Articles | Volume 14, issue 8
https://doi.org/10.5194/essd-14-3673-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3673-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global terrestrial evapotranspiration product based on the three-temperature model with fewer input parameters and no calibration requirement
Leiyu Yu
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Guo Yu Qiu
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Chunhua Yan
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Wenli Zhao
Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10,
Jena 07745, Germany
Zhendong Zou
Shenzhen Investment Holdings Co., LTD, Shenzhen, 518048, China
Jinshan Ding
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Longjun Qin
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
School of Civil Engineering, Sun Yat-Sen University, Guangzhou,
510275, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai, 519082, China
Related authors
No articles found.
Mitra Cattry, Wenli Zhao, Juan Nathaniel, Jinghao Qiu, Yao Zhang, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2024-3726, https://doi.org/10.5194/egusphere-2024-3726, 2025
Short summary
Short summary
Climate change alters Mediterranean biota, affecting how they absorb and store carbon. These associated impacts arise from short- and long-term effects of rainfall, temperature, and other atmospheric forcings, which existing tools struggle to capture. This study presents a memory-integrated model combining high- and low-resolution data to track daily ecosystem responses. By analyzing past conditions, we show how earlier conditions shape plant carbon uptake and improve predictions.
Cited articles
Badgley, G., Fisher, J. B., Jiménez, C., Tu, K. P., and Vinukollu, R.:
On uncertainty in global terrestrial evapotranspiration estimates from
choice of input forcing datasets, J. Hydrometeorol., 16, 1449–1455,
https://doi.org/10.1175/JHM-D-14-0040.1, 2015.
Bao, X. and Zhang, F.: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim,
and ERA-40 reanalysis datasets against independent sounding observations
over the Tibetan Plateau, J. Climate, 26, 206–214,
https://doi.org/10.1175/JCLI-D-12-00056.1, 2013.
Beaudoing, H. and Rodell, M.: GLDAS Noah Land Surface Model L4 3 hourly 0.25 × 0.25 degree V2.1, Goddard Earth Sciences Data and Information Services
Center (GES DISC) [data set], https://doi.org/10.5067/E7TYRXPJKWOQ, 2020.
Bengtsson, L. and Shukla, J.: Integration of space and in situ observations
to study global climate change, B. Am. Meteorol. Soc., 69, 1130–1143,
https://doi.org/10.1175/1520-0477(1988)069<1130:IOSAIS>2.0.CO;2, 1988.
Bonan, G. B., Patton, E. G., Finnigan, J. J., Baldocchi, D. D., and Harman,
I. N.: Moving beyond the incorrect but useful paradigm: reevaluating
big-leaf and multilayer plant canopies to model biosphere-atmosphere
fluxes – a review, Agric. For. Meteorol., 306, 108435,
https://doi.org/10.1017/aju.2017.9, 2021.
Cao, M., Wang, W., Xing, W., Wei, J., Chen, X., Li, J., and Shao, Q.:
Multiple sources of uncertainties in satellite retrieval of terrestrial
actual evapotranspiration, J. Hydrol., 601, 126642,
https://doi.org/10.1016/j.jhydrol.2021.126642, 2021.
Cao, Q., Liu, Y., Sun, X., and Yang, L.: Country-level evaluation of solar
radiation data sets using ground measurements in China, Energy, 241, 122938,
https://doi.org/10.1016/j.energy.2021.122938, 2022.
Carter, C. and Liang, S.: Comprehensive evaluation of empirical algorithms
for estimating land surface evapotranspiration, Agric. For. Meteorol., 256,
334–345, https://doi.org/10.1016/j.agrformet.2018.03.027, 2018.
Chen, M., Senay, G. B., Singh, R. K., and Verdin, J. P.: Uncertainty
analysis of the Operational Simplified Surface Energy Balance (SSEBop) model
at multiple flux tower sites, J. Hydrol., 536, 384–399,
https://doi.org/10.1016/j.jhydrol.2016.02.026, 2016.
Chen, X., Su, Z., Ma, Y., Trigo, I., and Gentine, P.: Remote Sensing of
Global Daily Evapotranspiration based on a Surface Energy Balance Method and
Reanalysis Data, J. Geophys. Res.-Atmos., 126, e2020JD032873,
https://doi.org/10.1029/2020JD032873, 2021.
Cheng, M., Jiao, X., Li, B., Yu, X., Shao, M., and Jin, X.: Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation, Earth Syst. Sci. Data, 13, 3995–4017, https://doi.org/10.5194/essd-13-3995-2021, 2021.
Cleugh, H. A., Leuning, R., Mu, Q., and Running, S. W.: Regional evaporation
estimates from flux tower and MODIS satellite data, Remote Sens. Environ.,
106, 285–304, https://doi.org/10.1016/j.rse.2006.07.007, 2007.
Didan, K.: MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg
CMG V006. NASA EOSDIS Land Processes DAAC [data set],
https://doi.org/10.5067/MODIS/MOD13C2.006, 2015.
Elnashar, A., Wang, L., Wu, B., Zhu, W., and Zeng, H.: Synthesis of global actual evapotranspiration from 1982 to 2019, Earth Syst. Sci. Data, 13, 447–480, https://doi.org/10.5194/essd-13-447-2021, 2021.
Ershadi, A., McCabe, M., Evans, J., and Wood, E. F.: Impact of model
structure and parameterization on Penman–Monteith type evaporation models,
J. Hydrol., 525, 521–535, https://doi.org/10.1016/j.jhydrol.2015.04.008,
2015.
Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R.,
McCabe, M. F., Hook, S., Baldocchi, D., and Townsend, P. A.: The future of
evapotranspiration: Global requirements for ecosystem functioning, carbon
and climate feedbacks, agricultural management, and water resources, Water
Resour. Res., 53, 2618–2626, https://doi.org/10.1002/2016WR020175, 2017.
Fu, X. and Wang, B.: Reliability evaluation of soil moisture and land
surface temperature simulated by Global Land Data Assimilation System
(GLDAS) using AMSR-E data, Remote Sensing and Modeling of the Atmosphere,
Oceans, and Interactions V, 92650O, https://doi.org/10.1117/12.2074566,
2014.
Guo, H., Liang, D., Chen, F., and Shirazi, Z.: Innovative approaches to the
Sustainable Development Goals using Big Earth Data, Big Earth Data, 5,
263–276, https://doi.org/10.1080/20964471.2021.1939989, 2021.
Guo, X., Liu, H., and Yang, K.: On the application of the Priestley–Taylor
relation on sub-daily time scales, Bound.-Lay. Meteorol., 156, 489–499,
https://doi.org/10.1007/s10546-015-0031-y, 2015.
Han, C., Ma, Y., Wang, B., Zhong, L., Ma, W., Chen, X., and Su, Z.: Long-term variations in actual evapotranspiration over the Tibetan Plateau, Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, 2021.
He, M., Kimball, J. S., Yi, Y., Running, S. W., Guan, K., Moreno, A., Wu,
X., and Maneta, M.: Satellite data-driven modeling of field scale
evapotranspiration in croplands using the MOD16 algorithm framework, Remote
Sens. Environ., 230, 111201, https://doi.org/10.1016/j.rse.2019.05.020,
2019.
IPCC: Summary for Policymakers, in: Climate Change 2022: Impacts,
Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S.,
Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S.,
Möller, V., Okem, A., and Rama, B., Cambridge University Press, 3–33, https://doi.org/10.1017/9781009325844.001, 2022.
Ji, L., Senay, G. B., and Verdin, J. P.: Evaluation of the Global Land Data
Assimilation System (GLDAS) air temperature data products, J.
Hydrometeorol., 16, 2463–2480, https://doi.org/10.1175/JHM-D-14-0230.1,
2015.
Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross primary
productivity and evapotranspiration products derived from Breathing Earth
System Simulator (BESS), Remote Sens. Environ., 186, 528–547,
https://doi.org/10.1016/j.rse.2016.08.030, 2016.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G.,
Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
ensemble of global land-atmosphere energy fluxes, Sci. Data, 6, 1–14,
https://doi.org/10.1038/s41597-019-0076-8, 2019.
Khan, M. S., Liaqat, U. W., Baik, J., and Choi, M.: Stand-alone uncertainty
characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using
an extended triple collocation approach, Agric. For. Meteorol., 252,
256–268, https://doi.org/10.1016/j.agrformet.2018.01.022, 2018.
Kim, S., Anabalón, A., and Sharma, A.: An assessment of concurrency in
evapotranspiration trends across multiple global datasets, J.
Hydrometeorol., 22, 231–244, https://doi.org/10.1175/JHM-D-20-0059.1, 2021.
Komatsu, H.: Forest categorization according to dry-canopy evaporation rates
in the growing season: comparison of the Priestley–Taylor coefficient
values from various observation sites, Hydrol. Process., 19, 3873–3896,
https://doi.org/10.1002/hyp.5987, 2005.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of
the Köppen-Geiger climate classification updated, Meteorol. Z., 15,
259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Lhomme, J.-P., Monteny, B., and Amadou, M.: Estimating sensible heat flux
from radiometric temperature over sparse millet, Agric. For. Meteorol., 68,
77–91, https://doi.org/10.1016/0168-1923(94)90070-1, 1994.
Liu, W., Wang, L., Zhou, J., Li, Y., Sun, F., Fu, G., Li, X., and Sang,
Y.-F.: A worldwide evaluation of basin-scale evapotranspiration estimates
against the water balance method, J. Hydrol., 538, 82–95,
https://doi.org/10.1016/j.jhydrol.2016.04.006, 2016.
Liu, Y., Liu, Y., and Wang, W.: Inter-comparison of satellite-retrieved and
Global Land Data Assimilation System-simulated soil moisture datasets for
global drought analysis, Remote Sens. Environ., 220, 1–18,
https://doi.org/10.1016/j.rse.2018.10.026, 2019.
Liu, Y., Qiu, G. Y., Zhang, H., Yang, Y., Zhang, Y., Wang, Q., Zhao, W.,
Jia, L., Ji, X., Xiong, Y., Yan, C., Ma, N., Han, S., and Cui, Y.: Shifting
from homogeneous to heterogeneous surfaces in estimating terrestrial
evapotranspiration: Review and perspectives, Sci. China Earth Sci., 65,
197–214, https://doi.org/10.1007/s11430-020-9834-y, 2022.
Ma, N., Szilagyi, J., and Zhang, Y.: Calibration-free complementary
relationship estimates terrestrial evapotranspiration globally, Water
Resour. Res., 57, e2021WR029691, https://doi.org/10.1029/2021WR029691, 2021.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Medici, C., Wade, A. J., and Frances, F.: Does increased hydrochemical model
complexity decrease robustness?, J. Hydrol., 440, 1–13,
https://doi.org/10.1016/j.jhydrol.2012.02.047, 2012.
Melton, F. S., Huntington, J., Grimm, R., Herring, J., Hall, M., Rollison, D., Erickson, T., Allen, R., Anderson, M., Fisher, J. B., Kilic, A., Senay, G. B., Volk, J., Hain, C., Johnson, L., Ruhoff, A., Blankenau, P., Bromley, M., Carrara, W., Daudert, B., Doherty, C., Dunkerly, C., Friedrichs, M., Guzman, A., Halverson, G., Hansen, J., Harding, J., Kang, Y., Ketchum, D., Minor, B., Morton, C., Ortega-Salazar, S., Ott, T., Ozdogan, M., ReVelle, P. M., Schull, M., Wang, C., Yang, Y., and Anderson, R. G.: OpenET: Filling a critical data gap in water management for the western United States, JAWRA J. Am. Water Resour. Assoc., 1–24, https://doi.org/10.1111/1752-1688.12956, 2021.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, 2016.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global
terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115,
1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a
global evapotranspiration algorithm based on MODIS and global meteorology
data, Remote Sens. Environ., 111, 519–536,
https://doi.org/10.1016/j.rse.2007.04.015, 2007.
Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I.: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, 2013.
Peng, X., She, J., Zhang, S., Tan, J., and Li, Y.: Evaluation of
multi-reanalysis solar radiation products using global surface observations,
Atmosphere, 10, 42, https://doi.org/10.3390/atmos10020042, 2019.
Peng, Z., Tang, R., Jiang, Y., and Liu, M.: Global Daily 500-M
Evapotranspiration Estimation Over Vegetated Areas Using Rnadom Forest from
MODIS Data, 2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS, 3733–3736, https://doi.org/10.1109/IGARSS47720.2021.9554153, 2021.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat
flux and evaporation using large-scale parameters, Mon. Weather Rev., 100,
81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Qiu, G. Y.: A new method for estimation of evapotranspiration, PhD thesis,
The united graduate school of agricultural sciences, Tottori University,
Japan, 1996.
Qiu, G. Y., Ben-Asher, J., Yano, T., and Momii, K.: Estimation of soil
evaporation using the differential temperature method, Soil Sci. Soc. Am.
J., 63, 1608–1614, https://doi.org/10.2136/sssaj1999.6361608x, 1999.
Qiu, G. Y., Yu, X., Wen, H., and Yan, C.: An advanced approach for measuring
the transpiration rate of individual urban trees by the 3D three-temperature
model and thermal infrared remote sensing, J. Hydrol., 587, 125034,
https://doi.org/10.1016/j.jhydrol.2020.125034, 2020.
Raupach, M. R. and Finnigan, J.: Single-layer models of evaporation from
plant canopies are incorrect but useful, whereas multilayer models are
correct but useless: discuss, Aust. J. Plant Physiol., 15, 705–716,
https://doi.org/10.1071/PP9880705, 1988.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., and Kim, G.-K.:
MERRA: NASA's modern-era retrospective analysis for research and
applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., and Bosilovich, M.: The
global land data assimilation system, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Schneider, U., Becker, A., Finger, P., Rustemeier, E., and Ziese, M.: GPCC
Full Data Monthly Product Version 2020 at 0.25∘: Monthly Land-Surface
Precipitation from Rain-Gauges Built on GTS-Based and Historical Data,
Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst
[data set], https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_025, 2020.
Senay, G. B., Kagone, S., and Velpuri, N. M.: Operational global actual
evapotranspiration: development, evaluation, and dissemination, Sensors, 20,
1915, https://doi.org/10.3390/s20071915, 2020.
Su, Z.: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6, 85–100, https://doi.org/10.5194/hess-6-85-2002, 2002.
Tian, F., Qiu, G. Y., Yang, Y., Lü, Y., and Xiong, Y.: Estimation of
evapotranspiration and its partition based on an extended three-temperature
model and MODIS products, J. Hydrol., 498, 210–220,
https://doi.org/10.1016/j.jhydrol.2013.06.038, 2013.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's global energy
budget, B. Am. Meteorol. Soc., 90, 311–324,
https://doi.org/10.1175/2008BAMS2634.1, 2009.
Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J.: Estimates
of the global water budget and its annual cycle using observational and
model data, J. Hydrometeorol., 8, 758–769, https://doi.org/10.1175/JHM600.1,
2007.
UNEP (United Nations Environment Programme): World Atlas of Desertification: Second Edition, Arnold Publications, Great Britain, https://wedocs.unep.org/20.500.11822/30300 (last access: 27 September 2021), 1997.
Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.: Global
estimates of evapotranspiration for climate studies using multi-sensor
remote sensing data: Evaluation of three process-based approaches, Remote
Sens. Environ., 115, 801–823, https://doi.org/10.1016/j.rse.2010.11.006,
2011.
Wang, Y., Xiong, Y., Qiu, G. Y., and Zhang, Q.: Is scale really a challenge
in evapotranspiration estimation? A multi-scale study in the Heihe oasis
using thermal remote sensing and the three-temperature model, Agric. For.
Meteorol., 230, 128–141, https://doi.org/10.1016/j.agrformet.2016.03.012,
2016.
Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geophys. Res.-Sol. Ea., 120,
2648–2671, https://doi.org/10.1002/2014JB011547, 2015.
Wu, G., Cai, X., Keenan, T. F., Li, S., Luo, X., Fisher, J. B., Cao, R., Li,
F., Purdy, A. J., and Zhao, W.: Evaluating three evapotranspiration
estimates from model of different complexity over China using the ILAMB
benchmarking system, J. Hydrol., 590, 125553,
https://doi.org/10.1016/j.jhydrol.2020.125553, 2020.
Xia, Y., Fu, C., Wu, H., Wu, H., Zhang, H., Cao, Y., and Zhu, Z.: Influences
of Extreme Events on Water and Carbon Cycles of Cropland Ecosystems: A
Comprehensive Exploration Combining Site and Global Modeling, Water Resour.
Res., 57, e2021WR029884, https://doi.org/10.1029/2021WR029884, 2021.
Xiong, Y. and Qiu, G. Y.: Estimation of evapotranspiration using remotely
sensed land surface temperature and the revised three-temperature model,
Int. J. Remote Sens., 32, 5853–5874,
https://doi.org/10.1080/01431161.2010.507791, 2011.
Xiong, Y. and Qiu, G. Y.: Simplifying the revised three-temperature model
for remotely estimating regional evapotranspiration and its application to a
semi-arid steppe, Int. J. Remote Sens., 35, 2003–2027,
https://doi.org/10.1080/01431161.2014.885149, 2014.
Xiong, Y., Yu, L., Qiu, G. Y., Yan, C., Zhao, W., Zou, Z., Ding, J., and Qin, L.: A global terrestrial evapotranspiration product based on
three-temperature model from 2001 to 2020 (Version V2), Science Data Bank
[data set], https://doi.org/10.57760/sciencedb.o00014.00001, 2022.
Xiong, Y., Zhao, S., Tian, F., and Qiu, G. Y.: An evapotranspiration product
for arid regions based on the three-temperature model and thermal remote
sensing, J. Hydrol., 530, 392–404,
https://doi.org/10.1016/j.jhydrol.2015.09.050, 2015.
Xiong, Y., Zhao, W., Wang, P., Paw U, K. T., and Qiu, G. Y.: Simple and
applicable method for estimating evapotranspiration and its components in
arid regions, J. Geophys. Res.: Atmos., 124, 9963–9982,
https://doi.org/10.1029/2019JD030774, 2019.
Xu, W., Sun, C., Zuo, J., Ma, Z., Li, W., and Yang, S.: Homogenization of
monthly ground surface temperature in China during 1961–2016 and
performances of GLDAS reanalysis products, J. Climate, 32, 1121–1135,
https://doi.org/10.1175/JCLI-D-18-0275.1, 2019.
Yang, Y., Liu, Y., Li, M., Hu, Z., and Ding, Z.: Assessment of reanalysis
flux products based on eddy covariance observations over the Tibetan
Plateau, Theor. Appl. Climatol., 138, 275–292,
https://doi.org/10.1007/s00704-019-02811-1, 2019.
Yao, Y., Liang, S., Cheng, J., Liu, S., Fisher, J. B., Zhang, X., Jia, K.,
Zhao, X., Qin, Q., Zhao, B., Han, S., Zhou, G., Zhou, G., Li, Y., and Zhao,
S.: MODIS-driven estimation of terrestrial latent heat flux in China based
on a modified Priestley–Taylor algorithm, Agric. For. Meteorol., 171–172,
187–202, https://doi.org/10.1016/j.agrformet.2012.11.016,
2013.
Yao, Y., Liang, S., Li, X., Hong, Y., Fisher, J. B., Zhang, N., Chen, J.,
Cheng, J., Zhao, S., and Zhang, X.: Bayesian multimodel estimation of global
terrestrial latent heat flux from eddy covariance, meteorological, and
satellite observations, J. Geophys. Res.-Atmos., 119, 4521–4545,
https://doi.org/10.1002/2013JD020864, 2014.
Yao, Y., Liang, S., Li, X., Chen, J., Wang, K., Jia, K., Cheng, J., Jiang,
B., Fisher, J. B., Mu, Q., Grünwald, T., Bernhofer, C., and Roupsard,
O.: A satellite-based hybrid algorithm to determine the Priestley–Taylor
parameter for global terrestrial latent heat flux estimation across multiple
biomes, Remote Sens. Environ., 165, 216–233,
https://doi.org/10.1016/j.rse.2015.05.013, 2015.
Yao, Y., Liang, S., Li, X., Zhang, Y., Chen, J., Jia, K., Zhang, X., Fisher,
J. B., Wang, X., and Zhang, L.: Estimation of high-resolution terrestrial
evapotranspiration from Landsat data using a simple Taylor skill fusion
method, J. Hydrol., 553, 508–526,
https://doi.org/10.1016/j.jhydrol.2017.08.013, 2017.
Zeng, Z., Wang, T., Zhou, F., Ciais, P., Mao, J., Shi, X., and Piao, S.: A
worldwide analysis of spatiotemporal changes in water balance-based
evapotranspiration from 1982 to 2009, J. Geophys. Res.-Atmos., 119,
1186–1202, https://doi.org/10.1002/2013JD020941, 2014.
Zhang, K., Kimball, J. S., Nemani, R. R., Running, S. W., Hong, Y., Gourley,
J. J., and Yu, Z.: Vegetation greening and climate change promote
multidecadal rises of global land evapotranspiration, Sci. Rep.-UK, 5, 1–9,
https://doi.org/10.1038/srep15956, 2015.
Zhang, K., Kimball, J. S., and Running, S. W.: A review of remote sensing
based actual evapotranspiration estimation, Wiley Interdisciplinary
Reviews-Water, 3, 834–853, https://doi.org/10.1002/wat2.1168, 2016.
Zhang, X., Liang, S., Wang, G., Yao, Y., Jiang, B., and Cheng, J.:
Evaluation of the reanalysis surface incident shortwave radiation products
from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations,
Remote Sens., 8, 225, https://doi.org/10.3390/rs8030225, 2016.
Zhang, Y., Kong, D., Gan, R., Chiew, F. H., McVicar, T. R., Zhang, Q., and
Yang, Y.: Coupled estimation of 500 m and 8-day resolution global
evapotranspiration and gross primary production in 2002–2017, Remote Sens.
Environ., 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.
Zhao, W., Qiu, G. Y., Xiong, Y., Paw U, K. T., Gentine, P., and Chen, B.:
Uncertainties caused by resistances in evapotranspiration estimation using
high-density eddy covariance measurements, J. Hydrometeorol., 21, 1349–1365,
https://doi.org/10.1175/JHM-D-19-0191.1, 2020.
Zhou, C., Wang, K., and Ma, Q.: Evaluation of eight current reanalyses in
simulating land surface temperature from 1979 to 2003 in China, J. Climate,
30, 7379–7398, https://doi.org/10.1175/JCLI-D-16-0903.1, 2017.
Short summary
Accurate evapotranspiration (ET) estimation is essential to better understand Earth’s energy and water cycles. We estimate global terrestrial ET with a simple three-temperature model, without calibration and resistance parameterization requirements. Results show the ET estimates agree well with FLUXNET EC data, water balance ET, and other global ET products. The proposed daily and 0.25° ET product from 2001 to 2020 could provide large-scale information to support water-cycle-related studies.
Accurate evapotranspiration (ET) estimation is essential to better understand Earth’s energy...
Altmetrics
Final-revised paper
Preprint