Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5411-2022
https://doi.org/10.5194/essd-14-5411-2022
Data description paper
 | 
14 Dec 2022
Data description paper |  | 14 Dec 2022

OpenMRG: Open data from Microwave links, Radar, and Gauges for rainfall quantification in Gothenburg, Sweden

Jafet C. M. Andersson, Jonas Olsson, Remco (C. Z.) van de Beek, and Jonas Hansryd

Related authors

Have you ever seen the rain? Observing a record convective rainfall with national and local monitoring networks and opportunistic sensors
Louise Petersson Wårdh, Hasan Hosseini, Remco van de Beek, Jafet C. M. Andersson, Hossein Hashemi, and Jonas Olsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2820,https://doi.org/10.5194/egusphere-2025-2820, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Combining commercial microwave links and weather radar for classification of dry snow and rainfall
Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco (C. Z.) van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, and Vegard Nilsen
Atmos. Meas. Tech., 18, 2279–2293, https://doi.org/10.5194/amt-18-2279-2025,https://doi.org/10.5194/amt-18-2279-2025, 2025
Short summary
The role of multi-criteria decision analysis in a transdisciplinary process: co-developing a flood forecasting system in western Africa
Judit Lienert, Jafet C. M. Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller
Hydrol. Earth Syst. Sci., 26, 2899–2922, https://doi.org/10.5194/hess-26-2899-2022,https://doi.org/10.5194/hess-26-2899-2022, 2022
Short summary
Using Multi-Criteria Decision Analysis for transdisciplinary co-design of the FANFAR flood forecasting and alert system in West Africa
Judit Lienert, Jafet Andersson, Daniel Hofmann, Francisco Silva Pinto, and Martijn Kuller
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-177,https://doi.org/10.5194/hess-2021-177, 2021
Manuscript not accepted for further review
Short summary
Optimal grid resolution for precipitation maps from commercial microwave link networks
Remco (C. Z.) van de Beek, Jonas Olsson, and Jafet Andersson
Adv. Sci. Res., 17, 79–85, https://doi.org/10.5194/asr-17-79-2020,https://doi.org/10.5194/asr-17-79-2020, 2020
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
Benchmark dataset for hydraulic simulations of flash floods in the French Mediterranean region
Juliette Godet, Pierre Nicolle, Nabil Hocini, Eric Gaume, Philippe Davy, Frederic Pons, Pierre Javelle, Pierre-André Garambois, Dimitri Lague, and Olivier Payrastre
Earth Syst. Sci. Data, 17, 2963–2983, https://doi.org/10.5194/essd-17-2963-2025,https://doi.org/10.5194/essd-17-2963-2025, 2025
Short summary
Transformation rate maps of dissolved organic carbon in the contiguous US
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data, 17, 2713–2733, https://doi.org/10.5194/essd-17-2713-2025,https://doi.org/10.5194/essd-17-2713-2025, 2025
Short summary
A 1985–2023 time series dataset of absolute reservoir storage in Mainland Southeast Asia (MSEA-Res)
Shanti Shwarup Mahto, Simone Fatichi, and Stefano Galelli
Earth Syst. Sci. Data, 17, 2693–2712, https://doi.org/10.5194/essd-17-2693-2025,https://doi.org/10.5194/essd-17-2693-2025, 2025
Short summary
Machine-learning-based reconstruction of long-term global terrestrial water storage anomalies from observed, satellite and land-surface model data
Nehar Mandal, Prabal Das, and Kironmala Chanda
Earth Syst. Sci. Data, 17, 2575–2604, https://doi.org/10.5194/essd-17-2575-2025,https://doi.org/10.5194/essd-17-2575-2025, 2025
Short summary
Mapping the world's inland surface waters: an upgrade to the Global Lakes and Wetlands Database (GLWD v2)
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025,https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary

Cited articles

Andersson, J. C. M., Berg, P., Hansryd, J., Jacobsson, A., Olsson, J., and Wallin, J.: Microwave links improve operational rainfall monitoring in Gothenburg, Sweden, 15th International Conference on Environmental Science and Technology, 31 August to 2 September 2017, Rhodes, Greece, CEST2017_00249, 2017. 
Andersson, J. C. M., Olsson, J., van de Beek, C. Z., Hansryd, J., Andersson, H., and Persson, J.: The OpenMRG data set (1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.7107689, 2022. 
Atlas, D. and Ulbrich, C. W.: Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1–3 cm Band, J. Appl. Meteorol. Clim., 16, 1322–1331, https://doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2, 1977. 
Bao, L., Larsson, C., Mustafa, M., Selin, J., Riedel, M., Andersson, J. C. M., and Andersson, H.: A brief description on measurement data from an operational microwave network in Gothenburg, 15th International Conference on Environmental Science and Technology, 31 August to 2 September 2017, Rhodes, Greece, CEST2017_004727, 2017. 
Battan, L. J.: Radar observation of the atmosphere, University of Chicago Press, Chicago, USA, 324 pp., ISBN 978-1-878907-27-1, 1973. 
Download
Short summary
This article presents data from three types of sensors for rain measurement, i.e. commercial microwave links (CMLs), gauges, and weather radar. Access to CML data is typically restricted, which limits research and applications. We openly share a large CML database (364 CMLs at 10 s resolution with true coordinates), along with 11 gauges and one radar composite. This opens up new opportunities to study CMLs, to benchmark algorithms, and to investigate how multiple sensors can best be combined.
Share
Altmetrics
Final-revised paper
Preprint