in local spatial windows. LST values from different
land cover types and elevations within a small spatial re-
gion may be significantly different (X. Zhang et al., 2021a).
These differences of LST values can be captured through the
temporal pattern of LST (overall mean) by separately fitting
the smoothing spline curves (Fig. 3), and the spatiotemporal
similarity of residuals between neighboring pixels was gap-
filled. The gap-filled LST values are the sum of overall mean
and residuals. Therefore, our method can capture the missing
values of LST in different land cover types and elevations in
local spatial windows.

A limitation of this study is that the gap-filled LST dataset
mainly reflects the clear-sky conditions, and future work
can focus on recovering cloudy-sky LST to produce an all-
weather LST dataset when high-quality ancillary data be-
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come available. As only the spatiotemporal information of
clear-sky MODIS LST data was used to fill the missing val-
ues, the gap-filled pixels mainly reflect the clear-sky LST
and might overestimate the actual LST values. Previous stud-
ies have attempted to develop methods for obtaining all-
weather LST data by incorporating cloudy-sky LST retrieved
from passive microwave observations or reanalyzed prod-
ucts (Duan et al., 2017; Long et al., 2020; X. Zhang et al.,
2019, 2020, 2021a) or adding clear-sky LST and the LST dif-
ferences resulting from cloud impacts according to the sur-
face energy balance (SEB) methods (e.g., Jia et al., 2021).
However, it is challenging to obtain cloudy-sky LST, and
cloud caused LST differences at the global scale in the last
2 decades because the ancillary datasets have lower spatial
resolutions and accuracies compared to MODIS LST, lead-
ing to complicated algorithms with complicated hypotheses
(Long et al., 2020; X. Zhang et al., 2021a). Future studies are
needed to develop robust and efficient algorithms for produc-
ing global all-weather LST data.

5 Data availability

Data described in this paper can be ac-
cessed at Iowa State University’s DataShare at
https://doi.org/10.25380/iastate.c.5078492 (T. Zhang
et al., 2021). The dataset contains 36 sub-datasets (one
for each year during daytime and nighttime from 2003 to
2020). Each sub dataset contains LST data of a specific
time (daytime or nighttime) and specific year (2003–2020)
and is organized by day of year. The data are in GeoTIFF
with the georeferenced information embedded. Each file
keeps the MODIS ellipse sinusoidal projection with a spatial
resolution of 1 km. The unit of LST in GeoTIFF is in
0.1 degrees Celsius (◦C), and the naming rule can be found
in the file “README.pdf”.

6 Conclusions

We propose a framework for filling the gap in long-term
Earth observations and geophysical data records that are
used by many Earth system science disciplines and applica-
tions. We used the proposed method to generate a globally
consistent and 1 km daily (mid-daytime and mid-nighttime)
MODIS-like LST dataset from 2003 to 2020 using MODIS
LST datasets (MOD11A1 and MYD11A1), which has ad-
vantages in spatial coverage and spatiotemporal resolutions
compared to existing studies. The resulting dataset filled all
existing gaps resulting from elimination of poor-quality data
seamlessly with high accuracies based on a cross-validation
under different rates of missing values for both daytime and
nighttime. The average RMSE of gap-filled LST for daytime
and nighttime ranges from 1.80 to 2.03 and 1.23 to 1.45 ◦C,
respectively, when different percentages of the data were ex-
cluded. The results show that the missing values in the orig-

inal MODIS LST were effectively and efficiently filled, and
there is no obvious block effect caused by large areas of miss-
ing values, especially near the boundary of tiles, which might
exist in other seamless LST datasets. The gap-filled global
1 km daily LST dataset can provide a better data source for
multidisciplinary applications such as the urban heat island
phenomenon, air temperature estimation, soil moisture es-
timation, evapotranspiration, and drought monitoring (Phan
and Kappas, 2018). However, it is worth noting that the ac-
curacy of the gap-filled LST can be influenced by the rate of
missing values, indicating that uncertainties might increase
with the increase in missing values in the original dataset.
Moreover, future work can focus on diurnal changes in LST
by increasing observations within a day.
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