Articles | Volume 14, issue 7
https://doi.org/10.5194/essd-14-3197-2022
https://doi.org/10.5194/essd-14-3197-2022
Data description paper
 | 
12 Jul 2022
Data description paper |  | 12 Jul 2022

Reconstructing 6-hourly PM2.5 datasets from 1960 to 2020 in China

Junting Zhong, Xiaoye Zhang, Ke Gui, Jie Liao, Ye Fei, Lipeng Jiang, Lifeng Guo, Liangke Liu, Huizheng Che, Yaqiang Wang, Deying Wang, and Zijiang Zhou

Model code and software

Reconstructing 6-hourly PM2.5 datasets from 1960 to 2020 in China Junting Zhong, Xiaoye Zhang, Ke Gui, Jie Liao, Ye Fei, Lipeng Jiang, Lifeng Guo, Liangke Liu, Huizheng Che, Yaqiang Wang, Deying Wang, and Zijiang Zhou https://doi.org/10.5281/zenodo.6372847

Download
Short summary
Historical long-term PM2.5 records with high temporal resolution are essential but lacking for research and environmental management. Here, we reconstruct site-based and gridded PM2.5 datasets at 6-hour intervals from 1960 to 2020 that combine visibility, meteorological data, and emissions based on a machine learning model with extracted spatial features. These two PM2.5 datasets will lay the foundation of research studies associated with air pollution, climate change, and aerosol reanalysis.
Altmetrics
Final-revised paper
Preprint