Articles | Volume 13, issue 1
https://doi.org/10.5194/essd-13-99-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-99-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GOCO06s – a satellite-only global gravity field model
Institute of Geodesy, Graz University of Technology,
Steyrergasse 30/III, 8010 Graz, Austria
Jan Martin Brockmann
Institute of Geodesy and Geoinformation, University of Bonn,
Nußallee 17, 53115 Bonn, Germany
Sandro Krauss
Institute of Geodesy, Graz University of Technology,
Steyrergasse 30/III, 8010 Graz, Austria
Austrian Academy of Sciences, Space Research Institute, Schmiedlstraße 6, 8042 Graz, Austria
Till Schubert
Institute of Geodesy and Geoinformation, University of Bonn,
Nußallee 17, 53115 Bonn, Germany
Thomas Gruber
Astronomical and Physical Geodesy,
Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
Ulrich Meyer
Astronomical Institute, University of Bern,
Sidlerstrasse 5, 3012 Bern, Switzerland
Torsten Mayer-Gürr
Institute of Geodesy, Graz University of Technology,
Steyrergasse 30/III, 8010 Graz, Austria
Wolf-Dieter Schuh
Institute of Geodesy and Geoinformation, University of Bonn,
Nußallee 17, 53115 Bonn, Germany
Adrian Jäggi
Astronomical Institute, University of Bern,
Sidlerstrasse 5, 3012 Bern, Switzerland
Roland Pail
Astronomical and Physical Geodesy,
Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
Related authors
Martin Lasser, Ulrich Meyer, Adrian Jäggi, Torsten Mayer-Gürr, Andreas Kvas, Karl Hans Neumayer, Christoph Dahle, Frank Flechtner, Jean-Michel Lemoine, Igor Koch, Matthias Weigelt, and Jakob Flury
Adv. Geosci., 55, 1–11, https://doi.org/10.5194/adgeo-55-1-2020, https://doi.org/10.5194/adgeo-55-1-2020, 2020
Short summary
Short summary
Correctly determining the orbit of Earth-orbiting satellites requires to account multiple background effects which appear in the system Earth. Usually, these effects are introduced by various complex force models, which are not always easy to handle. We publish and validate a data set of commonly used models to make it easier to track down potential issues when applying such background forces in orbit and gravity field determination.
Ben T. Gouweleeuw, Andreas Kvas, Christian Gruber, Animesh K. Gain, Thorsten Mayer-Gürr, Frank Flechtner, and Andreas Güntner
Hydrol. Earth Syst. Sci., 22, 2867–2880, https://doi.org/10.5194/hess-22-2867-2018, https://doi.org/10.5194/hess-22-2867-2018, 2018
Short summary
Short summary
Daily GRACE gravity field solutions have been evaluated against daily river runoff data for major flood events in the Ganges–Brahmaputra Delta in 2004 and 2007. Compared to the monthly gravity field solutions, the trends over periods of a few days in the daily gravity field solutions are able to reflect temporal variations in river runoff during major flood events. This implies that daily gravity field solutions released in near-real time may support flood monitoring for large events.
Maksym Vasiuta, Angel Navarro Trastoy, Sanam Motlaghzadeh, Lauri Tuppi, Torsten Mayer-Gürr, and Heikki Järvinen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-136, https://doi.org/10.5194/gmd-2024-136, 2024
Preprint under review for GMD
Short summary
Short summary
Propagation of electromagnetic signals in the Earth's neutral atmosphere inflicts errors in space geodetic observations. To model these errors as accurately as possible, it is necessary to use a signal ray tracing algorithm which is informed of the state of the atmosphere. We developed such algorithm and tested it by modelling errors in GNSS network observations. Our algorithm's main advantage is loss-less utilization of atmospheric information provided by numerical weather prediction models.
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Angel Navarro Trastoy, Sebastian Strasser, Lauri Tuppi, Maksym Vasiuta, Markku Poutanen, Torsten Mayer-Gürr, and Heikki Järvinen
Geosci. Model Dev., 15, 2763–2771, https://doi.org/10.5194/gmd-15-2763-2022, https://doi.org/10.5194/gmd-15-2763-2022, 2022
Short summary
Short summary
Production of satellite products relies on information from different centers. By coupling a weather model and an orbit determination solver we eliminate the dependence on one of the centers. The coupling has proven to be possible in the first stage, where no formatting has been applied to any of the models involved. This opens a window for further development and improvement to a coupling that has proven to be as good as the predecessor model.
Martin Lasser, Ulrich Meyer, Adrian Jäggi, Torsten Mayer-Gürr, Andreas Kvas, Karl Hans Neumayer, Christoph Dahle, Frank Flechtner, Jean-Michel Lemoine, Igor Koch, Matthias Weigelt, and Jakob Flury
Adv. Geosci., 55, 1–11, https://doi.org/10.5194/adgeo-55-1-2020, https://doi.org/10.5194/adgeo-55-1-2020, 2020
Short summary
Short summary
Correctly determining the orbit of Earth-orbiting satellites requires to account multiple background effects which appear in the system Earth. Usually, these effects are introduced by various complex force models, which are not always easy to handle. We publish and validate a data set of commonly used models to make it easier to track down potential issues when applying such background forces in orbit and gravity field determination.
Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Adv. Geosci., 50, 101–113, https://doi.org/10.5194/adgeo-50-101-2020, https://doi.org/10.5194/adgeo-50-101-2020, 2020
Short summary
Short summary
We compute gravity field solutions from kinematic orbit positions of GRACE. These positions are derived from GPS based observations, and hence, they are contaminated by measurement noise. We present three methods of dealing with the noise in the data to obtain not only high-quality gravity field solutions but also an accurate quality information of the gravity fields.
João Teixeira da Encarnação, Pieter Visser, Daniel Arnold, Aleš Bezdek, Eelco Doornbos, Matthias Ellmer, Junyi Guo, Jose van den IJssel, Elisabetta Iorfida, Adrian Jäggi, Jaroslav Klokocník, Sandro Krauss, Xinyuan Mao, Torsten Mayer-Gürr, Ulrich Meyer, Josef Sebera, C. K. Shum, Chaoyang Zhang, Yu Zhang, and Christoph Dahle
Earth Syst. Sci. Data, 12, 1385–1417, https://doi.org/10.5194/essd-12-1385-2020, https://doi.org/10.5194/essd-12-1385-2020, 2020
Short summary
Short summary
Although not the primary mission of the Swarm three-satellite constellation, the sensors on these satellites are accurate enough to measure the melting and accumulation of Earth’s ice reservoirs, precipitation cycles, floods, and droughts, amongst others. Swarm sees these changes well compared to the dedicated GRACE satellites at spatial scales of roughly 1500 km. Swarm confirms most GRACE observations, such as the large ice melting in Greenland and the wet and dry seasons in the Amazon.
Cyril Kobel, Daniel Arnold, and Adrian Jäggi
Adv. Geosci., 50, 27–37, https://doi.org/10.5194/adgeo-50-27-2019, https://doi.org/10.5194/adgeo-50-27-2019, 2019
Short summary
Short summary
In this article we analyze the benefit of computing a combined solution from individual orbit solutions for the low Earth orbiting satellite Sentinel-3A. The selected combination scheme for calculating the combined solution is Variance Component Estimation. It could be shown that a combination of individual solutions can be beneficial in terms of Satellite Laser Ranging validation. In our opinion the findings are well transferable to other satellite missions.
Saniya Behzadpour, Torsten Mayer-Gürr, Jakob Flury, Beate Klinger, and Sujata Goswami
Geosci. Instrum. Method. Data Syst., 8, 197–207, https://doi.org/10.5194/gi-8-197-2019, https://doi.org/10.5194/gi-8-197-2019, 2019
Short summary
Short summary
In this paper, we present an approach to represent underlying errors in measurements and physical models in the temporal gravity field determination using GRACE observations. This study provides an opportunity to improve the error model and the accuracy of the GRACE parameter estimation, as well as its successor GRACE Follow-On.
Lucas Schreiter, Daniel Arnold, Veerle Sterken, and Adrian Jäggi
Ann. Geophys., 37, 111–127, https://doi.org/10.5194/angeo-37-111-2019, https://doi.org/10.5194/angeo-37-111-2019, 2019
Short summary
Short summary
Comparing Swarm GPS-only gravity fields to the ultra-precise GRACE K-Band gravity field schematic errors occurs around the geomagnetic equator. Due to the end of the GRACE mission, and the gap to the GRACE-FO mission, only Swarm can provide a continuous time series of gravity fields. We present different and assess different approaches to remove the schematic errors and thus improve the quality of the Swarm gravity fields.
Ben T. Gouweleeuw, Andreas Kvas, Christian Gruber, Animesh K. Gain, Thorsten Mayer-Gürr, Frank Flechtner, and Andreas Güntner
Hydrol. Earth Syst. Sci., 22, 2867–2880, https://doi.org/10.5194/hess-22-2867-2018, https://doi.org/10.5194/hess-22-2867-2018, 2018
Short summary
Short summary
Daily GRACE gravity field solutions have been evaluated against daily river runoff data for major flood events in the Ganges–Brahmaputra Delta in 2004 and 2007. Compared to the monthly gravity field solutions, the trends over periods of a few days in the daily gravity field solutions are able to reflect temporal variations in river runoff during major flood events. This implies that daily gravity field solutions released in near-real time may support flood monitoring for large events.
Christiane Meyer, Ulrich Meyer, Andreas Pflitsch, and Valter Maggi
The Cryosphere, 10, 879–894, https://doi.org/10.5194/tc-10-879-2016, https://doi.org/10.5194/tc-10-879-2016, 2016
Short summary
Short summary
In the paper a new method to calculate airflow speeds in static ice caves by using air temperature data is presented. As most study sites are in very remote places, where it is often not possible to use sonic anemometers and other devices for the analysis of the cave climate, we show how one can use the given database for calculating airflow speeds. Understanding/quantifying all elements of the specific cave climate is indispensable for understanding the evolution of the ice body in ice caves.
S. Krauss, M. Pfleger, and H. Lammer
Ann. Geophys., 32, 1305–1309, https://doi.org/10.5194/angeo-32-1305-2014, https://doi.org/10.5194/angeo-32-1305-2014, 2014
Related subject area
Geosciences – Geodesy
HydroSat: geometric quantities of the global water cycle from geodetic satellites
The cooperative IGS RT-GIMs: a reliable estimation of the global ionospheric electron content distribution in real time
RECOG RL01: correcting GRACE total water storage estimates for global lakes/reservoirs and earthquakes
Open access to regional geoid models: the International Service for the Geoid
Description of the multi-approach gravity field models from Swarm GPS data
ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans
Mohammad J. Tourian, Omid Elmi, Yasin Shafaghi, Sajedeh Behnia, Peyman Saemian, Ron Schlesinger, and Nico Sneeuw
Earth Syst. Sci. Data, 14, 2463–2486, https://doi.org/10.5194/essd-14-2463-2022, https://doi.org/10.5194/essd-14-2463-2022, 2022
Short summary
Short summary
HydroSat as a global water cycle database provides estimates of and uncertainty in geometric quantities of the water cycle: (1) surface water extent of lakes and rivers, (2) water level time series of lakes and rivers, (3) terrestrial water storage anomaly, (4) water storage anomaly of lakes and reservoirs, and (5) river discharge estimates for large and small rivers.
Qi Liu, Manuel Hernández-Pajares, Heng Yang, Enric Monte-Moreno, David Roma-Dollase, Alberto García-Rigo, Zishen Li, Ningbo Wang, Denis Laurichesse, Alexis Blot, Qile Zhao, Qiang Zhang, André Hauschild, Loukis Agrotis, Martin Schmitz, Gerhard Wübbena, Andrea Stürze, Andrzej Krankowski, Stefan Schaer, Joachim Feltens, Attila Komjathy, and Reza Ghoddousi-Fard
Earth Syst. Sci. Data, 13, 4567–4582, https://doi.org/10.5194/essd-13-4567-2021, https://doi.org/10.5194/essd-13-4567-2021, 2021
Short summary
Short summary
The upper part of the atmosphere, the ionosphere, is partially ionized, and it is being crossed by many multi-frequency signals of the Global Navigation Satellite System (GNSS) satellites. This unique source of data can be acquired in real time from hundreds of permanent GNSS receivers. The real-time processing providing the distribution of the ionospheric free electrons (Global Ionospheric Maps) can be done as well in real time. We present their updated real-time assessment and combination.
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021, https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Short summary
GRACE provides us with global changes of terrestrial water storage. However, the data have a low spatial resolution, and localized storage changes in lakes/reservoirs or mass change due to earthquakes causes leakage effects. The correction product RECOG RL01 presented in this paper accounts for these effects. Its application allows for improving calibration/assimilation of GRACE into hydrological models and better drought detection in earthquake-affected areas.
Mirko Reguzzoni, Daniela Carrion, Carlo Iapige De Gaetani, Alberta Albertella, Lorenzo Rossi, Giovanna Sona, Khulan Batsukh, Juan Fernando Toro Herrera, Kirsten Elger, Riccardo Barzaghi, and Fernando Sansó
Earth Syst. Sci. Data, 13, 1653–1666, https://doi.org/10.5194/essd-13-1653-2021, https://doi.org/10.5194/essd-13-1653-2021, 2021
Short summary
Short summary
The International Service for the Geoid provides free access to a repository of geoid models. The most important ones are freely available to perform analyses on the evolution of the geoid computation research field. Furthermore, the ISG performs research taking advantage of its archive and organizes specific training courses on geoid determination. This paper aims at describing the service and showing the added value of the archive of geoid models for the scientific community and technicians.
João Teixeira da Encarnação, Pieter Visser, Daniel Arnold, Aleš Bezdek, Eelco Doornbos, Matthias Ellmer, Junyi Guo, Jose van den IJssel, Elisabetta Iorfida, Adrian Jäggi, Jaroslav Klokocník, Sandro Krauss, Xinyuan Mao, Torsten Mayer-Gürr, Ulrich Meyer, Josef Sebera, C. K. Shum, Chaoyang Zhang, Yu Zhang, and Christoph Dahle
Earth Syst. Sci. Data, 12, 1385–1417, https://doi.org/10.5194/essd-12-1385-2020, https://doi.org/10.5194/essd-12-1385-2020, 2020
Short summary
Short summary
Although not the primary mission of the Swarm three-satellite constellation, the sensors on these satellites are accurate enough to measure the melting and accumulation of Earth’s ice reservoirs, precipitation cycles, floods, and droughts, amongst others. Swarm sees these changes well compared to the dedicated GRACE satellites at spatial scales of roughly 1500 km. Swarm confirms most GRACE observations, such as the large ice melting in Greenland and the wet and dry seasons in the Amazon.
E. Sinem Ince, Franz Barthelmes, Sven Reißland, Kirsten Elger, Christoph Förste, Frank Flechtner, and Harald Schuh
Earth Syst. Sci. Data, 11, 647–674, https://doi.org/10.5194/essd-11-647-2019, https://doi.org/10.5194/essd-11-647-2019, 2019
Short summary
Short summary
ICGEM is a non-profit scientific service that contributes to any research area in which the use of gravity information is essential. ICGEM offers the largest collection of global gravity field models, interactive calculation and visualisation services and delivers high-quality datasets to researchers and students in geodesy, geophysics, glaciology, hydrology, oceanography, and climatology and most importantly general public. Static, temporal, and topographic gravity field models are available.
Cited articles
Abrehdary, M., Sjoberg, L. E., Bagherbandi, M., and Sampietro, D.: Towards the
Moho Depth and Moho Density Contrast along with Their Uncertainties
from Seismic and Satellite Gravity Observations, J. Appl. Geod.,
11, 231–247, https://doi.org/10.1515/jag-2017-0019, 2017. a
Battrick, B. (Ed.): The Four Candidate Earth Explorer Core Missions –
Gravity Field and Steady-State Ocean Circulation, vol. 1233 of ESA SP, ESA Publications Division, Noordwijk, Netherlands, 1999. a
Beutler, G., Jäggi, A., Mervart, L., and Meyer, U.: The Celestial Mechanics
Approach: Theoretical Foundations, J. Geodesy, 84, 605–624,
https://doi.org/10.1007/s00190-010-0401-7, 2010. a
Bezděk, A., Sebera, J., Teixeira da Encarnação, J., and
Klokočník, J.: Time-Variable Gravity Fields Derived from GPS
Tracking of Swarm, Geophys. J. Int., 205, 1665–1669,
https://doi.org/10.1093/gji/ggw094, 2016. a
Bingham, R. J., Haines, K., and Lea, D. J.: How Well Can We Measure the Ocean's
Mean Dynamic Topography from Space?, J. Geophys. Res.-Oceans,
119, 3336–3356, https://doi.org/10.1002/2013JC009354, 2014. a
Bloßfeld, M., Müller, H., Gerstl, M., Štefka, V., Bouman, J.,
Göttl, F., and Horwath, M.: Second-degree Stokes coefficients from
multi-satellite SLR, J. Geodesy, 89, 857–871,
https://doi.org/10.1007/s00190-015-0819-z,
2015. a
Bloßfeld, M., Rudenko, S., Kehm, A., Panafidina, N., Müller, H.,
Angermann, D., Hugentobler, U., and Seitz, M.: Consistent Estimation of
Geodetic Parameters from SLR Satellite Constellation Measurements,
J. Geodesy, 92, 1003–1021, https://doi.org/10.1007/s00190-018-1166-7, 2018. a
Bock, H., Jäggi, A., Beutler, G., and Meyer, U.: GOCE: precise orbit
determination for the entire mission, J. Geodesy, 88, 1047–1060,
https://doi.org/10.1007/s00190-014-0742-8,
2014. a
Bowman, B. R., Tobiska, W. K., Marcos, F. A., Huang, C. Y., Lin, C. S., and
Burke, W. J.: A new empirical thermospheric density model JB2008 using new
solar and geomagnetic indices, in: AIAA/AAS Astrodynamics Specialist
Conference and Exhibit, American Institute of Aeronautics and Astronautics,
https://doi.org/10.2514/6.2008-6438,
2008. a
Brockmann, J. M., Zehentner, N., Höck, E., Pail, R., Loth, I.,
Mayer-Gürr, T., and Schuh, W.-D.: EGM_TIM_RL05: An
Independent Geoid with Centimeter Accuracy Purely Based on the GOCE
Mission, Geophys. Res. Lett., 41, 8089–8099,
https://doi.org/10.1002/2014GL061904, 2014. a, b, c, d
Brockmann, J. M., Schubert, T., Mayer-Gürr, T., and Schuh, W.-D.: The
Earth's Gravity Field as Seen by the GOCE Satellite – an Improved
Sixth Release Derived with the Time-Wise Approach
(GO_CONS_GCF_2_TIM_R6), ICGEM,
https://doi.org/10.5880/icgem.2019.003,
2019. a, b
Brockmann, J. M., Schubert, T., and Schuh, W.-D.: An Improved Model of the
Earth's Static Gravity Field Solely Derived from Reprocessed GOCE
Data, Surv. Geophys. https://doi.org/10.1007/s10712-020- 09626-0, online first, 2021. a, b, c
Bruinsma, S., Lemoine, J.-M., Biancale, R., and Valès, N.: CNES/GRGS 10-day
gravity field models (release 2) and their evaluation, Adv. Space
Res., 45, 587–601, https://doi.org/10.1016/j.asr.2009.10.012,
2010. a
Bruinsma, S. L., Förste, C., Abrikosov, O., Marty, J.-C., Rio, M.-H.,
Mulet, S., and Bonvalot, S.: The New ESA Satellite-Only Gravity Field
Model via the Direct Approach, Geophys. Res. Lett., 40, 3607–3612,
https://doi.org/10.1002/grl.50716, 2013. a
Bruinsma, S. L., Förste, C., Abrikosov, O., Lemoine, J.-M., Marty, J.-C.,
Mulet, S., Rio, M.-H., and Bonvalot, S.: ESA's Satellite-Only Gravity
Field Model via the Direct Approach Based on All GOCE Data, Geophys.
Res. Lett., 41, GL062045, https://doi.org/10.1002/2014GL062045, 2014. a, b, c
Buckreuss, S., Balzer, W., Muhlbauer, P., Werninghaus, R., and Pitz,
W.: The terraSAR-X satellite project, in: IGARSS 2003, 2003 IEEE
International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat.
No.03CH37477), 5, 3096–3098, 2003. a
Carrere, L., Lyard, F., Cancet, M., and Guillot, A.: FES 2014, a New Tidal
Model on the Global Ocean with Enhanced Accuracy in Shallow Seas and in the
Arctic Region, in: EGU General Assembly, 17, p. 5481, Vienna,
Austria, available at: http://adsabs.harvard.edu/abs/2015EGUGA..17.5481C (last access: 20 January 2021),
2015. a
Chen, Q., Shen, Y., Francis, O., Chen, W., Zhang, X., and Hsu, H.:
Tongji-Grace02s and Tongji-Grace02k: High-Precision Static
GRACE-Only Global Earth's Gravity Field Models Derived by Refined
Data Processing Strategies, J. Geophys. Res.-Sol. Ea.,
123, 6111–6137, https://doi.org/10.1029/2018JB015641, 2018. a
Chen, W., Braitenberg, C., and Serpelloni, E.: Interference of Tectonic Signals
in Subsurface Hydrologic Monitoring through Gravity and GPS Due to
Mountain Building, Global Planet. Change, 167, 148–159,
https://doi.org/10.1016/j.gloplacha.2018.05.003, 2018. a
Cheng, M. and Ries, J.: The unexpected signal in GRACE estimates of
C20, J. Geodesy, 91, 897–914,
https://doi.org/10.1007/s00190-016-0995-5,
2017. a
Cheng, M., Ries, J. C., and Tapley, B. D.: Variations of the Earth's figure
axis from satellite laser ranging and GRACE, J. Geophys. Res.-Sol. Ea., 116, B01409, https://doi.org/10.1029/2010JB000850,
2011. a
Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer,
K., Abrykosov, O., Reinhold, A., König, R., Sulzbach, R., and Förste, C.: The
GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and
Quality Assessment, Remote Sensing, 11, 2116, https://doi.org/10.3390/rs11182116,
2019. a
Desai, S. D.: Observing the Pole Tide with Satellite Altimetry, J.
Geophys. Res.-Oceans, 107, 7–1–7–13, https://doi.org/10.1029/2001JC001224,
2002. a, b
Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle, C.,
Esselborn, S., König, R., and Flechtner, F.: A New High-Resolution Model
of Non-Tidal Atmosphere and Ocean Mass Variability for de-Aliasing of
Satellite Gravity Observations: AOD1B RL06, Geophys. J.
Int., 211, 263–269, https://doi.org/10.1093/gji/ggx302,
2017. a
Ebbing, J., Haas, P., Ferraccioli, F., Pappa, F., Szwillus, W., and Bouman, J.:
Earth Tectonics as Seen by GOCE – Enhanced Satellite Gravity Gradient
Imaging, Sci. Rep., 8, 16356, https://doi.org/10.1038/s41598-018-34733-9,
2018. a
Ellmer, M.: Contributions to GRACE Gravity Field Recovery: Improvements in
Dynamic Orbit Integration Stochastic Modelling of the Antenna Offset
Correction, and Co-Estimation of Satellite Orientations, PhD thesis, Graz
University of Technology (90000), https://doi.org/10.3217/978-3-85125-646-8, 2018. a
Farahani, H. H., Ditmar, P., Klees, R., Liu, X., Zhao, Q., and Guo, J.: The
Static Gravity Field Model DGM-1S from GRACE and GOCE Data:
Computation, Validation and an Analysis of GOCE Mission's Added Value,
J. Geodesy, 87, 843–867, https://doi.org/10.1007/s00190-013-0650-3, 2013. a, b, c
Farrell, S. L., McAdoo, D. C., Laxon, S. W., Zwally, H. J., Yi, D., Ridout, A.,
and Giles, K.: Mean Dynamic Topography of the Arctic Ocean, Geophys.
Res. Lett., 39, L01601, https://doi.org/10.1029/2011GL050052,
2012. a
Floberghagen, R., Fehringer, M., Lamarre, D., Muzi, D., Frommknecht, B.,
Steiger, C., Piñeiro, J., and da Costa, A.: Mission design, operation
and exploitation of the gravity field and steady-state ocean circulation
explorer mission, J. Geodesy, 85, 749–758,
https://doi.org/10.1007/s00190-011-0498-3, 2011. a
Folkner, W. M., Williams, J. G., and Boggs, D. H.: The Planetary and
Lunar Ephemeris DE 421, Tech. Rep. 42-178, Jet Propulsion Laborator,
Pasadena, California,
available at: http://adsabs.harvard.edu/abs/2009IPNPR.178C...1F (last access: 20 January 2021), 2009. a
Förste, C., Bruinsma, S., Abrikosov, O., Rudenko, S., Lemoine, J.-M.,
Marty, J.-C., Neumayer, K. H., and Biancale, R.: EIGEN-6S4 A
Time-Variable Satellite-Only Gravity Field Model to d/o 300 Based on
LAGEOS, GRACE and GOCE Data from the Collaboration of GFZ
Potsdam and GRGS Toulouse, ICGEM, https://doi.org/10.5880/icgem.2016.008, 2016. a
Förste, C., Abrykosov, O., Bruinsma, S., Dahle, C., König, R., and
Lemoine, J.-M.: ESA's Release 6 GOCE Gravity Field Model by Means
of the Direct Approach Based on Improved Filtering of the Reprocessed
Gradients of the Entire Mission
(GO_CONS_GCF_2_DIR_R6),
ICGEM,
https://doi.org/10.5880/ICGEM.2019.004,
2019. a
Gerlach, C. and Rummel, R.: Global Height System Unification with GOCE: A
Simulation Study on the Indirect Bias Term in the GBVP Approach, J. Geodesy, 87, 57–67, https://doi.org/10.1007/s00190-012-0579-y, 2013. a
GRACE: RACE_L1B_GRAV_JPL_RL03, Ver. 3, PO.DAAC, CA, USA, Dataset
https://doi.org/10.5067/GRJPL-L1B03,
2018. a
Gruber, T. and Willberg, M.: Signal and Error Assessment of GOCE-Based High
Resolution Gravity Field Models, Journal of Geodetic Science, 9, 71–86,
https://doi.org/10.1515/jogs-2019-0008,
2019. a
Gruber, T., Visser, P. N. a. M., Ackermann, C., and Hosse, M.: Validation of
GOCE Gravity Field Models by Means of Orbit Residuals and Geoid
Comparisons, J. Geodesy, 85, 845–860,
https://doi.org/10.1007/s00190-011-0486-7,
2011. a
Han, S.-C., Shum, C. K., Bevis, M., Ji, C., and Kuo, C.-Y.: Crustal Dilatation
Observed by GRACE After the 2004 Sumatra-Andaman Earthquake, Science, 313,
658–662, https://doi.org/10.1126/science.1128661,
2006. a
Han, S.-C., Sauber, J., and Luthcke, S.: Regional gravity decrease after the
2010 Maule (Chile) earthquake indicates large-scale mass redistribution,
Geophys. Res. Lett., 37, L23307, https://doi.org/10.1029/2010GL045449,
2010. a
Hirt, C., Kuhn, M., Claessens, S., Pail, R., Seitz, K., and Gruber, T.: Study
of the Earth's Short-Scale Gravity Field Using the ERTM2160 Gravity
Model, Comput. Geosci., 73, 71–80,
https://doi.org/10.1016/j.cageo.2014.09.001,
2014. a
Huang, J. and Véronneau, M.: Canadian Gravimetric Geoid Model 2010, J. Geodesy, 87, 771–790, https://doi.org/10.1007/s00190-013-0645-0, 2013. a
Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., and Schuh, H.: ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans, Earth Syst. Sci. Data, 11, 647–674, https://doi.org/10.5194/essd-11-647-2019, 2019. a, b
Jekeli, C.: Alternative methods to smooth the Earth's gravity field, Tech. Rep.
327, Department of Geodetic Science and Surveying, Ohio State Univ.,
Columbus, OH, 1981. a
Johannessen, J. A., Balmino, G., Provost, C. L., Rummel, R., Sabadini, R.,
Sünkel, H., Tscherning, C. C., Visser, P., Woodworth, P., Hughes, C.,
Legrand, P., Sneeuw, N., Perosanz, F., Aguirre-Martinez, M., Rebhan, H.,
and Drinkwater, M.: The European Gravity Field and Steady-State
Ocean Circulation Explorer Satellite Mission Its Impact on Geophysics,
Surv. Geophys., 24, 339–386,
https://doi.org/10.1023/B:GEOP.0000004264.04667.5e, 2003. a, b
Johannessen, J. A., Raj, R. P., Nilsen, J. E. Ø., Pripp, T., Knudsen, P.,
Counillon, F., Stammer, D., Bertino, L., Andersen, O. B., Serra, N., and
Koldunov, N.: Toward Improved Estimation of the Dynamic Topography
and Ocean Circulation in the High Latitude and Arctic Ocean:
The Importance of GOCE, Surv. Geophys., 35, 661–679,
https://doi.org/10.1007/s10712-013-9270-y, 2014. a
Klees, R., Slobbe, D. C., and Farahani, H. H.: A Methodology for Least-Squares
Local Quasi-Geoid Modelling Using a Noisy Satellite-Only Gravity Field Model,
J. Geodesy, 92, 431–442, https://doi.org/10.1007/s00190-017-1076-0, 2018. a
Klinger, B. and Mayer-Gürr, T.: The role of accelerometer data
calibration within GRACE gravity field recovery: Results from
ITSG-Grace2016, Adv. Space Res., 58, 1597–1609,
https://doi.org/10.1016/j.asr.2016.08.007,
2016. a
Knocke, P. C., Ries, J. C., and Tapley, B. D.: Earth radiation pressure
effects on satellites, in: Astrodynamics Conference, 1988, Guidance,
Navigation, and Control and Co-located Conferences, American
Institute of Aeronautics and Astronautics, 577–587, https://doi.org/10.2514/6.1988-4292,
1988. a, b
Knudsen, P., Bingham, R., Andersen, O., and Rio, M.-H.: A Global Mean Dynamic
Topography and Ocean Circulation Estimation Using a Preliminary GOCE
Gravity Model, J. Geodesy, 85, 861–879,
https://doi.org/10.1007/s00190-011-0485-8, 2011. a
Koch, K. R. and Kusche, J.: Regularization of geopotential determination from
satellite data by variance components, J. Geodesy, 76, 259–268,
https://doi.org/10.1007/s00190-002-0245-x,
2002. a
Kornfeld, R. P., Arnold, B. W., Gross, M. A., Dahya, N. T., Klipstein, W. M.,
Gath, P. F., and Bettadpur, S.: GRACE-FO: The Gravity Recovery
and Climate Experiment Follow-On Mission, J. Spacecraft
Rockets, 56, 931–951, https://doi.org/10.2514/1.A34326, 2019. a
Kvas, A., Mayer-Gürr, T., Krauss, S., Brockmann, J. M., Schubert, T.,
Schuh, W.-D., Pail, R., Gruber, T., Jäggi, A., and Meyer, U.: The
satellite-only gravity field model GOCO06s, ICGEM, https://doi.org/10.5880/ICGEM.2019.002,
2019b. a, b, c
Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T.,
Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H.,
Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G. L. H., Loomis, B. D.,
McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S.,
Strekalov, D., Tamisiea, M. E., Wang, F., Watkins, M. M., Wen, H.-Y., Wiese,
D. N., and Yuan, D.-N.: Extending the Global Mass Change Data Record:
GRACE Follow-On Instrument and Science Data Performance,
Geophys. Res. Lett., 47, e2020GL088306,
https://doi.org/10.1029/2020GL088306,
2020. a
Lemoine, F. G., Goossens, S., Sabaka, T. J., Nicholas, J. B., Mazarico, E.,
Rowlands, D. D., Loomis, B. D., Chinn, D. S., Caprette, D. S., Neumann,
G. A., Smith, D. E., and Zuber, M. T.: High-degree gravity models from GRAIL
primary mission data, J. Geophys. Res.-Planets, 118,
1676–1698, https://doi.org/10.1002/jgre.20118, 2013. a, b, c
Lück, C., Kusche, J., Rietbroek, R., and Löcher, A.: Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits, Solid Earth, 9, 323–339, https://doi.org/10.5194/se-9-323-2018, 2018. a
Maier, A., Krauss, S., Hausleitner, W., and Baur, O.: Contribution of Satellite
Laser Ranging to Combined Gravity Field Models, Adv. Space Res.,
49, 556–565, https://doi.org/10.1016/j.asr.2011.10.026, 2012. a, b, c
Mayer-Gürr, T., Pail, R., Gruber, T., Fecher, T., Rexer, M., Schuh,
W.-D., Kusche, J., Brockmann, J.-M., Rieser, D., Zehentner, N., Kvas, A.,
Klinger, B., Baur, O., Höck, E., Krauss, S., and Jäggi, A.: The
Combined Satellite Gravity Field Model GOCO05S (Abstract), in: EGU
General Assembly Conference Abstracts, 17, EGU2015–12364,
Vienna, Austria, 2015. a
Mayer-Gürr, T., Behzadpur, S., Ellmer, M., Kvas, A., Klinger, B., Strasser,
S., and Zehentner, N.: ITSG-Grace2018 – Monthly and Daily
Gravity Field Solutions from GRACE, ICGEM, https://doi.org/10.5880/icgem.2018.003, 2018. a
Mayer-Gürr, T., Behzadpur, S., Ellmer, M., Kvas, A., Klinger, B.,
Strasser, S., and Zehentner, N.: ITSG-Grace2018 – Monthly,
Daily and Static Gravity Field Solutions from GRACE, ICGEM,
https://doi.org/10.5880/icgem.2018.003, 2018a. a
Mayer-Gürr, T., Behzadpur, S., Ellmer, M., Kvas, A., Klinger, B.,
Strasser, S., and Zehentner, N.: ITSG-Grace2018 – Monthly,
Daily and Static Gravity Field Solutions from GRACE, ICGEM,
https://doi.org/10.5880/icgem.2018.003, 2018b. a
Meyer, U., Jäggi, A., Jean, Y., and Beutler, G.: AIUB-RL02: An improved
time-series of monthly gravity fields from GRACE data, Geophys. J.
Int., 205, 1196–1207, https://doi.org/10.1093/gji/ggw081,
2016. a
Meyer, U., Jean, Y., Kvas, A., Dahle, C., Lemoine, J., and Jäggi, A.:
Combination of GRACE monthly gravity fields on the normal equation level,
J. Geodesy, 93, 1645–1658, https://doi.org/10.1007/s00190-019-01274-6, 2019. a, b
Migliaccio, F., Reguzzoni, M., Gatti, A., Sansò, F., and Herceg, M.: A
GOCE-Only Global Gravity Field Model by the Space-Wise Approach, in:
Proceedings of the 4th International GOCE User Workshop, ESA
Publication SP-696, edited by: Ouwehand, L., ESA/ESTEC, 2011. a
Montenbruck, O. and Gill, E.: Satellite Orbits: Models, Methods, and
Applications, Springer, Berlin, New York, 2000. a
Neeck, S. P. and Vaze, P. V.: The Ocean Surface Topography Mission (OSTM),
Proc. SPIE, 7106, 710603, https://doi.org/10.1117/12.803677,
2008. a
Pail, R., Goiginger, H., Schuh, W.-D., Höck, E., Brockmann, J. M., Fecher,
T., Gruber, T., Mayer-Gürr, T., Kusche, J., Jäggi, A., and Rieser,
D.: Combined Satellite Gravity Field Model GOCO01S Derived from GOCE
and GRACE, Geophys. Res. Lett., 37, L20314,
https://doi.org/10.1029/2010GL044906, 2010. a, b
Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh,
W.-D., Höck, E., Reguzzoni, M., Brockmann, J. M., Abrikosov, O.,
Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansò, F., and
Tscherning, C. C.: First GOCE Gravity Field Models Derived by Three
Different Approaches, J. Geodesy, 85, 819,
https://doi.org/10.1007/s00190-011-0467-x, 2011. a, b, c, d
Pail, R., Gruber, T., Fecher, T., and GOCO Project Team: The Combined
Gravity Model GOCO05c, https://doi.org/10.5880/icgem.2016.003, ICGEM, 2016. a, b, c
Pail, R., Fecher, T., Barnes, D., Factor, J. F., Holmes, S. A., Gruber, T., and
Zingerle, P.: Short Note: The Experimental Geopotential Model XGM2016,
J. Geodesy, 92, 443–451, https://doi.org/10.1007/s00190-017-1070-6, 2018. a, b
Panet, I., Bonvalot, S., Narteau, C., Remy, D., and Lemoine, J.-M.: Migrating
pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE
data, Nat. Geosci., 11, 367–373, https://doi.org/10.1038/s41561-018-0099-3,
2018. a
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The Development
and Evaluation of the Earth Gravitational Model 2008 (EGM2008),
J. Geophys. Res.-Sol. Ea., 117, B04406,
https://doi.org/10.1029/2011JB008916,
2012. a
Reigber, C., Schwintzer, P., and Lühr, H.: The CHAMP Geopotential
Mission, Bolletino di Geofisica Teorica ed Applicata, 40, 285–289, 1999. a
Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine,
J.-M., König, R., Loyer, S., Neumayer, H., Marty, J.-C., Barthelmes, F.,
Perosanz, F., and Zhu, S. Y.: Global Gravity Field Recovery Using Solely
GPS Tracking and Accelerometer Data from Champ, Space Sci.
Rev., 108, 55–66, https://doi.org/10.1023/A:1026217713133, 2003. a
Rio, M.-H., Mulet, S., and Picot, N.: Beyond GOCE for the Ocean Circulation
Estimate: Synergetic Use of Altimetry, Gravimetry, and in Situ Data
Provides New Insight into Geostrophic and Ekman Currents, Geophys.
Res. Lett., 41, 2014GL061773, https://doi.org/10.1002/2014GL061773, 2014. a
Rudenko, S., Dettmering, D., Esselborn, S., Schöne, T., Förste, C.,
Lemoine, J.-M., Ablain, M., Alexandre, D., and Neumayer, K.-H.: Influence of
Time Variable Geopotential Models on Precise Orbits of Altimetry Satellites,
Global and Regional Mean Sea Level Trends, Adv. Space Res., 54,
92–118, https://doi.org/10.1016/j.asr.2014.03.010, 2014. a
Rummel, R.: Height Unification Using GOCE, Journal of Geodetic Science, 2, 355–362, https://doi.org/10.2478/v10156-011-0047-2,
2013. a
Rummel, R. and Colombo, O. L.: Gravity Field Determination from Satellite
Gradiometry, Bulletin géodésique, 59, 233–246,
https://doi.org/10.1007/BF02520329, 1985. a
Rummel, R., Balmino, G., Johannessen, J., Visser, P., and Woodworth, P.:
Dedicated Gravity Field Missions – Principles and Aims, J.
Geodynamics, 33, 3–20, https://doi.org/10.1016/S0264-3707(01)00050-3, 2002. a, b, c, d
Rummel, R., Horwath, M., Yi, W., Albertella, A., Bosch, W., and Haagmans, R.:
GOCE, Satellite Gravimetry and Antarctic Mass Transports, Surv. Geophys., 32, 643–657, https://doi.org/10.1007/s10712-011-9115-5,
2011a. a
Rummel, R., Yi, W., and Stummer, C.: GOCE Gravitational Gradiometry,
J. Geodesy, 85, 777, https://doi.org/10.1007/s00190-011-0500-0,
2011b. a
Save, H., Bettadpur, S., and Tapley, B. D.: High‐resolution CSR GRACE RL05 mascons, J. Geophys.
Res.-Sol. Ea., 121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016. a
Schall, J., Eicker, A., and Kusche, J.: The ITG-Goce02 Gravity Field
Model from GOCE Orbit and Gradiometer Data Based on the Short Arc
Approach, J. Geodesy, 88, 403–409, https://doi.org/10.1007/s00190-014-0691-2,
2014. a
Schubert, T., Brockmann, J. M., and Schuh, W.-D.: Identification of
Suspicious Data for Robust Estimation of Stochastic Processes,
in: IX Hotine-Marussi Symposium, International Association of
Geodesy Symposia, Springer, 1–9, https://doi.org/10.1007/1345_2019_80,
2019. a, b
Seo, K. W., Wilson, C. R., Han, S. C., and Waliser, D. E.: Gravity Recovery
and Climate Experiment (GRACE) alias error from ocean tides, J.
Geophys. Res.-Sol. Ea., 113, B03405, https://doi.org/10.1029/2006JB004747,
2008. a
Siegismund, F.: Assessment of Optimally Filtered Recent Geodetic Mean Dynamic
Topographies, J. Geophys. Res.-Oceans, 118, 108–117,
https://doi.org/10.1029/2012JC008149, 2013. a
Siemes, C., Haagmans, R., Kern, M., Plank, G., and Floberghagen, R.: Monitoring
GOCE Gradiometer Calibration Parameters Using Accelerometer and Star
Sensor Data: Methodology and First Results, J. Geodesy, 86, 629–645,
https://doi.org/10.1007/s00190-012-0545-8, 2012. a
Siemes, C., Rexer, M., Schlicht, A., and Haagmans, R.: GOCE Gradiometer
Data Calibration, J. Geodesy, 93, 1603–1630, https://doi.org/10.1007/s00190-019-01271-9, 2019. a
Slobbe, C., Klees, R., H. Farahani, H., Huisman, L., Alberts, B., Voet, P., and
Doncker, F. D.: The Impact of Noise in a GRACE/GOCE Global Gravity
Model on a Local Quasi-Geoid, J. Geophys. Res.-Sol. Ea., 124, 3219–3237,
https://doi.org/10.1029/2018JB016470, 2019. a
Sneeuw, N.: Global spherical harmonic analysis by least-squares and numerical
quadrature methods in historical perspective, Geophys. J.
Int., 118, 707–716, https://doi.org/10.1111/j.1365-246X.1994.tb03995.x,
1994. a
Sneeuw, N. and van Gelderen, M.: The polar gap, in: Geodetic Boundary Value
Problems in View of the One Centimeter Geoid, edited by: Sansó, F. and
Rummel, R., Springer Berlin Heidelberg, Berlin, Heidelberg, 559–568,
https://doi.org/10.1007/BFb0011717, 1997. a, b
Sośnica, K., Jäggi, A., Meyer, U., Thaller, D., Beutler, G., Arnold,
D., and Dach, R.: Time Variable Earth's Gravity Field from SLR
Satellites, J. Geodesy, 89, 945–960,
https://doi.org/10.1007/s00190-015-0825-1, 2015. a
Stummer, C., Siemes, C., Pail, R., Frommknecht, B., and Floberghagen, R.:
Upgrade of the GOCE Level 1b Gradiometer Processor, Adv. Space
Res., 49, 739–752, https://doi.org/10.1016/j.asr.2011.11.027, 2012. a
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M.:
GRACE Measurements of Mass Variability in the Earth System,
Science, 305, 503–505, https://doi.org/10.1126/science.1099192, 2004. a, b
Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S.,
Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P.,
Reager, J. T., Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C.,
Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and
Velicogna, I.: Contributions of GRACE to understanding climate change,
Nat. Clim. Change, 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2,
2019. a
Teixeira da Encarnação, J., Arnold, D., Bezděk, A., Dahle, C.,
Doornbos, E., van den IJssel, J., Jäggi, A., Mayer-Gürr, T.,
Sebera, J., Visser, P., and Zehentner, N.: Gravity Field Models Derived from
Swarm GPS Data, Earth Planet. Space, 68, 127,
https://doi.org/10.1186/s40623-016-0499-9, 2016. a
Teixeira da Encarnação, J., Visser, P., Arnold, D., Bezdek, A., Doornbos, E., Ellmer, M., Guo, J., van den IJssel, J., Iorfida, E., Jäggi, A., Klokocník, J., Krauss, S., Mao, X., Mayer-Gürr, T., Meyer, U., Sebera, J., Shum, C. K., Zhang, C., Zhang, Y., and Dahle, C.: Description of the multi-approach gravity field models from Swarm GPS data, Earth Syst. Sci. Data, 12, 1385–1417, https://doi.org/10.5194/essd-12-1385-2020, 2020. a
Vergos, G. S., Erol, B., Natsiopoulos, D. A., Grigoriadis, V. N., Isik, M. S.,
and Tziavos, I. N.: Preliminary Results of GOCE-Based Height System
Unification between Greece and Turkey over Marine and Land Areas,
Acta Geod. Geophys., 53, 61–79, https://doi.org/10.1007/s40328-017-0204-x,
wOS:000429387700005, 2018. a
Wahr, J., Molenaar, M., and Bryan, F.: Time variability of the Earth's gravity
field: Hydrological and oceanic effects and their possible detection using
GRACE, J. Geophys. Res.-Sol. Ea., 103, 30205–30229,
https://doi.org/10.1029/98JB02844,
1998. a
Yi, W.: An Alternative Computation of a Gravity Field Model from GOCE,
Adv. Space Res., 50, 371–384, https://doi.org/10.1016/j.asr.2012.04.018,
2012. a
Yi, W., Rummel, R., and Gruber, T.: Gravity Field Contribution Analysis of
GOCE Gravitational Gradient Components, Stud. Geophys. Geod.,
57, 174–202, https://doi.org/10.1007/s11200-011-1178-8, 2013. a, b, c
Zehentner, N. and Mayer-Gürr, T.: Precise orbit determination based on
raw GPS measurements, J. Geodesy, 90, 275–286,
https://doi.org/10.1007/s00190-015-0872-7, 2016. a, b
Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X.: The Experimental
Gravity Field Model XGM2019e, ICGEM, https://doi.org/10.5880/ICGEM.2019.007,
2019.
a, b
Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X.: The Combined Global
Gravity Field Model XGM2019e, J. Geodesy, 94, 66,
https://doi.org/10.1007/s00190-020-01398-0, 2020. a, b
Short summary
Earth's gravity field provides invaluable insights into the state and changing nature of our planet. GOCO06s combines over 1 billion measurements from 19 satellites to produce a global gravity field model. The combination of different observation principles allows us to exploit the strengths of each satellite mission and provide a high-quality data set for Earth and climate sciences.
Earth's gravity field provides invaluable insights into the state and changing nature of our...
Altmetrics
Final-revised paper
Preprint