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Abstract. Fine particulate matter (PM2.5) has altered the radiation balance on Earth and raised environmental
and health risks for decades but has only been monitored widely since 2013 in China. Historical long-term PM2.5
records with high temporal resolution are essential but lacking for both research and environmental management.
Here, we reconstruct a site-based PM2.5 dataset at 6 h intervals from 1960 to 2020 that combines long-term visi-
bility, conventional meteorological observations, emissions, and elevation. The PM2.5 concentration at each site
is estimated based on an advanced machine learning model, LightGBM, that takes advantage of spatial features
from 20 surrounding meteorological stations. Our model’s performance is comparable to or even better than
those of previous studies in by-year cross validation (CV) (R2

= 0.7) and spatial CV (R2
= 0.76) and is more

advantageous in long-term records and high temporal resolution. This model also reconstructs a 0.25◦× 0.25◦,
6-hourly, gridded PM2.5 dataset by incorporating spatial features. The results show PM2.5 pollution worsens
gradually or maintains before 2010 from an interdecadal scale but mitigates in the following decade. Although
the turning points vary in different regions, PM2.5 mass concentrations in key regions decreased significantly
after 2013 due to clean air actions. In particular, the annual average value of PM2.5 in 2020 is nearly the lowest
since 1960. These two PM2.5 datasets (publicly available at https://doi.org/10.5281/zenodo.6372847, Zhong et
al., 2022) provide spatiotemporal variations at high resolution, which lay the foundation for research studies
associated with air pollution, climate change, and atmospheric chemical reanalysis.

1 Introduction

In the past decades, anthropogenic emissions of reactive
gases and aerosols have been emitted increasingly in the at-
mosphere and, thus, have led to a substantial increase in fine
particulate matter (PM2.5). Increased PM2.5 has strongly in-
teracted with solar radiation through absorption and scatter-
ing, thereby reducing visibility and influencing the Earth’s
radiance balance. Inhalable PM2.5 has increased human mor-
bidity and mortality by penetrating the respiratory system

(Pope et al., 2002; Beelen et al., 2007; X. Chen et al., 2016).
To evaluate the impacts of PM2.5 pollution on the environ-
ment, climate, and health, the primary concern is to un-
derstand the spatiotemporal variations of PM2.5 concentra-
tions. Namely, extended PM2.5 records with high tempo-
ral resolution lay the foundation for research studies asso-
ciated with air pollution, climate change, and environmental
health. Nevertheless, it was not until 2013 that the Ministry of
Ecology and Environment (MEE) established a nationwide
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PM2.5 monitoring network. Long-term and accurate histori-
cal PM2.5 datasets are lacking for both research and environ-
mental management.

Chemical transport models (CTMs) are expected to sim-
ulate the spatial and temporal variations of PM2.5 with
reasonable emission inventories inputted. However, signifi-
cant uncertainties still exist in historical emission invento-
ries and physicochemical mechanisms, which resulted in in-
evitable biases in the simulated absolute values of PM2.5.
Satellite-based aerosol optical depth (AOD), which mea-
sures the aerosol extinction of the solar beam, is an indica-
tor of ground-level aerosols. AOD data products from Mod-
erate Resolution Imaging Spectroradiometer (MODIS) have
broad spatial coverage and relatively long observation peri-
ods (∼ 20 years). Therefore, assimilating satellite-retrieved
AOD to construct atmospheric chemical reanalysis is a prac-
tical approach to reducing PM2.5 biases. In recent years, sev-
eral international aerosol reanalysis datasets have been de-
veloped preliminarily, including the reanalysis data produced
by the Copernicus Atmosphere Monitoring Service (CAMS)
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) (Inness et al., 2019), the Modern-Era Ret-
rospective analysis for Research and Applications, Version 2
(MERRA-2) from the National Aeronautics and Space Ad-
ministration (NASA) (Gelaro et al., 2017; Randles et al.,
2017), aerosol reanalysis from the Navy Aerosol Analysis
and Prediction System (NAAPS) (Lynch et al., 2016), and the
Japanese Reanalysis for Aerosol (JRAero) from the Japanese
Meteorological Agency (Yumimoto et al., 2017). In particu-
lar, CAMS produced gridded PM1, PM2.5, and PM10 data
at 80 km resolution since 2003 by assimilating satellite re-
trievals of total AOD, total tropospheric NO2 column, to-
tal O3 column, CO column, and vertical profiles (Inness et
al., 2019). MERRA-2 reanalysis includes PM2.5 and PM10
at 50 km resolution since 1980 by assimilating ground-based
and satellite-retrieval (Gelaro et al., 2017; Randles et al.,
2017). NAAPS generates gridded AOD data at ∼ 100 km
resolution from 2003 to 2013 by assimilating satellite-based
AOD products (Lynch et al., 2016). JRAero provides PM2.5
and PM10 at ∼ 100 km resolution from 2011 to 2015 by as-
similating satellite AOD data (Yumimoto et al., 2017). These
reanalysis data have contributed significantly to research in
aerosol-related fields. However, there are still some weak-
nesses in accuracy, spatial resolution, time span, and types of
assimilated data. In China, the highest horizontal resolution
of the four reanalysis is only 50 km, and this coarse grid set-
ting may not be sufficient to capture the spatial differences in
atmospheric pollutants at regional scales. In terms of the type
of aerosol data assimilation, these reanalysis data mainly as-
similate satellite-based and ground-based AOD and do not
take into account ground PM2.5 observations.

To overcome the reanalysis’ weaknesses in low spatial
resolution and high biases, numerical researchers focus on
constructing relatively long-term PM2.5 datasets based on
machine learning techniques that fuse multisource data,

including satellite-retrieved AOD, CTM simulations, and
even atmospheric chemical reanalysis. For example, Ma et
al. (2016) estimated daily PM2.5 records at 0.1◦ resolution
between 2004–2013 with MODIS AOD. Liang et al. (2020)
rebuilt monthly PM2.5 concentrations at 1 km resolution dur-
ing 2000–2016 based on the multiangle implementation of
atmospheric correction (MAIAC) from MODIS and reanaly-
sis AOD and PM2.5 data from MERRA-2. Geng et al. (2021)
reconstructed daily 10 km PM2.5 data between 2000–2020
with MODIS AOD and CTM simulations. Wei et al. (2021a)
regenerated monthly 1 km PM2.5 records between 2000–
2018 based on MAIAC AOD. Huang et al. (2021) estimated
1 km× 1 km PM2.5 concentrations daily between 2013–2019
based on MAIAC AOD and CTM outputs. However, some
inherent limitations in satellite-based AOD are challenging
to overcome. Due to the low sampling frequency of satellite-
retrieved AOD, AOD-based PM2.5 datasets are limited to a
maximum temporal resolution of 1 d. With AOD over land
unavailable before 2000, these PM2.5 datasets can only be
back-calculated to 2000 at the earliest. Although recent stud-
ies focus on estimating hourly PM2.5 during the daytime
based on AOD from geostationary satellites like Himawari 8
(Chen et al., 2019; Yan et al., 2020; Wang et al., 2021; Wei
et al., 2021b), obtained PM2.5 datasets can only extend for
several years and the data are missing at night or with cloud
cover.

Compared to satellite data, ground-based meteorological
observations have the advantages of long sequence time, high
temporal resolution, and good data integrity. In China, the na-
tional meteorological observation network of the China Me-
teorological Administration (CMA) was established in the
1950s and is capable of continuously observing 6-hourly
meteorological data on visibility and conventional meteo-
rological variables, including temperature, pressure, wind,
and relative humidity (RH). The number of national sta-
tions exceeded 2000 in 1960 and stabilized at around 2450
afterward. Studies have shown that visibility and conven-
tional meteorological variables are closely related to PM2.5
(R. Zhang et al., 2013; X. Zhang et al., 2013; H. L. Zhang
et al., 2015; Wang et al., 2018; Zhu et al., 2018; Zhong et
al., 2018). For example, low wind speed is highly unfavor-
able to the horizontal diffusion of pollutants (X. Zhang et
al., 2013). The increase in RH favors the hygroscopic growth
of PM2.5 and also promotes the accelerated conversion of
gaseous precursors to particulate matter, leading to a rapid
increase in PM2.5 concentrations (Pilinis et al., 1989; Er-
vens et al., 2011; Kuang et al., 2016). Atmospheric visibil-
ity is directly related to PM2.5 mass concentrations under
dry conditions and non-linearly related to PM2.5 and RH un-
der humid conditions (Wang et al., 2019). Therefore, better
results may be achieved if these ground-based meteorolog-
ical data can be used to estimate historical PM2.5 data in
China. Liu et al. (2017) first estimated monthly visibility-
based PM2.5 concentrations between 1957–1964 and 1973–
2014 based on 674 publicly available meteorological sta-
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tions. Gui et al. (2020) constructed a virtual daily PM2.5 net-
work at 1180 meteorological sites between 2017–2018. Our
previous research also shows that the visibility-based ma-
chine learning model that takes advantage of spatial features
has great potential in reconstructing historical PM2.5 datasets
with long-term records and high temporal resolution (Zhong
et al., 2021). In this study, we reconstruct a site-based PM2.5
dataset at 6 h intervals from 1960 to 2020 based on long-term
visibility and conventional meteorological observations from
∼ 2450 national stations, together with emissions and eleva-
tion. The PM2.5 concentration at each site is estimated based
on a Light Gradient Boosting Machine (LightGBM) model
that takes advantage of spatial features from 20 surrounding
meteorological stations. By incorporating spatial features,
this model also reconstructs a 0.25◦× 0.25◦, 6-hourly, grid-
ded PM2.5 dataset. These two PM2.5 datasets provide spa-
tiotemporal variations at a high resolution, which constitutes
the basis for research studies associated with air pollution,
climate change, and atmospheric chemical reanalysis.

2 Data and methods

2.1 Multisource input data

Observational PM2.5 data. The MEE began laying out a
PM2.5 monitoring network in January 2013, expanding the
scope from key regions, including the North China Plain
(NCP), the Yangtze River Delta (YRD), the Pearl River Delta
(PRD), the Sichuan Basin (SB), municipalities directly un-
der the Central Government and provincial capitals to 113
key and model cities for environmental protection and, even-
tually, to all cities above prefecture level. This expanded the
number of observation sites from the initial 520 to over 1600.
Since then, PM2.5 mass concentrations have been recorded
continuously using the β-absorption methods or a micro-
oscillating balance following a standard protocol (Huang et
al., 2021). Hourly PM2.5 data of all sites between 2013–2020
are collected from the China National Environmental Mon-
itoring Center (CNEMC, http://www.cnemc.cn, last access:
10 July 2022). To produce high-quality PM2.5 data, a se-
ries of quality controls were conducted, including integrity
checking, duplicate rejection, and outlier handling. All sites
with a proportion of valid PM2.5 records exceeding 60 %
were considered. For each site, identical data for three con-
secutive hours were excluded first, and PM2.5 values over
three standard deviations from 24 h and 3 d moving aver-
age were regarded as outliers and discarded then. Eventually,
PM2.5 data from 1485 sites remained for model development
and application. In addition, pre-2013 PM2.5 measurements
in US embassies in Beijing and Shanghai are used for inde-
pendent validation evaluations (http://www.stateair.net/web/
historical, last access: 10 July 2022).

Visibility and conventional meteorological data. The CMA
established a national meteorological observation network in
the 1950s with the station numbers exceeding 2000 at the

beginning and stabilizing at ∼ 2450 afterward. The obser-
vation network can continuously record meteorological data
on visibility and conventional meteorological variables, in-
cluding temperature, pressure, wind, and RH. In recent years,
meteorological observations, including 6-hourly records be-
tween 1960–2020 and gradually increasing hourly records
after 2013, have been collected from the National Meteoro-
logical Information Center (NMIC). Due to the inconsistency
of visibility data in terms of observation methods, we con-
ducted a series of data conversions to ensure continuous and
consistent data. Visibility data recorded on a scale ranging
from 0 to 9 between 1960–1979 were converted to numerical
data based on probability density distributions. Specifically,
the probability density distribution of the visibility for each
of the 10 years before and after 1980 was calculated at first.
The numerical visibility from 1980 to 1989 was graded into
classes, with the median value of each class being the cor-
responding value for each station, and finally, the class ob-
servations were converted into numerical observations. From
September 2013 to 2016, visibility measurements gradually
shifted from 6-hourly manual observations to 1-hourly auto-
matic observations site-by-site. In keeping with manual mea-
surements, the automatic records, which are slighter lower
than manual measurements, were calibrated by dividing 0.75
following the guideline from the CMA (CMA, 2014).

Emission inventories and elevation. Historical anthro-
pogenic emissions from 1960–2012 are taken from Peking
global emission inventories, developed using a bottom-up ap-
proach with spatial resolution at 0.1◦× 0.1◦ and temporal
resolution at 1-month intervals (http://inventory.pku.edu.cn,
last access: 10 July 2022) (H. Chen et al., 2016; Huang et al.,
2014, 2015; Wang et al., 2014). Current anthropogenic emis-
sions during 2013–2020 are from the Multi-resolution Emis-
sion Inventory in China (MEIC, http://meicmodel.org, last
access: 10 July 2022) (Zhang et al., 2009; Zheng et al., 2018,
2021). Six emission variables from these two inventories
are used as inputs for model development, including PM2.5,
NOx , SO2, NH3, BC, OC, and CO. Thirty meter elevation
data are collected from the global digital elevation model
(GDEM) version 2 (https://earthexplorer.usgs.gov, last ac-
cess: 10 July 2022). Both emission and elevation data are
interpolated from grids to sites to match existing PM2.5 sites.

Auxiliary data. Monthly normalized difference vegetation
index (NDVI) products are downloaded from the Level-
1 and Atmosphere Archive & Distribution System Dis-
tributed Active Archive Center (LADDS DAAC, https://
ladsweb.modaps.eosdis.nasa.gov, last access: 10 July 2022).
Land cover classification data are taken from the Na-
tional Geographic Information Resources Catalogue Ser-
vice System (https://www.webmap.cn/mapDataAction.do?
method=globalLandCover, last access: 10 July 2022). Pop-
ulation data are taken from the Gridded Population of the
World version 4 (GPWv4, https://sedac.ciesin.columbia.edu/
data/collection/gpw-v4, last access: 10 July 2022) and are
calibrated based on the total population in China City Year-
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books. NDVI, land cover, and population data are also in-
terpolated according to PM2.5 sites and trained as inputs for
model development. However, during the model training pro-
cess, we found that these data had little or no improvement
in the hindcast capability of the model, and the time span
of these data is insufficient for long-term historical retrieval.
Hence, these auxiliary data are not used in model building.

2.2 Spatiotemporal feature extraction

For each PM2.5 site, we extract five variables as temporal in-
puts, including the year, month, day, hour, and day of year.
The longitude and latitude variables are taken out as loca-
tion inputs (Fig. 1b). Visibility, RH, and temperature from
the nearest meteorological station of each PM2.5 are used as
basic meteorological inputs. The distance between these two
sites was also added as a feature. In addition to the influence
of the nearest meteorological station, PM2.5 concentrations
at a site are also affected by surrounding conditions. For ex-
ample, transport of pollution due to air movement is the main
cause of heavy pollution episodes in the early stage (Zhong
et al., 2017, 2018). Hence, we need to consider spatial ef-
fects from surrounding meteorological stations. Our previ-
ous study developed a novel feature engineering approach,
which incorporated surrounding impacts by extracting spa-
tial features (Zhong et al., 2021). Specifically, the remain-
ing 19 nearest stations were matched for each PM2.5 site,
except the nearest meteorological station. Five variables, in-
cluding longitude, latitude, temperature, visibility, and RH,
were selected from the 19 stations. Then, we calculated the
maximum, the minimum, the average value, the skewness
value, and the standard deviation for each of the five vari-
ables. These produced features, which take advantage of sur-
rounding conditions, are also considered as inputs. After spa-
tiotemporal feature extraction, a total of 71 features were
used as inputs for model training. To reduce computation and
training time with guaranteed accuracy, the top 40 features in
order of importance during small-sample testing processes
are used for the following model training and hindcasting.
These features included visibility, temporal features, spatial
features, emission features, and elevation.

2.3 Gridded input construction

In the previous construction of input features for PM2.5 sites,
we used location information, time information, meteoro-
logical information from 20 surrounding meteorological sta-
tions, emission information, and elevation. If we assume that
each cell in the grid cells is a virtual PM2.5 site, then it is
possible to generate input features for each grid point. After
the model is trained based on input features and PM2.5 con-
centrations at real PM2.5 sites, we can feed the gridded input
data into the model in turn and, consequently, construct a
gridded PM2.5 network. Therefore, we define a grid area at
0.25 ◦× 0.25◦ with longitude from 70 to 150◦ E and latitude

from 10 to 60◦ N and select the grid points covering mainland
China. For each grid point, we performed spatiotemporal fea-
ture extraction and generated the same 71 input features as
those of real PM2.5 sites.

2.4 Model description

LightGBM is one of the state-of-the-art gradient boosting
frameworks with better accuracy, lower memory usage, faster
training speed, and the capability of handling large-scale
data (Ke et al., 2017). Our previous research used this ma-
chine learning model to predict PM2.5 mass concentrations,
which shows an unprecedented predictive capacity on hourly,
daily, monthly, and annual timescales (Zhong et al., 2021).
This study will continue to use this algorithm and previ-
ously tuned hyperparameters for model development (Zhong
et al., 2021). For hindcasting historical PM2.5 datasets prior
to 2013, a LightGBM model is trained and validated based
on PM2.5 observations and feature inputs from 2013 to 2020.
The hindcast capability is validated using cross-validation
methods, which are standard methods for parameter tun-
ing and model validation in machine learning. The training
dataset is divided into several parts, one of them is used as
test data and the remaining parts are used as training data
in turn. Each result yields a corresponding evaluation value,
which is then averaged to provide an estimate of the model’s
accuracy. This estimation is quantified by two metrics: the
coefficient of determination (R2) and root mean square er-
ror (RMSE). The hindcast capability is also validated using
PM2.5 observations from the US embassies in Beijing and
Shanghai, which have been observing PM2.5 data since as
early as 2008. After model training and validation, historical
6-hourly input data are inputted into this model to reconstruct
a site-based PM2.5 dataset at 6 h intervals from 1960 to 2020,
and gridded input data are inputted into the model to recon-
struct a 0.25◦× 0.25◦, 6-hourly, gridded PM2.5 dataset. The
daily, monthly, yearly, and decadal average PM2.5 concentra-
tions for each site and each grid are also calculated based on
the two datasets. Monthly average values were obtained with
daily values no less than 20 d; otherwise, they will be miss-
ing. Year-average values were calculated with 12 valid month
values and decadal-average values were calculated with 10
valid year-average values. The flowchart for reconstructing
PM2.5 datasets is shown in Fig. 1.

3 Results and discussion

3.1 Evaluation of model hindcast performance

The hindcast performance of our model is evaluated using
two CV methods, including 10-fold CV and by-year CV. The
10-fold CV partitions the original training datasets into 10
subsamples, one of which is retained as the validation data
in turn for testing the model and the remaining 9 subsamples
are used as training data. This method is the most common
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Figure 1. A conceptual scheme for constructing long-term historical site-based and gridded PM2.5 records based on long-term visibility,
conventional meteorological observations, emissions, and elevation.

CV that can be compared with results in other studies. How-
ever, 10-fold CV often overestimates the model’s ability to
hindcast continuous historical data. Therefore, we also use
by-year CV, during which one year of data is selected sequen-
tially for testing and the remaining data are used for model
training. This method is specifically designed to evaluate the
hindcast capability of the model.

Table 1 compares our dataset and the available datasets
in primary predictors, temporal resolution, and CV results
(Ma et al., 2016; Fang et al., 2016; Liu et al., 2017; Xiao et
al., 2018; Xue et al., 2019; Liang et al., 2020; Huang et al.,
2021; Wei et al., 2021a; Van Donkelaar et al., 2021; Geng
et al., 2021; Bai et al., 2022). AOD-based datasets are only
available from around 2000 at the earliest, with temporal res-
olutions ranging from daily scale to monthly scale. In con-
trast, our visibility-based dataset spans 61 years from 1960

to 2020 at 6-hourly intervals, showing a clear advantage in
terms of time span and resolution. The R2 and RMSE values
of our 10-fold CV results are 0.78 and 21.14 µgm−3 for 6-
hourly estimations, respectively, which indicates our model
is quite robust in estimating PM2.5. Due to a reduction in
data amount, the R2 and RMSE values further improved to
0.85 and 16.11 µgm−3 for daily estimations and 0.92 and
7.90 µgm−3 for monthly estimations. This result is compa-
rable to or even better than those of other available datasets
whose 10-fold CV R2 ranges from 0.61 to 0.80 on a daily
scale and from 0.71 to 0.93 on a monthly scale. Our by-year
CVs R2 and RMSE values are 0.71 and 25.63 µgm−3 for
6-hourly estimations, which indicates our model is still ro-
bust in hindcast performance. The by-year CV R2 values for
daily and monthly estimations (0.78 and 0.83) are higher than
those in other available datasets (0.41–0.62 and 0.80), which
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Table 1. Model performance in primary predictors, temporal resolution, and hindcast capability compared with other national PM2.5 datasets
in China.

Related studies Primary predictors Temporal resolution CV type CV resolution CV R2 CV RMSE

Ma et al. (2016) AOD daily (2004–2013) 10-fold CV daily 0.79 27.40
by-year CV 0.41

Fang et al. (2016) AOD daily (2013–2014) 10-fold CV daily 0.80 22.80

Liu et al. (2017) Visibility monthly (1957–1964,
1973–2014)

10-fold CV monthly 0.71 25.62

Xiao et al. (2018) AOD daily (2013–2017) 10-fold CV daily 0.79 21.00

Xue et al. (2019) AOD, CTM outputs daily (2000–2016) by-year CV daily 0.61 27.80

Liang et al. (2020) AOD monthly (2000–2016) 10-fold CV monthly 0.93 6.20

Huang et al. (2021) AOD, CTM outputs daily (2013–2019) 10-fold CV daily 0.87–0.88 11.90–21.90
by-year CV 0.62 27.70

Wei et al. (2021a) AOD monthly (2000–2020) 10-fold CV monthly 0.86–0.90 10.00–18.40
by-year CV 0.80 11.26

van Donkelaar et al. (2021) AOD, CTM outputs monthly (1998–2020) non-CV yearly 0.69 11.90

Geng et al. (2021) AOD, CTM outputs daily (2000–2020) out-of-bag CV daily 0.80–0.88 13.90–22.10
by-year CV 0.58 27.50

Bai et al. (2022) AOD daily (2000–2020) 10-fold CV daily 0.79 20.04

Our study Visibility 6-hourly (1960–2020) 10-fold CV hourly/6-hourly 0.79 20.07
6-hourly 0.78 21.14
daily 0.85 16.11
monthly 0.92 7.90

by-year CV hourly/6-hourly 0.70 26.36
6-hourly 0.71 25.63
daily 0.78 20.90
monthly 0.83 13.37

might be partly attributed to spatial feature extraction and the
large volume of our training dataset. Zhong et al. (2021) has
shown that extracting spatial features can result in a better
hindcast performance by fully representing dimensional het-
erogeneity. Compared to hundreds of thousands to millions
of training samples in AOD-based models, the training sam-
ples for the visibility-based model are over 100 million. An
increase in the order of magnitude for training datasets will
yield better results in machine learning.

The refined by-year CV results for each year between
2013–2020 are shown in Fig. 2. The by-year CV R2 lies
between 0.58 and 0.79 with better hindcast performance af-
ter 2014. The potential reasons why the R2 value in 2013
is slightly lower than those in other years are as follows.
First, the PM2.5 observation network was just established
in 2013, during which dehumidification systems, processing
procedures, and data quality control methods were incom-
plete and, therefore, the overall data quality cannot be guar-
anteed. With the improvement of the observation network af-
ter 2014, both the quality and quantity of observations in-
crease significantly. This situation where data quality is rel-
atively low initially but increases over time is also found in

O3 observations. Second, the CMA began to convert some
of the manual visibility observations to automatic observa-
tions in 2013, during which there were also some irregular
procedures in instrument equipment, observation steps, and
data quality control. Lastly, although we have corrected the
biases between manual and automated observations, some bi-
ases may still exist. However, the biases are further reduced
as we integrate all manual visibility observations in 2013 into
our training dataset.

The model’s hindcast capability is further evaluated inde-
pendently using pre-2013 PM2.5 observations. For the PM2.5
data currently available, only the US embassies in Beijing
and Shanghai have at least one year’s PM2.5 observations.
Therefore, PM2.5 data from these two sites are applied as an
independent evaluation dataset. Figure 3 shows our estimated
PM2.5 are in close agreement with in situ measurements in
Beijing and Shanghai, where the overall R2 between obser-
vations and estimations is 0.74 and 0.79, respectively. For
each year between 2008–2012 in Beijing, the R2 values fluc-
tuated between 0.70 and 0.81, reflecting a stable and accurate
by-year hindcast capability. As shown in Fig. 3c–h, the low
values, high values, and temporal variations in PM2.5 mea-
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Figure 2. Density scatterplots of observed PM2.5 and estimated PM2.5 across China for by-year CV from 2013 to 2020. The time resolution
for CV results is hourly and 6-hourly between 2013-2017 and hourly between 2017–2020. Colors are probability distribution densities.

surements are all well estimated. In particular, PM2.5 mea-
surements are lacking at the US Embassy in Beijing in early
2008 and around 2009, but our model can provide reason-
able and continuous estimations to fill in the gaps. This abil-
ity can also be used to fill in missing PM2.5 observations of
MEE from 2013 onwards, building a complete PM2.5 dataset.
Overall, the independent validation results show that histori-
cal PM2.5 data can be well reconstructed by our model.

The model’s ability to make PM2.5 predictions at locations
outside the scope of the training stations is evaluated by spa-
tial CV. For spatial CV, all the monitoring stations are ran-
domly divided into five subsets, and the model is trained us-
ing data from four subsets and tested on the data from the re-
maining subset each time. As shown in Fig. 4, theR2 for spa-
tial cross-validation in different groups is between 0.75 and
0.79, reflecting robust predictive power for PM2.5 concentra-
tions at sites outside the training sites. Our previous study
also examined this predictive ability using PM2.5 data from
23 untouched regional PM2.5 stations (Zhong et al., 2021).

3.2 Spatiotemporal variations in the site-based PM2.5
dataset during 1960–2020

Figure 5 shows the spatiotemporal variations in annual av-
erage site-based PM2.5 between 1960–2020. The trend of
PM2.5 in China experiences three major stages, correspond-
ing to a slow increase under low concentrations between
1960–1978, a continuous accumulation with high concentra-
tions reached between 1979–2013, and a rapid decrease be-
tween 2014–2020. During the first stage, though PM2.5 pol-
lution occurred in parts of the NCP and the Guanzhong Plain
(GZP), PM2.5 concentrations remain low in the vast majority
of areas. This is mainly because anthropogenic emissions of
PM2.5 precursors and primary PM2.5 grow slowly at a low

base, resulting in relatively low total emissions in different
regions. However, PM2.5 pollution still occurring in the NCP
and GZP, even with relatively low emissions, indicates the
low environmental capacity of these two regions. During the
second stage, PM2.5 reached an unprecedentedly high con-
centration after a continuous increase in nearly all regions
in China. The heaviest PM2.5 pollution occurred in the NCP
and the GZP. The SB and the Northeast China Plain (NeCP)
are the polluted regions with the next highest PM2.5 pollu-
tion. Even the YRD and the PRD also experienced PM2.5
pollution during this stage. This worsening of PM2.5 pollu-
tion is closely associated with massive anthropogenic emis-
sions from rapidly increasing living and industrial activities
after reform and opening-up policies. From 1979 to 2013,
primary PM2.5, NOx , SO2, NH3, BC, OC, and CO from the
Peking emission inventory increased by 98 %, 457 %, 159 %,
117 %, 45 %,−22 %, and 243 %, respectively. Despite a slow
reduction in SO2 after 2006, the total anthropogenic emis-
sions each year still increased and thereby caused high-level
PM2.5 pollution after 2006. The results indicate that air pol-
lutants cannot be emitted without restraint even in regions
with high atmospheric capacity. Otherwise, PM2.5 pollution
will inevitably occur. In addition to anthropogenic emissions,
sand and dust storms, resulting in high PM2.5 concentrations
in western Xinjiang, worsened PM2.5 pollution by trans-
regional transport from the desert regions. During the last
stage, PM2.5 decreased nationwide with the mass concentra-
tions in nearly all stations approximately or below 35 µgm−3

in 2020, even in the NCP and the GZP with limited environ-
mental capacity. The substantial declines in PM2.5 illustrate
the effectiveness of implementing the toughest ever clean air
policy in China. The spatiotemporal variations of PM2.5 be-
tween 1960–2020 clearly show the long-term impact of eco-
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Figure 3. (a) Density scatterplots of observed PM2.5 and estimated PM2.5 between 2008–2012 at the US Embassy in Beijing; (b) density
scatterplots of observed PM2.5 and estimated PM2.5 in 2012 at the US Embassy in Shanghai; (c–g) time series of observed PM2.5 and
estimated PM2.5 for each year between 2008–2012 at the US Embassy in Beijing; and (h) time series of observed PM2.5 and estimated
PM2.5 for each year in 2012 at the US Embassy in Shanghai.

Figure 4. Density scatterplots of observed PM2.5 and estimated PM2.5 for each group of spatial CV results.
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Figure 5. Spatial distribution of annual average PM2.5 mass concentration at 1485 stations from 1960 to 2020.

nomic development and energy consumption on our air qual-
ity and the effectiveness of recent years’ unprecedented emis-
sion control policies.

The specific turning points in annual PM2.5 concentrations
for different regions were investigated additionally. Figure 6
shows the temporal variations in national average monthly
and yearly PM2.5 mass concentrations and regional aver-
age 6-hourly, monthly, and yearly PM2.5 mass concentra-
tions in “2+ 26” cities of the NCP, the YRD, the PRD, and
the SB. The national average yearly PM2.5 reached a peak
of 67 µgm−3 in 2007, declined in 2008, and then remained
steady until 2013. A sharp fall followed after 2014, with
PM2.5 concentrations decreasing from 63 µgm−3 in 2013 to
34 µgm−3 in 2020. The annual PM2.5 concentrations in the
“2+ 26” cities also experienced similar changes with a peak
in 2007 and a reduction in 2008, which might be related to
emission reductions for the Beijing Olympics in 2008. For
the YRD, the maximum value of PM2.5 mass concentration

occurred in 2013 without a striking peak in 2007. For the
PRD, the annual PM2.5 concentrations increased steadily be-
tween 1960–1978, then rose more and more steeply in the
following years, with a steep increase in 2003 and 2004 and
peaked in 2004. A steady decrease with slight fluctuation oc-
curred from 2005 to 2013, and then a sharp fall followed
after 2014. This trend is different from that in the “2+ 26”
cities and the YRD. For the SB, the turning point occurred
in 2013, before which the annual PM2.5 concentrations in-
creased steadily and remained steady.

3.3 Detailed spatial distributions from gridded PM2.5
datasets

Figure 7 shows the annual spatial variations in 0.25◦× 0.25◦

gridded PM2.5 between 1960–2020. Compared to site-based
distributions, gridded PM2.5 can portray the spatiotemporal
variations in a clearer and more detailed way. For example,
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Figure 6. (a) The spatial distribution of average PM2.5 mass concentrations between 1960–2020 and the (b–f) time series of average PM2.5
mass concentrations for all sites in China (b), “2+ 26” cities (c), Yangtze River Delta (d), Pearl River Delta (e) and Sichuan Basin (f),
respectively.

the most widespread and heaviest PM2.5 pollution in western
Xinjiang occurred in 1979. This abnormal pollution corre-
sponds to the historical construction of northern severe dust
storms, which recorded the event with the largest affected ar-
eas in April 1979 (Zhou and Zhang, 2003). As exposed to
nearly the most frequent air stagnation in winter due to ter-
rain and meteorological conditions (Wang et al., 2018), the
NCP is the region with PM2.5 pollution first to appear and
last to disappear, except for areas affected by dust storms
(Fig. 7). For year-to-year comparisons, it can be clearly seen
that PM2.5 concentrations in the NCP decreased slightly from
2007 to 2008 and from 2012 to 2013, respectively, and de-
creased significantly in 2014 relative to 2013. The PM2.5 re-
duction is insignificant from 2015 to 2016, but striking from
2016 to 2017. In 2020, the nationwide PM2.5 concentrations
are comparable to those in the 1960s and close to the lowest
level ever recorded in almost 61 years.

Figure 8 shows inter-decadal spatial variations in grid-
ded PM2.5 between 1961–2020. PM2.5 concentrations main-
tained at low levels in most areas over the first decade and in-
creased to a certain extent in the NCP and western Xinjiang
over the second decade. In the following decades, PM2.5 pol-
lution has worsened significantly in several key regions, in-
cluding the NCP, the GZP, and the SB. This worsening was
maintained until the last decade, during which PM2.5 pollu-
tion mitigates significantly in nearly all populous and pol-
luted regions in eastern China.

The multi-year trend of our gridded PM2.5 dataset is also
compared with those of publicly available datasets, includ-
ing the TAP data (Geng et al., 2021), the GEFPM data (Van
Donkelaar et al., 2021), the LGHAP data (Bai et al., 2022),
and the CHAP data (Wei et al., 2021a), which have been in-
terpolated to the same grid resolution. Figure 9 shows the
spatial distributions of PM2.5 from those datasets at 5-year
intervals between 2000–2020. One consistent trend across
all datasets was that nationwide PM2.5 mass concentrations
experienced an increase following a decrease from 2000 to
2020. However, the turning points are different for differ-
ent datasets. From 2010 to 2015, PM2.5 pollution alleviated
for TAP, CHAP, and our data, but worsened for GEFPM and
LGHAP. For the time (2015 and 2020) with ground obser-
vations available, all PM2.5 data show similar spatial distri-
butions with the most severe pollution in the NCP in 2015
and significant improvement in nationwide air pollution in
2020. For the years (2000, 2005, and 2010) when ground
observations were unavailable, significant disparities in pol-
lution levels and regional distribution emerged from differ-
ent datasets. Specifically, the LGHAP data are significantly
lower than other data, while the TAP data are higher than oth-
ers in nearly all regions except western Xinjiang. In western
Xinjiang, PM2.5 concentrations from the GEFPM data are
the highest among all the datasets. Due to a lack of ground
PM2.5 observations before 2000, it is challenging to deter-
mine which dataset has the least bias and more reasonable
distributions. In the future, applying an ensemble average to
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Figure 7. Gridded distribution of annual average PM2.5 mass concentration from 1960 to 2020.

Figure 8. Gridded distribution of decadal average PM2.5 mass concentration from 1960 to 2020.
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Figure 9. Distribution of reconstructed PM2.5 by different PM2.5 datasets in 2000, 2005, 2010, 2015, and 2020. From top to down are TAP,
GEFPM, LGHAP, CHAP, and our dataset.

multi-datasets might be an effective way to eliminate system-
atic bias.

4 Data availability

The 6-hourly PM2.5 datasets from 1960 to 2020, in-
cluding site-based and gridded data, are publicly acces-
sible. Daily, monthly, and yearly sited-based and gridded
PM2.5 datasets are also provided. The sited-based PM2.5
dataset is in the CSV format and the gridded dataset
PM2.5 is in the NETCDF format. All of them are avail-
able at https://doi.org/10.5281/zenodo.6372847 (Zhong et
al., 2022).

5 Conclusion

This study is among the first to generate long-term site-
based and gridded PM2.5 datasets between 1960–2020 with
6-hourly resolution, based on long-term visibility, conven-
tional meteorological observations, emissions, and elevation.
A new feature engineering method that takes advantage of
spatial features from 20 surrounding meteorological stations
is employed in our LightGBM model to incorporate spa-
tial effects of meteorological conditions. For by-year CV,
the R2 values of our model are 0.71, 0.78, and 0.83 for 6-
hourly, daily, and monthly estimations, respectively, which
are higher than those in other available datasets (0.41–0.62).
This hindcast capability is further evaluated independently
using pre-2013 PM2.5 data of 6 years from US embassies
in Beijing and Shanghai. The low values, high values, and
temporal variations in US-embassy PM2.5 measurements are
all well estimated, with the overall R2 being 0.74 and 0.79
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in Beijing and Shanghai, respectively. Both by-year CV and
independent validation show that our model has a stable by-
year hindcast capability and can reconstruct historical PM2.5
data in a relatively accurate way. Our datasets show that
PM2.5 variations in China experience a slow increase under
low concentrations between 1960–1978, a continuous accu-
mulation with high concentrations reached between 1979–
2013, and a rapid decrease between 2014–2020. The worsen-
ing of PM2.5 pollution is closely associated with massive an-
thropogenic emissions after reform and opening-up policies,
while the substantial declines in PM2.5 are mainly due to the
implementation of the toughest ever clean air policy in China.
In 2020, the nationwide PM2.5 concentrations were close
to the lowest recorded level in almost 61 years. These two
reconstructed PM2.5 datasets provide spatiotemporal varia-
tions at high resolution, which lay the foundation for research
studies associated with air pollution, climate change, and at-
mospheric chemical reanalysis. It is worth noting that our
datasets still have some weaknesses, with the main weakness
being a lack of detailed bias estimations for each value in our
datasets due to limited historical observations. In the future,
we will collect as many PM2.5 observations as possible to
validate the accuracy of our datasets and provide evaluations
of uncertainty for our datasets.
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