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Abstract. Accurate global terrestrial evapotranspiration (ET) estimation is essential to better understand Earth’s
energy and water cycles. Although several global ET products exist, recent studies indicate that ET estimates ex-
hibit high uncertainty. With the increasing trend of extreme climate hazards (e.g., droughts and heat waves),
accurate ET estimation under extreme conditions remains challenging. To overcome these challenges, we used
3 h and 0.25◦ Global Land Data Assimilation System (GLDAS) datasets (net radiation, land surface temperature
(LST), and air temperature) and a three-temperature (3T) model, without resistance and parameter calibration, in
global terrestrial ET product development. The results demonstrated that the 3T model-based ET product agreed
well with both global eddy covariance (EC) observations at daily (root mean square error (RMSE)= 1.1 mm d−1,
N = 294058) and monthly (RMSE= 24.9 mm month−1,N = 9632) scales and basin-scale water balance obser-
vations (RMSE= 116.0 mm yr−1, N = 34). The 3T model-based global terrestrial ET product was comparable
to other common ET products, i.e., MOD16, P-LSH, PML, GLEAM, GLDAS, and Fluxcom, retrieved from
various models, but the 3T model performed better under extreme weather conditions in croplands than did the
GLDAS, attaining 9.0 %–20 % RMSE reduction. The proposed daily and 0.25◦ ET product covering the period
of 2001–2020 could provide periodic and large-scale information to support water-cycle-related studies. The
dataset is freely available at the Science Data Bank (https://doi.org/10.57760/sciencedb.o00014.00001, Xiong et
al., 2022).

1 Introduction

Evapotranspiration (ET), the second-largest component of
the global hydrological cycle (Trenberth et al., 2007), plays
an important role in linking global energy and water cycles
(Trenberth et al., 2009). ET is usually observed via tech-
niques such as those involving evaporation pans, sap flowme-
ters, weighing lysimeters, stable isotopes, Bowen ratio sys-
tems, eddy covariance (EC) systems, and scintillometers (Liu

et al., 2022). However, these methods can only reflect ET rep-
resenting the flux footprint of a given instrument (normally
smaller than 1 km2), which cannot provide spatial ET data
for large-scale (e.g., basin and continental) studies. With the
advancement of remote-sensing (RS) technology, which can
provide much information in regard to the land surface and
atmosphere, remote estimation remains the most feasible and
economic way to obtain continuous spatial ET data across
field to global scales (Han et al., 2021; K. Zhang et al., 2016).
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Several global ET estimates have been developed over the
past 2 decades based on various theories, including (1) sur-
face energy balance residual methods, e.g., the ET prod-
uct based on the Surface Energy Balance System (SEBS)
(EB) (Chen et al., 2021), (2) Penman–Monteith (PM) and
Priestley–Taylor (PT) equation-based methods, e.g., MOD16
(Mu et al., 2011), P-LSH (Zhang et al., 2015), PML (Zhang
et al., 2019), and GLEAM (Martens et al., 2017; Miralles
et al., 2011), (3) land surface models, e.g., the Global Land
Data Assimilation System (GLDAS) (Rodell et al., 2004),
(4) multimodel ensemble approaches, e.g., GLASS (Yao et
al., 2014), Hi-GLASS (Yao et al., 2017), and a synthesized
ET product (Elnashar et al., 2021), and (5) empirical meth-
ods, e.g., Fluxcom (Jung et al., 2019). Although these ET
products have been rigorously evaluated and widely applied,
notable disagreement exists among these ET products. For
example, Mueller et al. (2013) reported that the multi-year
mean ET value retrieved from 40 ET products ranged from
423 to 563 mm yr−1. In addition, while the interannual vari-
ation in some ET products exhibited similar change trends,
inconsistent or even contrasting trends occurred among these
ET products (Kim et al., 2021). The abovementioned phe-
nomena indicate that high uncertainties remain in ET esti-
mates and products (Fisher et al., 2017).

The uncertainty in ET estimates mainly originates from the
quality of model input data, model (or algorithm) assump-
tions, and variable parameterization (Badgley et al., 2015;
Cao et al., 2021; Khan et al., 2018; Vinukollu et al., 2011).
In terms of model input datasets, meteorological data (i.e.,
relative humidity, RH, and wind speed, WS) are essential for
most models. However, gridded meteorological data are gen-
erally produced via the data assimilation method based on
limited ground observations, but simulation results may not
necessarily capture real conditions, which could undoubtedly
affect ET estimates (model output). For example, RH, di-
rectly affecting the vapor pressure deficit (VPD), retrieved
from three meteorological reanalysis products, exhibited a
low correlation with in situ EC tower observations, with the
coefficient of determination ranging from 0.005 to 0.09 (Cao
et al., 2021). A similar problem exists between simulated and
observed WS datasets (Vinukollu et al., 2011). In terms of
model (or algorithm) assumptions, different descriptions of
the ET process within the soil–plant–atmosphere continuum
could yield single-layer versus multilayer models and incor-
rect but useful paradigms (Bonan et al., 2021; Raupach and
Finnigan, 1988). Even though big-leaf models simplify the
land surface as a homogeneous single layer, which is phys-
ically incorrect, they are recognized as highly computable
and applicable models (Cheng et al., 2021). In contrast, mul-
tilayer models can more reasonably represent vertical vegeta-
tion and soil structures, but these models require more com-
putational resources, and additional hypotheses must be in-
troduced to determine the model input or solve the model.
This increase in model structure complexity and parameter-
ization can increase the risk of error propagation or uncer-

tainty in ET estimates, as revealed in the literature, e.g., Er-
shadi et al. (2015) and Zhao et al. (2020). For instance, under
varying model assumptions and data availability levels, the
surface resistance can be parameterized in different ways. In
parameterization, several empirical coefficients and biophys-
ical values required for resistance estimation must be cali-
brated. The error in ET estimates based on the PM method
and the difference between surface resistance values with and
without calibration can range from 12 % to 53 % in terms
of the mean absolute percentage error (MAPE) (Zhao et al.,
2020). To reduce the above uncertainty in ET estimates, the
PM equation was simplified as the PT model by replacing
the resistance terms with an empirical coefficient (α) (Priest-
ley and Taylor, 1972). Eventually, the combined uncertainty
due to the model input data quality, model (or algorithm) as-
sumptions, and variable parameterization schemes could lead
to propagation errors in ET simulation results (Bengtsson
and Shukla, 1988; Rienecker et al., 2011). Therefore, sim-
pler algorithms without resistance parameterization (Yao et
al., 2013, 2015) and variable calibration (Ma et al., 2021)
requirements are necessary to reduce the uncertainty in ET
estimates.

The three-temperature (3T) model, without calibration and
resistance parameterization requirements, was proposed to
reduce the uncertainty in ET estimates (Qiu, 1996). Based
on the surface energy balance residual method, the inputs of
the 3T model mainly comprise variables that can be directly
measured or easily determined via RS, such as net radiation,
surface temperature, and air temperature. The 3T model has
been evaluated with an acceptable accuracy considering var-
ious land cover types on different spatial scales (Qiu et al.,
1999; Wang et al., 2016; Xiong et al., 2019; Qiu et al., 2020;
Zhao et al., 2020). Specifically, this model typically performs
well in ET rate estimation in water-limited arid regions (Tian
et al., 2013; Xiong et al., 2019), where surface and aerody-
namic resistance values are very difficult to accurately es-
timate. Consequently, ET in these arid regions has usually
been assumed to be zero in certain ET products (Mu et al.,
2011; Jung et al., 2019). In addition, the 3T model is sensi-
tive to the temperature, and the model could potentially be
suitable for ET estimation under notable temperature fluc-
tuations (i.e., extreme heat or drought conditions). As such,
the 3T model may provide an accurate dataset to support the
attainment of Sustainable Development Goals (SDGs) (Guo
et al., 2021) under increasing frequency and intensity of ex-
treme events (IPCC, 2022).

The objectives of this study were to (1) propose a global
ET product with a low uncertainty based on the 3T model,
(2) evaluate the product performance with global EC network
and catchment water budget methods, (3) compare the es-
tablished product to available mainstream ET products, and
(4) explore the product suitability under extreme weather
conditions, such as extreme heat and drought.
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2 Materials and methods

2.1 Estimation of transpiration, evaporation, and
evapotranspiration with the three-temperature model

The 3T model, proposed by Qiu (1996), comprises two equa-
tions for vegetation transpiration (Ev) and soil evaporation
(Es) calculation. This model mainly utilizes net solar radia-
tion, surface temperature, and air temperature as model in-
puts. In this model, the resistance terms in the energy bal-
ance equation are eliminated via the introduction of a dry
surface without evaporation or transpiration, as detailed in
Qiu et al. (1999). In RS-based applications in which most
pixels cannot represent pure vegetation or soil conditions, ET
calculation depends on the fractional vegetation cover f , as
follows (Xiong and Qiu, 2011):

LEv = Rn,c−Rn,cr
Tc− Ta

Tcr− Ta
f = 1, (1)

LEs = Rn,s−Gs−
(
Rn,sr−Gsr

) Ts− Ta

Tsr− Ta
f = 0, (2)

L (ET)= LEv+LEs 0< f < 1, (3)

where LE (unit W m−2) is the latent heat flux, L (J kg−1) is
the latent heat of ET, Rn,c and Rn,s are the vegetation and
soil net radiation components (W m−2), respectively, Tc and
Ts are the vegetation and soil surface temperatures (K), re-
spectively, Ta is the air temperature (K), and G is the ground
heat flux (W m−2). The subscript “r” denotes the reference
vegetation or soil.

2.2 Parameterization and datasets

The variables of the 3T model (Eqs. 1 to 3) can be parame-
terized as follows.

The net radiation (Rn) can be calculated by summing Rns
and Rnl (Eq. 4), and the canopy and soil components, Rn,c
and Rn,s, respectively, can be calculated by partitioning Rn
based on the fractional vegetation cover via Eqs. (5) to (6)
(Mu et al., 2007):

Rn = Rns+Rnl, (4)
Rn,c = Rn× f, (5)
Rn,s = Rn× (1− f ) . (6)

The fractional vegetation cover, f , can be calculated accord-
ing to the normalized difference vegetation index (NDVI)
with Eq. (7) (Cleugh et al., 2007):

f =
NDVI−NDVImin

NDVImax−NDVImin
, (7)

where NDVImax and NDVImin are threshold values, defined
as the mean values of the upper and lower 5 % positive ter-
restrial NDVI values, respectively.

The ground heat flux, G, can be directly extracted from
net radiation Rn according to Su (2002). Vegetation and soil

component temperatures, Tc and Ts, respectively, can be de-
rived from the land surface temperature (LST) according to
Lhomme et al. (1994), as described in Xiong et al. (2015).

In this study, Rns, Rnl, Ta, and LST datasets were de-
rived from the GLDAS (https://ldas.gsfc.nasa.gov/gldas/, last
access: 12 March 2022) with spatial and temporal scales
of 0.25◦ and 3 h (GLDAS_NOAH025_3H_2.1), respectively
(Beaudoing and Rodell, 2020; Rodell et al., 2004). A
monthly NDVI dataset with a spatial resolution of 0.05◦ was
obtained from MOD13C2 (version 6) (Didan, 2015) and re-
sampled to 0.25◦ via the nearest-neighbor method with the
HEG tool (HDF-EOS to GeoTIFF Conversion Tool; https:
//lpdaac.usgs.gov/tools/heg/, last access: 4 February 2021).
Each dataset covered the 2001–2020 period (Table 1).

To remotely estimate ET at the watershed scale, Xiong
and Qiu (2014) proposed a simple method to determine the
reference temperature. Specifically, a pixel with the maxi-
mum temperature within a given watershed can be defined
as the reference pixel. Once the reference pixel has been de-
termined, the reference vegetation temperature, Tcr (or ref-
erence soil temperature, Tsr), can be obtained with Eq. (8)
(or Eq. 9). In the global-scale application in this study, 31
terrestrial climate regions based on the Köppen–Geiger cli-
mate classification system (Kottek et al., 2006) were first di-
vided into subregions via the principal component analysis
(PCA) and K-means clustering methods, aiming to maintain
relatively equivalent climate conditions within each subre-
gion. Specifically, PCA was used to select major variables
to describe regional characteristics from GLDAS meteoro-
logical factors (i.e., net radiation, air temperature, humidity,
wind speed, precipitation, and air pressure) and land surface
conditions (i.e., albedo, land surface temperature, NDVI, soil
moisture, and soil temperature). Thereafter, these variables
were used to classify the 31 climate regions through the K-
means clustering method. Because of meteorology and land
surface variation, the subregions varied from 90 to 110 in dif-
ferent months, and a reference pixel could be determined in
each subregion for applying the 3T model.

Tcr = Tc,max =max(Tc1,Tc2, . . .,Tci), (8)
Tsr = Ts,max =max(Ts1,Ts2, . . .,Tsi), (9)

where Tci and Tsi denote the vegetation surface and soil tem-
peratures, respectively, in pixel i (i = 1, 2, 3. . . ) within each
subregion.

The reference net radiation values of the soil and vegeta-
tion components, Rn,sr and Rn,cr, respectively, were assumed
to be mean Rn,c and Rn,s values, respectively, within the
same subregion corresponding to pixels of the upper 5 % Ts
and Tc values, respectively.

Rn,sr = Rn,s
[
Ts,upper 5 %

]
=mean

(
Rn,s1,Rn,s2, . . .,Rn,sj

)
, (10)

Rn,cr = Rn,c
[
Tc,upper 5 %

]
=mean

(
Rn,c1,Rn,c2, . . .,Rn,cj

)
, (11)

whereRn,sj andRn,cj denote the soil and vegetation net radi-
ation values, respectively, corresponding to pixel j (j = 1, 2,
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Table 1. Input datasets for the three-temperature (3T) model-based global ET product.

Model input Datasets Spatial–temporal resolution Available data coverage Reference

Rns, Rnl GLDAS_NOAH025_3H_2.1 0.25◦ 3-hourly 2000–2020 Beaudoing and Rodell
(2020), Rodell et
al. (2004)

LST
Ta

NDVI MOD13C2 0.05◦ monthly 2001–2020 Didan (2015)

Note: Rns: net shortwave radiation; Rnl: net longwave radiation; LST: land surface temperature; Ta: air temperature; NDVI: normalized difference vegetation index.

3. . . ) of the upper 5 % Ts and Tc values, respectively, within
the same subregion.

The daytime ET was considered in this study. In global-
scale applications, the daytime can be defined based on 3-
hourly GLDAS net radiation values higher than 100 W m−2.
Then, all the 3-hourly LE (or ET) estimates can be arithmeti-
cally averaged (or summed) into daily, monthly, and annual
values.

2.3 Evaluation of the performance of the 3T model

ET values estimated with the 3T model were assessed on
three scales due to challenges in the validation of RS-
based ET estimates (Vinukollu et al., 2011; Miralles et al.,
2016; Liu et al., 2016). First, ET estimates at daily and
monthly scales were validated against in situ observations
retrieved from global EC flux towers covering various land
cover types, as widely applied in other studies, e.g., Chen
et al. (2016) and Ma et al. (2021). Due to a mismatch be-
tween the flux tower footprint and pixel resolution (0.25◦

in this study), mean ET values in different watersheds were
compared to those obtained from the water balance equation
on a yearly scale. EC-based and basin-scale water-budget-
based validation methods are considered the most reliable
and commonly used methods. Finally, ET estimates were
compared to several gridded ET products on a multi-year av-
erage scale. Statistical analysis, including Pearson’s correla-
tion coefficient (r), relative bias (RB), and root mean square
error (RMSE), was employed in assessment.

2.3.1 Evaluation via the global eddy covariance network

ET observations of 126 flux towers within the FLUXNET
network (https://fluxnet.org/, last access: 5 September 2021)
were selected (Fig. 1a), and the selection process was con-
ducted according to the following criteria. (1) A given flux
tower should exhibit stable operation conditions for at least
2 consecutive years since 2001. (2) The latent heat flux (LE)
was subjected to energy closure correction, and the percent-
age of good-quality measurement and gap-filled data should
be higher than 0.7. (3) The land cover within each 0.25◦ grid
pixel containing a tower should be as homogeneous as pos-
sible (Zhang et al., 2019; Ma et al., 2021). The selected 126
EC towers were located at 26 evergreen needle leaf forest

(ENF), 25 grassland (GRA), 15 cropland (CRO), 15 wet-
land (WET), 13 deciduous broadleaf forest (DBF), 8 ever-
green broadleaf forest (EBF), 7 open/closed shrubland (OS-
H/CSH), 6 mixed forest (MF), 6 woody savanna (WSA),
and 5 savanna (SAV) sites globally. Pixel-scale ET estimates
based on the EC tower location were compared to EC tower
observations.

2.3.2 Evaluation considering the water budget in global
main catchments

The catchment ET (ETwb), based on the water balance equa-
tion, has been recognized as a highly robust and credi-
ble method, particularly in relatively large catchments, on
a multi-year (more than 10-year) scale (Liu et al., 2016).
Hence, 34 catchments (Fig. 1b) were selected based on the
following two criteria. (1) The basin area should be larger
than 100 000 km2 to minimize uncertainties in the measure-
ment of water balance equation components in relatively
small basins. (2) The available basin data should cover more
than 10 years since 2001. ETwb can be calculated with
Eq. (12):

ETwb = P −R−1S, (12)

where P , R, and 1S are the precipitation (mm yr−1), runoff
(mm yr−1), and terrestrial water storage change (mm yr−1),
respectively, in a given catchment. Annual 1S can be calcu-
lated as the terrestrial water storage anomaly (TWSA) differ-
ence between the Decembers of the target year and its pre-
vious year. Monthly 0.25◦-resolution P data (full monthly
data version 2020) were downloaded from the Global Pre-
cipitation Climatology Center (GPCC, http://gpcc.dwd.de/,
last access: 5 October 2021) (Schneider et al., 2020). R data
were acquired from the Global Runoff Data Center (GRDC,
https://portal.grdc.bafg.de/, last access: 16 October 2021).
Monthly 0.5◦-resolution TWSA data were obtained from the
JPL Mascon RL06 version 2.0 GRACE dataset (Watkins et
al., 2015).

2.3.3 Evaluation via comparison to other commonly
used global ET products

At the global scale, six commonly used ET products retrieved
from different methods were selected for inter-comparison.
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Figure 1. Locations of the eddy covariance flux towers (a) and catchments (b) used for ET validation in this study. In this study, 126
flux towers and 34 catchments are considered. CRO denotes croplands, CSH denotes closed shrublands, DBF denotes deciduous broadleaf
forests, EBF denotes evergreen broadleaf forests, ENF denotes evergreen needleleaf forests, GRA denotes grasslands, MF denotes mixed
forests, OSH denotes open shrublands, SAV denotes savannas, WET denotes wetlands, and WSA denotes woody savannas. The multi-year
mean aridity index in each catchment is calculated as the mean annual precipitation divided by the mean annual reference ET (Trabucco and
Zomer, 2018), and the catchment classification refers to the United Nations Environment Programme (UNEP, 1997).

Among the selected ET products, three products were based
on the PM model with varying resistance parameterization
schemes, i.e., MOD16 (version 6, Mu et al., 2011), P-LSH
(Zhang et al., 2015), and PML (version 2, Zhang et al., 2019),
while the remaining three products were based on the PT
model (GLEAM version 3.5a; Miralles et al., 2011; Martens
et al., 2017), land surface models (GLDAS version 2.1, Beau-
doing and Rodell, 2020; Rodell et al., 2004), and machine
learning (Fluxcom; Jung et al., 2019). All products were first
resampled to 0.25◦ via the nearest-neighbor method before
comparison. Datasets covering the 2003–2013 period were
used to maintain the above ET products. In the comparison
process, non-vegetated areas (please refer to the Fluxcom
product) were excluded due to the absence of ET data in cer-
tain products, such as the Fluxcom and MOD16 products.

3 Results

3.1 Performance of the 3T product versus the global EC
network

At the daily scale, the 3T model-based ET estimates agreed
well with the observation (N = 294058), with RMSE of
32 W m−2 (or 1.1 mm d−1) (Fig. 2a), which was comparable
to other ET products, such as GLDAS (RMSE: 32 W m−2 or
1.1 mm d−1) (Fig. S1), PML (RMSE: 0.7 mm d−1) (Zhang
et al., 2019), and SEBS (RMSE: 1.6 mm d−1) (Chen et al.,
2021). Moreover, the 3T model could capture the change
trend of daily ET because comparison results at 10 EC sites
covering various biomes in both the Southern Hemisphere
(Fig. 2b and c) and Northern Hemisphere (Fig. 2d–k) indi-
cate that interannual variabilities of the estimates were close
to that of the observed ET. A comparison at an instantaneous
3 h scale was also performed to test the ET estimates. EC ob-
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Figure 2. The temporal variations in daily ET estimated from the 3T model (green line) using EC observations (gray dot). The scatter plot be-
tween EC observations and ET estimates for 1 selected year (with RMSE values at the average level) at 10 EC sites covering various biomes:
(a) all 126 sites, (b1, 2) EBF_AU-Tum (36◦ S, 148◦ E) in 2008, (c1, 2) SAV_AU-DaS (14◦ S, 131◦ E) in 2009, (d1, 2) DBF_US-UMB
(46◦ N, 85◦W) in 2006, (e1, 2) ENF_US-Me2 (44◦ N, 122◦W) in 2008, (f1, 2) OSH_US-Whs (32◦ N, 110◦W) in 2012, (g1, 2) WSA_US-
Ton (38◦ N, 120◦W) in 2010, (h1, 2) MF_BE-Bra (51◦ N, 5◦ E) in 2009, (i1, 2) CRO_DE-Geb (51◦ N, 11◦ E) in 2008, (j1, 2) WET_CZ-wet
(49◦ N, 15◦ E) in 2009, (k1, 2) GRA_AT-Neu (47◦ N, 11◦ E) in 2009.

servations across the world for the 15th day of each month
in 2011 (N = 6278) were compared because the data are too
large to perform an entire comparison at a global scale. Al-
though the RMSE (74 W m−2) was slightly greater than that
at the daily scale (Fig. S2a), the 3T model-based ET esti-
mates at the 3 h scale agree well with the GLDAS ET, with an
r of 0.89 and a RMSE of 21 W m−2 (Fig. S2b). The explana-
tion is likely that high temporal data may encounter missing
values, which complicates the comparison.

At the monthly scale, the paired ET values between
the 3T model and EC observations were generally dis-
tributed on both sides of the 1 : 1 line, revealing relatively
large differences at a few points for ET values higher than
100 mm month−1 and resulting in regression line slope and
r values of 0.75 and 0.80, respectively (Fig. 3a). The RMSE
and RB values between the ET estimates and EC-based ob-
servations reached 22.85 mm month−1 and −1.2 %, respec-
tively. If monthly data were compared, similar results could
be obtained, with an RMSE value of 24.90 mm month−1, an
RB value of 0.7 %, and regression line slope and r values
of 0.75 and 0.78, respectively (Fig. 3b). The errors in the
3T model-based ET estimates were comparable to those in
the other ET products (please refer to Sect. 3.3 for details).

For example, compared to EC observations, the RMSE and
r values of an ET product retrieved from the process-based
Breathing Earth System Simulator (BESS) model reached
23.4 mm month−1 and 0.79, respectively (Jiang and Ryu,
2016). These results indicate that the ET product developed
based on the 3T model agreed well with global EC observa-
tions at multi-temporal scales.

The performance of the 3T model in the different biomes
was further analyzed (Fig. 3c–l). Due to data point sepa-
ration in Fig. 3b, the results shown in Fig. 3c–l are sim-
ilar to those shown in Fig. 3b, with slight differences
among the various biomes. The 3T model performed the
best at forest sites because the paired data points were
more closely distributed along the 1 : 1 line, with slope
values ranging from 0.81 to 1.05, whereas the r values
ranged from 0.75 to 0.85 (Fig. 3e–h). Among the dif-
ferent forest cover types, the ET estimates at the MF
and ENF sites exhibited a lower uncertainty, with RMSE
and RB values of 20.3 mm month−1 and 13.3 %, respec-
tively, at the former sites and values of 22.8 mm month−1

and 10.4 %, respectively, at the latter sites, followed by
DBF (RMSE= 24.2 mm month−1 and RB= 25.8 %) and
EBF sites (RMSE= 29.7 mm month−1 and RB= 4.6 %).

Earth Syst. Sci. Data, 14, 3673–3693, 2022 https://doi.org/10.5194/essd-14-3673-2022
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Figure 3. Comparison of the estimated (3T model) and measured (EC tower) monthly ET values from 2003 to 2013, where panel (a) shows
the data for all 126 sites on a multi-year monthly mean (MYM) scale and panel (b) shows the data for all sites on an annual mean (AM)
monthly scale. Panels (c)–(l) show all land use/land cover types on an annual monthly scale. The abbreviations in panels (c)–(l) are the same
as those in Fig. 1.

The 3T model performance at the shrubland sites was sim-
ilar to that at the MF sites (RMSE= 20.6 mm month−1 and
RB= 9.2 %) but with lower slope and r values of 0.53 and
0.60, respectively (Fig. 3i). At the sites of the remaining
land use/land cover (LULC) types, the 3T model yielded
lower ET estimates than the EC observations as the RB
value ranged from −6.1 % to −33.8 % (Fig. 3c, d, and
j to l). Among these sites, the 3T model exhibited the
lowest bias at the GRA sites, with slope, r , and RMSE
values of 0.71, 0.82, and 21.4 mm month−1, respectively
(Fig. 3j), followed by the SAV (slope= 0.67, r = 0.83, and
RMSE= 27.7 mm month−1) (Fig. 3k), CRO (slope= 0.61,
r = 0.78, and RMSE= 27.9 mm month−1) (Fig. 3c), WET
(slope= 0.65, r = 0.74, and RMSE= 28.3 mm month−1)
(Fig. 3d), and WSA sites (slope= 0.49, r = 0.70, and
RMSE= 31.7 mm month−1) (Fig. 3l). The 3T model per-
formance among the different biomes, with a maximum
RMSE value of 31.7 mm month−1, was comparable to that

of the other methods based on the above comparison to
EC observations, with RMSE values ranging from 30 to
42.9 mm month−1, as reported by Carter and Liang (2018),
Zhang et al. (2019), and Peng et al. (2021). These results
suggest that the 3T model performed with an acceptable ac-
curacy across the various biomes.

3.2 Performance of the 3T product versus the water
budget in global catchments

Multi-year (2003–2013) average ET values for 34 relatively
large watersheds were obtained with the 3T model and
compared to water balance ET (ETwb) data. The estimated
mean ET value was 514.5 mm yr−1, with a standard devia-
tion of 211 mm yr−1, whereas the mean ETwb value reached
476.5± 280 mm yr−1. The mean ET difference reached only
38 mm yr−1, indicating that the ET estimates obtained with
the 3T model were similar to the ETwb values. The scat-
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Figure 4. Comparison of the annual model-estimated (3T model) and water-balance-based ET values during the 2003–2013 period: (a) multi-
year mean annual scale, (b) annual scale, and (c) relative bias (RB) in each basin.

ter plots shown in Fig. 4a and b at multi-year and annual
scales, respectively, also confirmed that these two types of
ET values agreed well, with r values of 0.94 and 0.91, re-
spectively. The regression line slope at the multi-year scale
was 0.71, with RMSE and RB values of 116 mm yr−1 and
8.0 %, respectively (Fig. 4a), whereas the values reached
0.69, 128 mm yr−1, and 9.1 %, respectively, at the annual
scale (Fig. 4b). Figure 4c shows the 3T model performance
in each watershed in terms of RB. The RB values in nearly
70 % of the watersheds were relatively low, within ±25 %,
indicating satisfactory performance of the 3T model in these
watersheds. However, the 3T model overestimated ET in ap-
proximately 21 % of all watersheds, with RB values greater
than 60 % (the red color in Fig. 4c). These river basins were
mainly located at high latitudes (approximately 60◦ N) with
relatively low ETwb values (133±50 mm yr−1). ET overesti-
mation in these regions was not only observed in this study,
but was also observed in other ET comparison-based studies,
such as Ma et al. (2021). A possible reason for the higher
uncertainty may be that a higher bias occurs in the hydrolog-
ical (e.g., runoff) and gridded meteorological (e.g., precipita-
tion) data employed in the water balance equation due to the
scarcity of in situ observational stations in these regions (Ma

et al., 2021). Nonetheless, the above results generally suggest
that the 3T model performance was comparable to that of the
water balance equation.

3.3 Comparison of the 3T product to other global ET
products

To further assess the performance of the 3T model across the
various terrestrial land types, 3T model-based ET estimates
were cross-validated against six global ET products during
the 2003–2013 period.

When EC observation data were adopted as a reference,
3T model-based ET estimates were comparable to GLDAS,
GLEAM, and MOD16 data in terms of r and RMSE, with
values of 0.8 and 22 mm month−1, respectively (Figs. 3a
and 5a–c). Although the slope of the regression line (0.75,
as shown in Fig. 3a) between the 3T model-based ET esti-
mates and observations was slightly lower than that between
the ET estimates and GLDAS (0.83, as shown in Fig. 5a)
and GLEAM data (0.79, as shown in Fig. 5b) and slightly
higher than that between the ET estimates and MOD16 data
(0.73, as shown in Fig. 5c), the absolute RB value of the 3T
model was lower than that of the GLDAS (1.9 %, as shown in
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Figure 5. Validation of six commonly used ET products (GLDAS, PML, P-LSH, GLEAM, Fluxcom, and MOD16) against EC tower
observations. The data are monthly average ET values over the 2003–2013 period and are the same as those used in Fig. 3a.

Fig. 5a), GLEAM (2.7 %, as shown in Fig. 5b), and MOD16
products (−4.7 %, as shown in Fig. 5c). The remaining three
products, i.e., Fluxcom, PML, and P-LSH, exhibited lim-
ited comparative advantages, with an r value of 0.9, a slope
higher than 0.8 (0.92, 0.84, and 0.83, respectively), and an
RMSE value ranging from 16.9 to 18.6 mm month−1.

When ETwb values were adopted as a reference, al-
though the 3T model performance was slightly lower
than that of the PML, GLEAM, and P-LSH products
in terms of RMSE, with a value of 116 mm month−1

versus values of 96, 111, and 115 mm month−1, respec-
tively (Figs. 4a and 6a–c), the 3T model performed bet-
ter than did the GLDAS (RMSE= 120 mm month−1), Flux-
com (RMSE= 149 mm month−1), and MOD16 products
(RMSE= 182 mm month−1) (Fig. 6d–f). In terms of the re-
gression line between the ET estimates and ETwb, except
for the relatively low performance of MOD16, for slope and
r values of 0.58 and 0.77, respectively, r values of the other
ET products were greater than 0.94 and exhibited a slight
difference, with a maximum difference of 0.03, but the slope
(0.71, as shown in Fig. 4a) of the regression line between the
ETwb values and 3T model-based ET estimates was lower
than that between the ETwb values and Fluxcom (1.13), P-
LSH (0.92), PML (0.83), GLDAS (0.80), and GLEAM data
(0.76) (Fig. 6). However, the absolute RB, with a value of
8 % (Fig. 4a), of the 3T model was the smallest, while the
absolute RB values of the other six products were greater
than 8 %, ranging from 8.2 % to 21.8 % (Fig. 6).

Via comparison of the terrestrial (excluding Antarctica)
ET values retrieved from the various ET products, the mean
ET value of the 3T model reached 546 mm yr−1 during

the 2003–2013 period, whereas the mean ET values ob-
tained with the MOD16, PML, GLEAM, Fluxcom, GLDAS,
and P-LSH products reached 468, 542, 544, 549, 551, and
551 mm yr−1, respectively.

In terms of interannual variation (excluding Antarc-
tica, Greenland, and desert areas according to Jung et
al., 2019), the 3T model-based estimates were similar to
the other six ET products, with an increasing trend from
January (approximately 40 mm month−1) to July (approxi-
mately 65 mm month−1) and then a decreasing trend through
the following months (Fig. 7a). The latitudinal distribution
of the values obtained with each ET product was also de-
termined, and the changing trend of the 3T model-based
ET values was similar to that of the values obtained with
the six considered ET products (Fig. 7b). Specifically, the
highest terrestrial ET values occurred at the Equator, with
values ranging from 1251 to 1390 mm yr−1 (1293 mm yr−1

for the 3T model), and the ET value decreased towards the
North Pole and South Pole. In the Northern Hemisphere,
ET attained a second peak at approximately 20◦, with val-
ues ranging from 934 to 1111 mm yr−1 (950 mm yr−1 for
the 3T model), whereas a third peak occurred from 37 to
45◦ (the third peak varied among the different ET products)
in the Southern Hemisphere, with values ranging from 562
to 706 mm yr−1 (690 mm yr−1 for the 3T model). This ET
peak distribution trend was correlated with the global vege-
tation distribution. However, it should be noted that the ET
values obtained with the 3T model were generally lower
than those obtained with the ET products between approx-
imately 30◦ S and 45◦ N (except MOD16), and a large dis-
crepancy in ET estimates occurred, particularly between ap-

https://doi.org/10.5194/essd-14-3673-2022 Earth Syst. Sci. Data, 14, 3673–3693, 2022



3682 L. Yu et al.: A global terrestrial evapotranspiration product based on the three-temperature model

Figure 6. Validation of six commonly used ET products (GLDAS, PML, P-LSH, GLEAM, Fluxcom, and MOD16) against values obtained
with the catchment water balance approach. The data are yearly average values over the 2003–2013 period. The left column shows mean
annual values, and the right column shows the RB in each catchment.
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Figure 7. (a) Monthly variation and (b) annual latitudinal distributions of the multi-year (2003–2013) mean ET value estimated with the 3T
model (black line) and six ET products in vegetated areas (mainly excluding Greenland, Antarctica, and desert areas, according to Jung et
al., 2019).

proximately 17◦ S and 17◦ N, where the difference could ex-
ceed 350 mm yr−1. These results suggest that even though
the ET products are similar, the ET estimates in certain ar-
eas may differ, and uncertainty may exist in ET estimates in
these regions.

Pixel-by-pixel comparison of the various ET products was
also conducted. To overcome the influence of the resam-
pling method on the obtained ET values, only GLDAS and
GLEAM data, sharing the same spatial resolution as the 3T
model-based estimates (0.25◦), are shown in Fig. 8. The left
column shows the global land ET distribution, and the 3T
model-based ET values generally exhibited a similar dis-
tribution to that of the ET values obtained with the two
ET products, as shown in Fig. 8. However, obvious dif-
ferences existed, especially in arid regions such as the Sa-
hara, the Middle East, Mongolia, and the southeast of the
Qinghai–Tibet Plateau, where the 3T model-based ET esti-
mates were higher than the values obtained with the two ET
products. The scatter plots in the right column of Fig. 8 re-
veal that the 3T model-based ET estimates were very sim-
ilar to the GLDAS-based ET values. Moreover, the slope
of the regression line between the 3T model- and GLDAS-
based ET values was 0.93, with r and RMSE values of 0.95
and 114.6 mm yr−1, respectively (Fig. 8d), whereas the val-
ues reached 0.89, 0.94, and 130.6 mm yr−1, respectively, be-
tween the 3T model and GLEAM (Fig. 8e). RMSE and r
statistics between the 3T model-based ET estimates and the
values obtained with each ET product were visualized in a
heatmap (Fig. 9) in which the darker the blue color is, the
higher the r value and the lower the RMSE value are. Over-
all, the 3T model-based ET product is consistent with the
other six products, with r ranging from 0.89 (compared to

MOD16) to 0.96 (compared to GLDAS) and RMSE ranging
from 108.5 (compared to the GLDAS) to 177.7 (compared
to MOD16) mm yr−1. Interestingly, it was obvious that the
3T model-based, GLDAS, and PML products with the same
model inputs were highly consistent according to the higher r
and lower RMSE values (the corresponding blue cubes are in
the bottom left of Fig. 9), while the ET products calibrated or
upscaled based on EC towers, i.e., PML, P-LSH, and Flux-
com, were highly consistent (the corresponding blue cubes
are in the top right of Fig. 9).

The abovementioned results indicate that the 3T model-
based ET estimates were comparable to the data obtained
with the commonly used global ET products.

4 Discussion

4.1 Characteristics of the global terrestrial ET product
based on the 3T model

As indicated in Sect. 3, the 3T model-based global terrestrial
ET product agreed well with ground observations and was
comparable to other commonly used ET products. Particu-
larly, the determined global terrestrial (excluding Antarctica)
ET volume (in units of 103 km3 yr−1) based on 3T model-
based estimates reached 73.8 from 2003 to 2013, which is not
only consistent with that determined based on the other ET
products (excluding MOD16), as indicated in Sect. 3.3, rang-
ing from 73.2 to 74.5 (Table 3), but also consistent with val-
ues reported in other studies, e.g., 72.3±0.9, as obtained with
a complementary relationship-based ET product from 1982
to 2016 (Ma et al., 2021), and 71.1, as determined with a
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Figure 8. Spatial pattern and pixel-to-pixel comparison of multi-year (2003–2013) global mean annual ET rates among the 3T model, the
GLDAS, and GLEAM. Left column: spatial ET distribution of (a) 3T model-, (b) GLDAS-, and (c) GLEAM-based ET values. Right column:
pixel-to-pixel comparison of ET values between (d) the 3T model and the GLDAS and (e) the 3T model and GLEAM.

Table 2. Information on the typical ET products used to cross-validate the ET estimates of the 3T model in this study.

ET products Method Spatial–temporal reso-
lution

Reference

Fluxcom Machine learning 0.083◦ monthly Jung et al. (2019)
GLDAS Land surface models 0.25◦

3-hourly and monthly
Beaudoing and Rodell (2020), Rodell et al. (2004)

GLEAM Priestley–Taylor equation 0.25◦ monthly Martens et al. (2017), Miralles et al. (2011)
MOD16 Penman–Monteith equation

with different resistance
parameterization methods

0.05◦ monthly Mu et al. (2011)
P-LSH 0.05◦ monthly Zhang et al. (2015)
PML 0.083◦ 8 d Zhang et al. (2019)

water-balance- and machine-learning-based ET product from
1982 to 2009 (Zeng et al., 2014).

It should be noted that the 3T model differed from the
methods used to estimate ET in the adopted ET products,
as listed in Table 2. In particular, the 3T model excludes
resistance and requires no parameter calibration. Resistance
terms are unavoidable in PM models, which could lead to
high uncertainty in ET estimates (Zhao et al., 2020; Cao et

al., 2021). As described in Sect. 3.3, the MOD16, P-LSH,
and PML products, based on the PM equation with varied
resistance parameterization methods, exhibited obvious dif-
ferences (e.g., 300 mm yr−1 at a few locations, as shown
in Fig. 7b) and performed differently via a comparison to
ground observations. This occurred because the canopy re-
sistance is difficult to estimate, in addition to the empirical
relationship adopted in the estimation process. These empiri-
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Figure 9. RMSE and r of pixel-to-pixel (0.25◦ resolution) com-
parison of multi-year (2003–2013) mean annual ET values among
the 3T model and six products in vegetated areas (mainly excluding
Greenland, Antarctica, and desert areas, according to Jung et al.,
2019).

Table 3. Multi-year (2003–2013) average ET values considering
the water depth (mm yr−1) and volume (km3 yr−1) of the different
products used in this study for the global land surface.

ET products ET rate ET volume
(mm yr−1) (×103 km3 yr−1)

3T 546± 22 73.8± 3.0
Fluxcom 549± 3 74.2± 0.4
GLDAS 551± 10 74.5± 1.3
GLEAM 544± 6 73.6± 0.7
MOD16 468± 6 63.3± 0.8
P-LSH 551± 8 74.5± 1.0
PML 542± 12 73.2± 1.7

Note: the global land surface has an area of 1.35× 108 km2,
excluding Antarctica. Fluxcom and MOD16 do not provide ET
values in Greenland and desert areas.

cal equations are site- and biome-specific equations and nor-
mally require calibration (Mu et al., 2011; Zhang et al., 2015,
2019). Because a large number of EC tower sites are used for
calibration in resistance estimation in P-LSH and PML, these
two products performed better than MOD16, using only 46
sites (Figs. 5 and 6). Nonetheless, calibration typically re-
quires observational data, while limited in situ observations
restrict accurate calibration of biome-specific coefficients on
a global scale. A recent study confirmed that models requir-
ing no calibration could decrease the uncertainty in global
ET estimates (Ma et al., 2021). The obtained results indicate
that the 3T model-based ET product achieved a lower uncer-
tainty than that achieved by MOD16 retrieved from the PM
equation with a complex resistance parameterization scheme

and limited calibration and that the 3T model-based ET prod-
uct was comparable to P-LSH and PML developed from the
PM equation with adequate calibration during resistance pa-
rameterization.

Although the 3T model-based ET estimates suffer from
the domain size when determining the reference site, the un-
certainty may be limited. We tested the difference between
the 3T model-based ET values estimated using two differ-
ent regimes with different subregions and sizes. Specifically,
Köppen–Geiger climate regimes with 31 subregions and de-
tailed subregions with numbers of 90–110 were used. In gen-
eral, the two groups of daily ET estimates in 2011 showed lit-
tle difference, with mean ET values of 47 and 42 W m−2, re-
spectively, and were close to the EC observation, with RMSE
values of 32 and 33 W m−2 (Fig. 10a and b, respectively). At
a yearly scale, however, the 3T model-based ET estimates
from 90 to 110 subregions (Fig. 10d) were much closer to
the water balance ET than those estimates using 31 subre-
gions (Fig. 10c). The results indicate that the smaller the do-
main size of a region where the reference parameters were
obtained, the more accurate the 3T model, which is consis-
tent with our previous findings (Xiong et al., 2015, 2019).

In addition, the 3T model-based global terrestrial ET prod-
uct required fewer data in terms of model inputs than those
required by the adopted ET products, as listed in Table 2.
Specifically, the 3T model requires net radiation, soil heat
flux, air temperature, LST, and vegetation index (i.e., NDVI)
data to decompose the radiation (or LST) components of veg-
etation and soil. For example, PM-based ET estimation re-
quires wind speed and VPD data in addition to net radia-
tion, soil heat flux, and air temperature data. However, wind
speed and VPD data, especially the former, exhibit high het-
erogeneity in space, and current commonly used reanalysis
datasets contain high uncertainty; e.g., the difference in wind
speed can exceed 5 m s−1 among several products (Yang et
al., 2019), thus increasing bias in global ET products. While
a model with a higher complexity may better describe the
ET process, a satisfactory model performance normally de-
pends on abundant data, not only regarding model inputs, but
also regarding model (or parameter) calibration (Medici et
al., 2012; Wu et al., 2020). Otherwise, a relatively simple
model with fewer input datasets could be more reasonable;
e.g., the GLEAM product based on the PT method, a simpli-
fied version of the PM equation, outperformed the PM-based
MOD16 product in this and other studies (e.g., Cao et al.,
2021). Although the performance of the 3T model-based ET
product was similar to that of the GLEAM product, an empir-
ical parameter, namely, the PT coefficient, is required in the
PT-based GLEAM product. In estimation with the GLEAM
product, the PT coefficient was set to 0.8 for tall canopies and
1.26 for short vegetation and bare soil, respectively (Miralles
et al., 2011), but the value varies among the different biomes
(e.g., Komatsu, 2005), especially on a short timescale (daily)
(Guo et al., 2015). In fact, the input datasets of the 3T model
are commonly available with an adequate credibility (Bao
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Figure 10. Comparison of the estimated (3T model) and measured ET values in 2011 (daily ET from EC tower and annual ET from the
water balance equation). The left column shows ET estimates using Köppen–Geiger climate regimes with 31 subregions at the daily (a) and
annual (c) scales, respectively, whereas the right column is the same but with ET estimates using 90–110 subregions.

and Zhang, 2013; Cao et al., 2022; Fu and Wang, 2014; Ji et
al., 2015; Peng et al., 2019; Xu et al., 2019; X. Zhang et al.,
2016; Zhou et al., 2017), resulting in easy model application.

4.2 The 3T model-based terrestrial ET product for
extreme weather condition monitoring

Although the 3T model is the most sensitive to the LST
among the various model inputs (Xiong and Qiu, 2011), this
characteristic may result in a suitable model ability in captur-
ing ET variation during extreme-temperature events such as
heat waves and flash droughts. Since both the frequency and
damage extent of heat waves and flash droughts are increas-
ing, these extreme weather conditions have attracted exten-
sive attention worldwide (IPCC, 2022). For instance, Senay
et al. (2020) applied a temperature-sensitive model, i.e., the
Operational Simplified Surface Energy Balance (SSEBop)
model, to estimate ET and used its anomalies to successfully
detect the 2011/2012 drought in the southern–central United
States and the 2005 drought in Australia. However, this study
mainly used relatively low ET values to qualitatively de-
scribe droughts, while few studies focused on the accuracy
of ET estimates under similar extreme conditions (i.e., heat

and drought conditions). Hence, this section further exam-
ines the 3T model-based terrestrial ET product for extreme
weather condition monitoring by validating its performance
against EC flux tower observations under extreme heat, ex-
treme atmospheric drought, and extreme soil drought con-
ditions. These three types of extreme hazards were defined
according to daily observations from 2001 to 2020 retrieved
from FLUXNET and GLDAS reanalysis data (version 2.1)
based on corresponding site locations: (1) extreme heat con-
ditions occur when the daily Ta at a given EC tower site is
higher than the 95th percentile of the daily Ta in GLDAS
data, (2) extreme atmospheric drought conditions occur when
the daily VPD at a given EC tower location is higher than
the 95th percentile of the daily VPD in GLDAS data, and
(3) extreme soil drought conditions occur when the daily
soil moisture matches the 5th percentile of EC tower data.
It should be mentioned that some data points indicated both
extreme heat and extreme atmospheric drought conditions.
These points were designated as extreme heat conditions in-
stead of extreme atmospheric drought conditions. Finally,
there remained 11 213 data points across 80 sites, 19 687 data
points across 112 sites, and 12 338 data points across 95 sites
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Figure 11. Monitoring performance of the 3T model-based terrestrial ET product under extreme heat conditions in the different biomes.
The daily ET is shown in energy units. In the box plot (a), the black point indicates the mean, while the central line in the box indicates the
median value. The edges of the box indicate the 25th and 75th percentiles, and the whiskers indicate the outlier values. In the violin plot (b),
the white point indicates the median value, and a wider violin plot indicates denser data for the same RMSE value. N denotes the number of
data points.

representing extreme heat, extreme atmospheric drought, and
extreme soil drought conditions, respectively. GLDAS esti-
mates, with a high temporal resolution in the monitoring of
extreme events (Liu et al., 2019) and the same spatiotempo-
ral input datasets such as those employed for the 3T model,
were also used in the analysis.

Under extreme heat conditions (Fig. 11), although the 3T
model-based ET product exhibited various performance lev-
els in the different biomes, the product generally yielded
results closely agreeing with observations. In terms of the
mean ET value, extreme heat conditions at the DBF, WET,
OSH, MF, CRO, and ENF sites were best captured with
the 3T model-based ET product (Fig. 11a), with a maxi-
mum difference of 11.9 W m−2 from EC observations, fol-
lowed by the GRA, WSA, SAV, and EBF sites with differ-
ence values ranging from 24.0 to 51.1 W m−2. The GLDAS
performed similarly to the 3T model-based ET product but
with a notably higher bias than that of EC observations.
The RMSE violin plots shown in Fig. 11b further verify the
above statement because the RMSE values obtained with the
3T model-based ET product, with median values of 23.6,
29.0, 15.3, 31.2, and 24.4 W m−2 at the OSH, ENF, WET,
CRO, and MF sites, respectively, were much smaller than
those obtained with the GLDAS (37.9, 37.4, 19.9, 35.2, and
28.2 W m−2, respectively). The maximum RMSE values ob-
tained with the 3T model-based ET product were also smaller
than those obtained with the GLDAS, 48.3, 20.6, 20.2, 15.6,
and 14.1 W m−2 lower at the CRO, DBF, OSH, WET, and
MF sites, respectively. These results indicate that the 3T
model-based ET product could accurately capture the low

ET values under extreme heat conditions in most biomes and
performed better than did the GLDAS.

Under extreme atmospheric drought conditions (Fig. 12),
in terms of the mean ET value, the 3T model-based ET
product suitably captured extreme atmospheric drought con-
ditions at the OSH, ENF, MF, DBF, GRA, WET, CRO,
and WSA sites (Fig. 12a), with a maximum difference of
14.5 W m−2 from EC observations, followed by the SAV
and EBF sites, with difference values ranging from 18.2 to
29.7 W m−2. The GLDAS also performed similarly to the 3T
model-based ET product but with a higher bias over EC ob-
servations, which was further confirmed by the RMSE violin
plots shown in Fig. 12b. The median RMSE values obtained
with the 3T model-based ET product (the white points in
Fig. 12b) reached 30.7, 22.2, 26.2, 21.0, and 12.7 W m−2 at
the CRO, MF, ENF, SAV, and WET sites, respectively, while
the values obtained with the GLDAS reached 38.4, 27.4,
29.0, 22.9, and 14.4, respectively. The above results indicate
that the 3T model-based ET product could accurately capture
the low ET values under extreme atmospheric drought con-
ditions at the CRO, MF, ENF, and WET sites and performed
better than did the GLDAS.

Under extreme soil drought conditions (Fig. 13), in terms
of the mean ET value, the 3T model-based ET product suit-
ably captured extreme soil drought conditions at the GRA,
OSH, MF, WSA, WET, CRO, DBF, and ENF sites (Fig. 13a),
with a maximum difference of 7.2 W m−2 from EC observa-
tions, followed by the SAV and EBF sites with difference
values ranging from 13.2 to 25.5 W m−2. The median RMSE
values obtained with the 3T model-based ET product (the
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Figure 12. Monitoring performance of the 3T model-based terrestrial ET product under extreme atmospheric drought conditions in the
different biomes. The symbols are the same as those in Fig. 11.

Figure 13. Monitoring performance of the 3T model-based terrestrial ET product under extreme soil drought conditions in the different
biomes. The symbols are the same as those in Fig. 11.

white points in Fig. 13b) at the SAV, EBF, CRO, OSH, and
ENF sites reached 18.9, 23.2, 18.2, 5.4, and 15.3 W m−2,
respectively, while the values obtained with the GLDAS
reached 23.8, 26.4, 20.0, 6.9, and 15.8, respectively. In addi-
tion, compared to the GLDAS, the maximum RMSE values
obtained with the 3T model-based ET product at the ENF,
EBF, CRO, WET, and SAV sites were reduced by 55.6, 18.5,
14.0, 9.3, and 3.0 W m−2, respectively. The acquired results
indicate that the 3T model-based ET product could accu-
rately capture the low ET values under extreme atmospheric
drought conditions at the CRO, EBF, and ENF and performed
better than did the GLDAS.

It should be noted that the 3T model-based ET product
exhibited a good performance in crop ET estimation under
these three types of extreme conditions. Compared to the
GLDAS, the 3T model-based ET estimates were closer to the
considered EC observations and exhibited smaller errors, as
described in the previous discussion. Considering that CRO
areas are important for human society but highly sensitive
to extreme events (Xia et al., 2021) and crop ET estimation
suffers from more challenges than those encountered in the
other natural biomes (He et al., 2019; Melton et al., 2021), the
sensitivity of the 3T model to the temperature ensures that the
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method could provide very high potential ability for crop ET
estimation, especially under extreme temperature conditions.

5 Data availability

The daily and monthly ET dataset presented and an-
alyzed in this article has been released and is avail-
able for free download from the Science Data Bank
(https://doi.org/10.57760/sciencedb.o00014.00001, Xiong et
al., 2022). The dataset is published under the Creative Com-
mons Attribution 4.0 International (CC BY 4.0) license.

6 Conclusions

A global ET product, derived from reanalysis and RS data
based on the 3T model, was provided with daily and 0.25◦

resolutions from 2001 to 2020. The product was thoroughly
assessed via direct evaluation against FLUXNET EC tower
data at the daily and monthly scales and water-balance-based
catchment ET data at the annual scale, in addition to cross-
validation against six commonly used global ET products.
The 3T model-based ET estimates generally agreed well with
the above observations. Furthermore, the 3T model exhibited
a very high potential for accurate ET estimation under ex-
treme weather conditions. Since the 3T model requires only
a few input parameters (i.e., Rn, LST, and Ta) without the
need for parameter calibration, it could be concluded that the
model is easy and simple to apply, and the proposed ET prod-
uct could provide reasonable information to support water-
cycle-related studies.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-14-3673-2022-supplement.
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