Articles | Volume 13, issue 12
https://doi.org/10.5194/essd-13-5915-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-5915-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climatological distribution of dissolved inorganic nutrients in the western Mediterranean Sea (1981–2017)
Malek Belgacem
CORRESPONDING AUTHOR
CNR-ISMAR, Arsenale Tesa 104, Castello 2737/F, 30122 Venice, Italy
Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS), Università Ca' Foscari Venezia,
Campus Scientifico, Via Torino 155, 30170 Venice, Italy
Katrin Schroeder
CNR-ISMAR, Arsenale Tesa 104, Castello 2737/F, 30122 Venice, Italy
Alexander Barth
GeoHydrodynamics and Environment Research (GHER), Freshwater and Oceanic sCiences Unit of reSearch (FOCUS), University of Liège, Quartier Agora, Allée du 6-Août, 17, Sart Tilman, 4000 Liège 1, Belgium
Charles Troupin
GeoHydrodynamics and Environment Research (GHER), Freshwater and Oceanic sCiences Unit of reSearch (FOCUS), University of Liège, Quartier Agora, Allée du 6-Août, 17, Sart Tilman, 4000 Liège 1, Belgium
Bruno Pavoni
Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS), Università Ca' Foscari Venezia,
Campus Scientifico, Via Torino 155, 30170 Venice, Italy
Patrick Raimbault
Mediterranean Institute of Oceanography (MIO) UM 110, Aix-Marseille Université, CNRS-INSU, Université de Toulon, IRD, 13288, Marseille, France
Nicole Garcia
Mediterranean Institute of Oceanography (MIO) UM 110, Aix-Marseille Université, CNRS-INSU, Université de Toulon, IRD, 13288, Marseille, France
Mireno Borghini
CNR-ISMAR, Forte Santa Teresa, Pozzuolo di Lerici, 19032 La Spezia, Italy
Jacopo Chiggiato
CNR-ISMAR, Arsenale Tesa 104, Castello 2737/F, 30122 Venice, Italy
Related authors
Malek Belgacem, Katrin Schroeder, Siv K. Lauvset, Marta Álvarez, Jacopo Chiggiato, Mireno Borghini, Carolina Cantoni, Tiziana Ciuffardi, and Stefania Sparnocchia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-365, https://doi.org/10.5194/essd-2024-365, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Having consistent dissolved Oxygen (O2) data is crucial for understanding the health of our oceans. By monitoring O2 levels, we can spot changes in water quality. Reliable data helps scientist and policymakers make informed decisions to protect marine environments, ensuring practices that benefit both wildlife and people. The Mediterranean Sea is particularly sensitive to climate change. O2WMED dataset- a compilation of data that provides a clear picture of O2 changes over the past 20 years.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Matjaž Zupančič Muc, Vitjan Zavrtanik, Alexander Barth, Aida Alvera-Azcarate, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 5549–5573, https://doi.org/10.5194/gmd-18-5549-2025, https://doi.org/10.5194/gmd-18-5549-2025, 2025
Short summary
Short summary
Accurate sea surface temperature data (SST) are crucial for weather forecasting and climate modeling, but satellite observations are often incomplete. We developed a new method called CRITER, which uses machine learning to fill in the gaps in SST data. Our two-stage approach reconstructs large-scale patterns and refines details. Tested on Mediterranean, Adriatic, and Atlantic sea data, CRITER outperforms current methods, reducing errors by up to 44 %.
Florian Volmer Martin Kokoszka, Mireno Borghini, Katrin Schroeder, Jacopo Chiggiato, Joaquín Tintoré, Nikolaos Zarokanellos, Albert Miralles, Patricia Rivera Rodríguez, Manuel Rubio, Miguel Charcos, Benjamín Casas, and Anneke Ten Doeschate
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-451, https://doi.org/10.5194/essd-2025-451, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a unique dataset of underwater measurements collected by an autonomous glider in the western Mediterranean Sea. It reveals how ocean layers mix over seasons and years. Using sensors to detect small scale water movements, we estimated how energy and heat are transferred in the ocean. These data help scientists better understand ocean circulation and climate effects. All files and methods are openly shared to support future research.
Aida Alvera-Azcárate, Dimitry Van der Zande, Alexander Barth, Antoine Dille, Joppe Massant, and Jean-Marie Beckers
Ocean Sci., 21, 787–805, https://doi.org/10.5194/os-21-787-2025, https://doi.org/10.5194/os-21-787-2025, 2025
Short summary
Short summary
This work presents an approach for increasing the spatial resolution of satellite data and interpolating gaps due to cloud cover, using a method called DINEOF (data-interpolating empirical orthogonal functions). The method is tested on turbidity and chlorophyll-a concentration data in the Belgian coastal zone and the North Sea. The results show that we are able to improve the spatial resolution of these data in order to perform analyses of spatial and temporal variability in coastal regions.
Bayoumy Mohamed, Alexander Barth, Dimitry Van der Zande, and Aida Alvera-Azcárate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1578, https://doi.org/10.5194/egusphere-2025-1578, 2025
Short summary
Short summary
We quantified the role of climate change and internal variability on marine heatwaves (MHWs) in the North Sea over more than four decades (1982–2024). A key finding is the 2013 climate shift, which was associated with increased warming and MHWs. Long-term warming accounted for 80 % of the observed trend in MHW frequency. The most intense MHW event in May 2024 was attributed to an anomalous anticyclonic atmospheric circulation. We also explored the impact of MHWs on chlorophyll concentrations.
Cécile Pujol, Alexander Barth, Iván Pérez-Santos, Pamela Muñoz-Linford, and Aida Alvera-Azcárate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1421, https://doi.org/10.5194/egusphere-2025-1421, 2025
Short summary
Short summary
Marine heatwaves and cold spells are periods of extreme sea temperatures. This study focuses on Chilean Northern Patagonia, a fjord region vulnerable due to its aquaculture. It aims to understand these events' distribution and identify the most affected basins. Results show higher intensity in enclosed areas like Reloncaví Sound and Puyuhuapi Fjord. Marine heatwaves are becoming more frequent over time, while cold spells are decreasing.
Ehsan Mehdipour, Hongyan Xi, Alexander Barth, Aida Alvera-Azcárate, Adalbert Wilhelm, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2025-112, https://doi.org/10.5194/egusphere-2025-112, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Phytoplankton are vital for marine ecosystems and nutrient cycling, detectable by optical satellites. Data gaps caused by clouds and other non-optimal conditions limit comprehensive analyses like trend monitoring. This study evaluated DINCAE and DINEOF gap-filling methods for reconstructing chlorophyll-a datasets, including total chlorophyll-a and five major phytoplankton groups. Both methods showed robust reconstruction capabilities, aiding pattern detection and long-term ocean colour analysis.
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers
Ocean Sci., 20, 1567–1584, https://doi.org/10.5194/os-20-1567-2024, https://doi.org/10.5194/os-20-1567-2024, 2024
Short summary
Short summary
Most satellite observations have gaps, for example, due to clouds. This paper presents a method to reconstruct missing data in satellite observations of the chlorophyll a concentration in the Black Sea. Rather than giving a single possible reconstructed field, the discussed method provides an ensemble of possible reconstructions using a generative neural network. The resulting ensemble is validated using techniques from numerical weather prediction and ocean modelling.
Malek Belgacem, Katrin Schroeder, Siv K. Lauvset, Marta Álvarez, Jacopo Chiggiato, Mireno Borghini, Carolina Cantoni, Tiziana Ciuffardi, and Stefania Sparnocchia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-365, https://doi.org/10.5194/essd-2024-365, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Having consistent dissolved Oxygen (O2) data is crucial for understanding the health of our oceans. By monitoring O2 levels, we can spot changes in water quality. Reliable data helps scientist and policymakers make informed decisions to protect marine environments, ensuring practices that benefit both wildlife and people. The Mediterranean Sea is particularly sensitive to climate change. O2WMED dataset- a compilation of data that provides a clear picture of O2 changes over the past 20 years.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Francesca Doglioni, Robert Ricker, Benjamin Rabe, Alexander Barth, Charles Troupin, and Torsten Kanzow
Earth Syst. Sci. Data, 15, 225–263, https://doi.org/10.5194/essd-15-225-2023, https://doi.org/10.5194/essd-15-225-2023, 2023
Short summary
Short summary
This paper presents a new satellite-derived gridded dataset, including 10 years of sea surface height and geostrophic velocity at monthly resolution, over the Arctic ice-covered and ice-free regions, up to 88° N. We assess the dataset by comparison to independent satellite and mooring data. Results correlate well with independent satellite data at monthly timescales, and the geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km.
Francesco Paladini de Mendoza, Katrin Schroeder, Leonardo Langone, Jacopo Chiggiato, Mireno Borghini, Patrizia Giordano, Giulio Verazzo, and Stefano Miserocchi
Earth Syst. Sci. Data, 14, 5617–5635, https://doi.org/10.5194/essd-14-5617-2022, https://doi.org/10.5194/essd-14-5617-2022, 2022
Short summary
Short summary
This work presents the dataset of continuous monitoring in the southern Adriatic Margin, providing a unique observatory of deep-water dynamics. The study area is influenced by episodic dense-water cascading, which is a fundamental process for water renewal and deep-water dynamics. Information about the frequency and intensity variations of these events is observed along a time series. The monitoring activities are still ongoing and the moorings are part of the EMSO-ERIC network.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Hugo Lepage, Alexandra Gruat, Fabien Thollet, Jérôme Le Coz, Marina Coquery, Matthieu Masson, Aymeric Dabrin, Olivier Radakovitch, Jérôme Labille, Jean-Paul Ambrosi, Doriane Delanghe, and Patrick Raimbault
Earth Syst. Sci. Data, 14, 2369–2384, https://doi.org/10.5194/essd-14-2369-2022, https://doi.org/10.5194/essd-14-2369-2022, 2022
Short summary
Short summary
The dataset contains concentrations and fluxes of suspended particle matter (SPM) and several particle-bound contaminants along the Rhône River downstream of Lake Geneva. These data allow us to understand the dynamics and origins. They show the impact of flood events which mainly contribute to a decrease in the contaminant concentrations while fluxes are significant. On the contrary, concentrations are higher during low flow periods probably due to the increase of organic matter.
Alexander Barth, Aida Alvera-Azcárate, Charles Troupin, and Jean-Marie Beckers
Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022, https://doi.org/10.5194/gmd-15-2183-2022, 2022
Short summary
Short summary
Earth-observing satellites provide routine measurement of several ocean parameters. However, these datasets have a significant amount of missing data due to the presence of clouds or other limitations of the employed sensors. This paper describes a method to infer the value of the missing satellite data based on a convolutional autoencoder (a specific type of neural network architecture). The technique also provides a reliable error estimate of the interpolated value.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Cited articles
Barnes, S.L.: A technique for maximizing details in numerical weather map analysis, J. App. Meteor., 3, 396–409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2, 1964.
Barnes, S. L.:
Applications of the Barnes Objective Analysis Scheme, Part III: Tuning for Minimum Error,
J. Atmos. Ocean. Tech.,
11, 1459–1479, 1994.
Barth, A., Beckers, J.-M., Troupin, C., Alvera-Azcárate, A., and Vandenbulcke, L.: divand-1.0: n-dimensional variational data analysis for ocean observations, Geosci. Model Dev., 7, 225–241, https://doi.org/10.5194/gmd-7-225-2014, 2014.
Bartoli, G., Migon, C., and Losno, R.: Atmospheric input of dissolved inorganic phosphorus and silicon to the coastal northwestern Mediterranean Sea: fluxes, variability and possible impact on phytoplankton dynamics, Deep-Sea Res. Pt. I, 52, 2005–2016, https://doi.org/10.1016/j.dsr.2005.06.006, 2005.
Beckers, J. M., Barth, A., Troupin, C., and Alvera-Azcárate, A.:
Approximate and efficient methods to assess error fields in spatial gridding with data interpolating variational analysis (DIVA),
J. Atmos. Ocean. Tech.,
31, 515–530, https://doi.org/10.1175/JTECH-D-13-00130.1, 2014.
Belgacem, M., Chiggiato, J., Borghini, M., Pavoni, B., Cerrati, G., Acri, F; Cozzi, S., Ribotti, A., Álvarez, M., Lauvset, S. K., and Schroeder, K.:
Quality controlled dataset of dissolved inorganic nutrients in the western Mediterranean Sea (2004–2017) from R/V oceanographic cruises,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.904172, 2019.
Belgacem, M., Chiggiato, J., Borghini, M., Pavoni, B., Cerrati, G., Acri, F., Cozzi, S., Ribotti, A., Álvarez, M., Lauvset, S. K., and Schroeder, K.: Dissolved inorganic nutrients in the western Mediterranean Sea (2004–2017), Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, 2020.
Belgacem, M., Schroeder, K., Barth, A., Troupin, C., Pavoni, B., Chiggiato, J.:
A climatological product of inorganic nutrient distributions on the Western Mediterranean Sea (BGC-WMED) derived from cruise-based measurements spanning 1981 to 2017,
PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.930447, 2021.
Bethoux, J. P., Morin, P., Madec, C., and Gentili, B.:
Phosphorus and nitrogen behaviour in the Mediterranean Sea,
Deep-Sea Res. Pt. I,
39, 1641–1654, https://doi.org/10.1016/0198-0149(92)90053-V, 1992.
Béthoux, J. P., De Madron, X. D., Nyffeler, F., and Tailliez, D.: Deep water in the western Mediterranean: peculiar 1999 and 2000 characteristics, shelf formation hypothesis, variability since 1970 and geochemical inferences, J. Marine Syst., 33, 117–131, https://doi.org/10.1016/S0924-7963(02)00055-6, 2002.
Bindoff, N. L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., Shum, C. K., Talley, L. D., and Unnikrishnan, A.: Observations: Oceanic Climate Change and Sea Level. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 385–428, 2007.
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., Mishonov, A. V., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K., and Zweng, M. M.: World Ocean Database 2018, Technical Ed., NOAA Atlas NESDIS 87, available at: https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf (last access: 12 September 2019), 2018.
Brankart, J. M. and Brasseur, P.:
The general circulation in the Mediterranean Sea: A climatological approach,
J. Marine Syst.,
18, 41–70, https://doi.org/10.1016/S0924-7963(98)00005-0, 1998.
Brasseur, P., Beckers, J. M., Brankart, J. M., and Schoenauen, R.:
Seasonal temperature and salinity fields in the Mediterranean Sea: Climatological analyses of a historical data set,
Deep-Sea Res. Pt. I,
43, 159–192, https://doi.org/10.1016/0967-0637(96)00012-X, 1996.
Brasseur, P. P.:
A variational inverse method for the reconstruction of general circulation fields in the northern Bering Sea,
J. Geophys. Res.,
96, 4891, https://doi.org/10.1029/90jc02387, 1991.
Buga, L., Eilola, K., Wesslander, K., Fryberg, L., Gatti, J., Leroy, D., Iona, S., Tsompanou, M., and Lipizer, M.:
EMODnet Thematic Lot no 4/SI2.749773 Interpolating Variational Analysis (DIVA), Technical Report, Release 2018,
https://doi.org/10.6092/A8CFB472-10DB-4225-9737-5A60DA9AF523, 2019.
Capet, A., Troupin, C., Carstensen, J., Grégoire, M., and Beckers, J. M.:
Untangling spatial and temporal trends in the variability of the Black Sea Cold Intermediate Layer and mixed Layer Depth using the DIVA detrending procedure,
Ocean Dynam.,
64, 315–324, https://doi.org/10.1007/s10236-013-0683-4, 2014.
Cheng, L., Abraham, J., Trenberth, K. E., Fasullo, J., Boyer, T., Locarnini, R., Zhang, B., Yu, F., Wan, L., Chen, X., Song, X., Liu, Y., Mann, M. E., Reseghetti, F., Simoncelli, S., Gouretski, V., Chen, G., Mishonov, A., Reagan, J., and Zhu, J. : Upper ocean temperatures hit record high in 2020, Adv. Atmos. Sci., 38, 523–530, https://doi.org/10.1007/s00376-021-0447-x, 2021.
Conkright, M. E., Levitus, S., and Boyer, T. P.: World Ocean Atlas 1994, Volume 1: Nutrients, NOAA Atlas NESDIS 1, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, Washington, D.C. 150 pp., available at: https://books.google.it/books?hl=fr&lr=&id=CGzCEIRq4mcC&oi=fnd&pg=PR12&ots=1S7YfcAQTu&sig=-PiGwcnpSSNXnFStLbV428ho-VM&redir_esc=y#v=onepage&q&f=false (last access: 15 September 2019), 1994.
Coppola, L.: MOOSE-GE 2016 cruise, RV L'Atalante, https://doi.org/10.17600/16000700, 2016.
Crispi, G., Mosetti, R., Solidoro, C., and Crise, A.:
Nutrients cycling in Mediterranean basins: The role of the biological pump in the trophic regime,
Ecol. Model.,
138, 101–114, 2001.
Crombet, Y., Leblanc, K., Quéguiner, B., Moutin, T., Rimmelin, P., Ras, J., Claustre, H., Leblond, N., Oriol, L., and Pujo-Pay, M.: Deep silicon maxima in the stratified oligotrophic Mediterranean Sea, Biogeosciences, 8, 459–475, https://doi.org/10.5194/bg-8-459-2011, 2011.
de Fommervault, O. P., Migon, C., D'Ortenzio, F., Ribera d'Alcalà, M., and Coppola, L.:
Temporal variability of nutrient concentrations in the northwestern Mediterranean sea (DYFAMED time-series station),
Deep-Sea Res. Pt. I,
100, 1–12, https://doi.org/10.1016/j.dsr.2015.02.006, 2015.
DeMaster, D. J.:
The accumulation and cycling of biogenic silica in the Southern Ocean: Revisiting the marine silica budget,
Deep-Sea Res. Pt. II,
49, 3155–3167, https://doi.org/10.1016/S0967-0645(02)00076-0, 2002.
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.:
Diagnosis of observation, background and analysis-error statistics in observation space,
Q. J. Roy. Meteor. Soc.,
131, 3385–3396, https://doi.org/10.1256/qj.05.108, 2005.
Diaz, P., Raimbault, F., Boudjellal, B., Garcia, N., and Moutin, T.:
Early spring phosphorus limitation of primary productivity in a NW Mediterranean coastal zone (Gulf of Lions),
Mar. Ecol. Prog. Ser.,
211, 51–62, https://doi.org/10.3354/meps211051, 2001.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009.
D'Ortenzio, F., Taillandier, V., Claustre, H., Prieur, L. M., Leymarie, E., Mignot, A., Poteau, A., Penkerc, C., and Schmechtig, C. M.:
Biogeochemical Argo: The Test Case of the NAOS Mediterranean Array,
Frontiers in Marine Science,
7, 1–16, https://doi.org/10.3389/fmars.2020.00120, 2020.
Durrieu de Madron, X., Houpert, L., Puig, P., Sanchez-Vidal, A., Testor, P., Bosse, A., Estournel, C., Somot, S., Bourrin, F., Bouin, M. N., Beauverger, M., Beguery, L., Calafat, A., Canals, M., Cassou, C., Coppola, L., Dausse, D., D’Ortenzio, F., Font, J., Heussner, S., Kunesch, S., Lefevre, D., Le Goff, H., Martín, J., Mortier, L., Palanques, A., and Raimbault, P.: Interaction of dense shelf water cascading and open-sea convection in the northwestern Mediterranean during winter 2012, Geophys. Res. Lett., 40, 1379–1385, https://doi.org/10.1002/grl.50331, 2013.
Estournel, C., Testor, P., Taupier-Letage, I., Bouin, M.-N., Coppola, L., Durand, P., Conan, P., Bosse, A., Brilouet, P.-E., Beguery, L., Belamari, S. Béranger, K., Beuvier, J., Bourras, D., Canut, G. Doerenbecher, A., Durrieu de Madron, X., D’Ortenzio, F., Drobinski, P., Ducrocq, V., Fourrié, N., Giordani, H., Houpert, L., Labatut, L., Brossier, C. L., Nuret, M., Prieur, L., Roussot, O., Seyfried, L., and Somot, S.: HyMeX-SOP2: The field campaign dedicated to dense water formation in the northwestern Mediterranean, Oceanography, 29, 196–206, https://doi.org/10.5670/oceanog.2016.94, 2016.
Fichaut, M., Garcia, M. J., Giorgetti, A., Iona, A., Kuznetsov, A., Rixen, M., and Group, M.:
MEDAR/MEDATLAS 2002: A Mediterranean and Black Sea database for operational oceanography,
Elsev. Oceanogr. Serie.,
69, 645–648, https://doi.org/10.1016/S0422-9894(03)80107-1, 2003.
Frings, P. J., Clymans, W., Fontorbe, G., De La Rocha, C. L., and Conley, D. J.:
The continental Si cycle and its impact on the ocean Si isotope budget,
Chem. Geol.,
425, 12–36, https://doi.org/10.1016/j.chemgeo.2016.01.020, 2016.
Garcia, H. E., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J. R.:
World Ocean Atlas 2018, Vol. 4: Dissolved Inorganic Nutrients (phosphate, nitrate and nitrate+nitrite, silicate), NOAA Atlas NESDIS 84, 35 pp., available at: https://archimer.ifremer.fr/doc/00651/76336/, last access: 15 September 2019.
García-Martínez, M. del C., Vargas-Yáñez, M., Moya, F., Santiago, R., Muñoz, M., Reul, A., Ramírez, T., and Balbín, R.:
Average nutrient and chlorophyll distributions in the western Mediterranean: RADMED project,
Oceanologia,
61, 143–169, https://doi.org/10.1016/j.oceano.2018.08.003, 2019.
Giorgi, F.:
Climate change hot-spots,
Geophys. Res. Lett.,
33, 1–4, https://doi.org/10.1029/2006GL025734, 2006.
Hecht, A., Pinardi, N., and Robinson, A. R.:
Currents, Water Masses, Eddies and Jets in the Mediterreanean Levantine Basin,
J. Phys. Oceanogr.,
18, 1320–1353, 1988.
Houpert, L., Durrieu de Madron, X., Testor, P., Bosse, A., D'Ortenzio, F., Bouin, M. N., Dausse, D., Le Goff, H., Kunesch, S., Labaste, M., Coppola, L., Mortier, L., and Raimbault, P.:
Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007–2013 Period,
J. Geophys. Res.-Oceans,
121, 8139–8171, https://doi.org/10.1002/2016JC011857, 2016.
Huertas, I. E., Ríos, A. F., García‐Lafuente, J., Navarro, G., Makaoui, A., Sánchez‐Román, A., Rodriguez-Galvez, S., Orbi, A. , Ruíz, J., and Pérez, F. F.: Atlantic forcing of the Mediterranean oligotrophy, Global Biogeochem. Cy., 26, GB2022, https://doi.org/10.1029/2011GB004167, 2012.
Hydes, D., Aoyama, M., Aminot, A., Bakker, K., Becker, S., Coverly, S., Daniel, A., Dickson, A., Grosso, O., Kerouel, R., Van Ooijen, J., Sato, K., Tanhua, T., Woodward, M., and Zhang, J.: Determination of dissolved nutrients (N, P, Si) in seawater with high precision and inter-comparability using gas-segmented continuous flow analysers, in: The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and guidelines, IOCCP Report No 14, ICPO Publication Series No. 134, version 1, 2010 (UNESCO/IOC), available at: https://archimer.ifremer.fr/doc/00020/13141/ (last access: 15 September 2019), 2010.
Iona, A., Theodorou, A., Watelet, S., Troupin, C., Beckers, J.-M., and Simoncelli, S.: Mediterranean Sea Hydrographic Atlas: towards optimal data analysis by including time-dependent statistical parameters, Earth Syst. Sci. Data, 10, 1281–1300, https://doi.org/10.5194/essd-10-1281-2018, 2018.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C. and Peng, T. H.:
A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy.,
18, 1–23, https://doi.org/10.1029/2004GB002247, 2004.
Krom, M. D., Herut, B., and Mantoura, R. F. C.; Nutrient budget for the Eastern Mediterranean: Implications for phosphorus limitation, Limnol. Oceanogr., 49, 1582–1592, https://doi.org/10.4319/lo.2004.49.5.1582, 2004.
Krom, M. D., Emeis, K. C., and Van Cappellen, P.:
Why is the Eastern Mediterranean phosphorus limited?,
Prog. Oceanogr.,
85, 236–244, https://doi.org/10.1016/j.pocean.2010.03.003, 2010.
Krom, M. D., Kress, N., and Fanning, K.: Silica cycling in the ultra-oligotrophic eastern Mediterranean Sea, Biogeosciences, 11, 4211–4223, https://doi.org/10.5194/bg-11-4211-2014, 2014.
Lascaratos, A., Roether, W., Nittis, K., and Klein, B.: Recent changes in deep water formation and spreading in the eastern Mediterranean Sea: a review, Prog. Oceanogr., 44, 5–36, 1999.
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior ocean mapped climatology: the 1∘ × 1∘ GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016.
Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Álvarez, M., Becker, S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jutterström, S., Jones, S. D., Karlsen, M. K., Lo Monaco, C., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., Woosley, R. J., and Key, R. M.: An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2021, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-234, in review, 2021.
Lavigne, H., D'Ortenzio, F., Ribera D'Alcalà, M., Claustre, H., Sauzède, R., and Gacic, M.: On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach, Biogeosciences, 12, 5021–5039, https://doi.org/10.5194/bg-12-5021-2015, 2015.
Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., and Crise, A.: Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach, Biogeosciences, 9, 217–233, https://doi.org/10.5194/bg-9-217-2012, 2012.
Lazzari, P., Solidoro, C., Salon, S., and Bolzon, G.:
Spatial variability of phosphate and nitrate in the Mediterranean Sea: A modeling approach,
Deep-Sea Res. Pt. I,
108, 39–52, https://doi.org/10.1016/j.dsr.2015.12.006, 2016.
Levitus, S.:
Climatological Atlas of the World Ocean,
EOS T. Am. Geophys. Un.,
64, 962–963, https://doi.org/10.1029/EO064i049p00962-02, 1982.
Li, P. and Tanhua, T.:
Recent Changes in Deep Ventilation of the Mediterranean Sea; Evidence From Long-Term Transient Tracer Observations,
Front. Mar. Sci.,
7, 1–23, https://doi.org/10.3389/fmars.2020.00594, 2020.
Lipizer, M., Partescano, E., Rabitti, A., Giorgetti, A., and Crise, A.: Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea, Ocean Sci., 10, 771–797, https://doi.org/10.5194/os-10-771-2014, 2014.
Lucea, A., Duarte, C. M., and Agustı, S.:
Nutrient (N, P and Si) and carbon partitioning in the stratified NW Mediterranean,
J. Sea Res.,
49, 157–170, https://doi.org/10.1016/S1385-1101(03)00005-4, 2003.
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.:
River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades?,
Prog. Oceanogr.,
80, 199–217, https://doi.org/10.1016/j.pocean.2009.02.001, 2009.
Ludwig, W., Bouwman, A. F., Dumont, E., and Lespinas, F.:
Water and nutrient fluxes from major Mediterranean and Black Sea rivers: Past and future trends and their implications for the basin-scale budgets,
Global Biogeochem. Cy.,
24, 1–14, https://doi.org/10.1029/2009GB003594, 2010.
Maillard, C., Lowry, R., Maudire, G., and Schaap, D.: SeaDataNet: Development of a Pan-European infrastructure for ocean and marine data management, in: OCEANS 2007 – Europe, Aberdeen, UK, 18–21 June 2007, 1–6, https://doi.org/10.1109/OCEANSE.2007.4302435, 2007.
Malanotte-Rizzoli, P., Manca, B. B., D'Alcala, M. R., Theocharis, A., Brenner, S., Budillon, G., and Ozsoy, E.:
The Eastern Mediterranean in the 80s and in the 90s: The big transition in the intermediate and deep circulations,
Dynam. Atmos. Oceans,
29, 365–395, https://doi.org/10.1016/S0377-0265(99)00011-1, 1999.
Manca, B., Burca, M., Giorgetti, A., Coatanoan, C., Garcia, M. J., and Iona, A.:
Physical and biochemical averaged vertical profiles in the Mediterranean regions: An important tool to trace the climatology of water masses and to validate incoming data from operational oceanography,
J. Marine Syst.,
48, 83–116, https://doi.org/10.1016/j.jmarsys.2003.11.025, 2004.
MEDOC GROUP: Observation of Formation of Deep Water in the Mediterranean Sea, 1969, Nature, 227, 1037–1040, https://doi.org/10.1038/2271037a0, 1970.
Míguez, B. M., Novellino, A., Vinci, M., Claus, S., Calewaert, J. B., Vallius, H., Schmitt, T., Pititto, A., Giorgetti, A., Askew, N., Iona, S., Schaap, D., Pinardi, N., Harpham, Q., Kater, B. J., Populus, J., She, J., Palazov, A. V., McMeel, O., Oset, P., Lear, D., Manzella, G. M. R., Gorringe, P., Simoncelli, S., Larkin, K., Holdsworth, N., Arvanitidis, C. D., Jack, M. E. M., Chaves Montero, M. del M., Herman, P. M. J., and Hernandez, F.:
The European Marine Observation and Data Network (EMODnet): Visions and roles of the gateway to marine data in Europe,
Front. Mar. Sci.,
6, 1–24, https://doi.org/10.3389/fmars.2019.00313, 2019.
Moon, J., Lee, K., Tanhua, T., Kress, N., and Kim, I.:
Temporal nutrient dynamics in the Mediterranean Sea in response to anthropogenic inputs,
Geophys. Res. Lett.,
5243–5251, https://doi.org/10.1002/2016GL068788.Received, 2016.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa, O.:
Processes and patterns of oceanic nutrient limitation,
Nat. Geosci.,
6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Murphy, A. H.:
Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient,
Mon. Weather Rev.,
116, 2417–2424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2, 1988.
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Bittig, H. C., Kozyr, A., Álvarez, M., Azetsu-Scott, K., Becker, S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jutterström, S., Landa, C. S., Lauvset, S. K., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., and Woosley, R. J.: An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020, Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, 2020.
Ozer, T., Gertman, I., Kress, N., Silverman, J., and Herut, B.:
Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea,
Glob. Planet. Change, 151, 60–67, https://doi.org/10.1016/j.gloplacha.2016.04.001, 2017.
Picco, P.: Climatological atlas of the western Mediterranean, Technical report
Center for Energy and Environmental Research, Santa Teresa, la Spezia, Italy, 224 pp., 1990.
Piñeiro, S., González-Pola, C., Fernández-Díaz, J. M., and Balbin, R.:
Thermohaline Evolution of the Western Mediterranean Deep Waters Since 2005: Diffusive Stages and Interannual Renewal Injections,
J. Geophys. Res.-Oceans,
124, 8747–8766, https://doi.org/10.1029/2019JC015094, 2019.
Pondaven, P., Ruiz-Pino, D., Druon, J. N., Fravalo, C., and Tréguer, P.:
Factors controlling silicon and nitrogen biogeochemical cycles in high nutrient, low chlorophyll systems (the Southern Ocean and the North Pacific): Comparison with a mesotrophic system (the North Atlantic),
Deep-Sea Res. Pt. I,
46, 1923–1968, https://doi.org/10.1016/S0967-0637(99)00033-3, 1999.
Pujo-Pay, M., Conan, P., Oriol, L., Cornet-Barthaux, V., Falco, C., Ghiglione, J.-F., Goyet, C., Moutin, T., and Prieur, L.: Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea, Biogeosciences, 8, 883–899, https://doi.org/10.5194/bg-8-883-2011, 2011.
Rahav, E., Herut, B., Stambler, N., Bar-Zeev, E., Mulholland, M. R., and Berman-Frank, I.:
Uncoupling between dinitrogen fixation and primary productivity in the eastern Mediterranean Sea,
J. Geophys. Res.-Biogeo.,
118, 195–202, https://doi.org/10.1002/jgrg.20023, 2013.
Reale, M., Giorgi, F., Solidoro, C., Di Biagio, V., Di Sante, F., Mariotti, L., Farneti, R., and Sannino, G.: The Regional Earth System Model RegCM-ES: Evaluation of the Mediterranean climate and marine biogeochemistry, J. Adv. Model. Earth Sy., 12, e2019MS001812, https://doi.org/10.1029/2019MS001812, 2020.
Reul, A., Rodríguez, V., Jiménez-Gómez, F., Blanco, J. M., Bautista, B., Sarhan, T., Guerrero, F., Ruíz, J., and García-Lafuente, J.:
Variability in the spatio-temporal distribution and size-structure of phytoplankton across an upwelling area in the NW-Alboran Sea, (W-Mediterranean),
Cont. Shelf Res.,
25, 589–608, https://doi.org/10.1016/j.csr.2004.09.016, 2005.
Ribera d'Alcalà, M., Civitarese, G., Conversano, F., and Lavezza, R.:
Nutrient ratios and fluxes hint at overlooked processes in the Mediterranean Sea,
J. Geophys. Res.-Oceans,
108, 8106, https://doi.org/10.1029/2002jc001650, 2003.
Rixen, M., Beckers, J. M., Brankart, J. M., and Brasseur, P.:
A numerically efficient data analysis method with error map generation,
Ocean Model.,
2, 45–60, https://doi.org/10.1016/s1463-5003(00)00009-3, 2000.
Roether, W. and Schlitzer, R.:
Eastern Mediterranean deep water renewal on the basis of chlorofluoromethane and tritium data,
Dynam. Atmos. Oceans,
15, 333–354, https://doi.org/10.1016/0377-0265(91)90025-B, 1991.
Roether, W., Manca, Beniamino B. Klein, B., Bregant, D., Georgopoulos, D., Beitzel, V., and Kovačević, V., and Luchetta, A.:
Recent Changes in Eastern Mediterranean Deep Waters,
Science, 271, 333–335, https://doi.org/10.1126/science.271.5247.333, 1996.
Roether, W., Klein, B., Bruno, B., Theocharis, A., and Kioroglou, S.:
Progress in Oceanography Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s,
Prog. Oceanogr.,
74, 540–571, https://doi.org/10.1016/j.pocean.2007.03.001, 2007.
Roether, W., Klein, B., and Hainbucher, D.:
The Eastern Mediterranean Transient: Evidence for Similar Events Previously?,
in: The Mediterranean Sea: Temporal variability and spatial patterns, Geophysical Monograph Series, 202,
AGU (American Geophysical Union), Wiley, Washington, USA, 75–83, https://doi.org/10.1002/9781118847572.ch6, 2014.
Salgado-Hernanz, P. M., Racault, M. F., Font-Muñoz, J. S., and Basterretxea, G.:
Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing,
Remote Sens. Environ.,
221, 50–64, https://doi.org/10.1016/j.rse.2018.10.036, 2019.
Sarmiento, J. L. and Toggweiler, J. R.:
A new model for the role of the oceans in determining atmospheric PCO2,
Nature,
308, 621–624, https://doi.org/10.1038/308621a0, 1984.
Schroeder, K., Gasparini, G. P., Borghini, M., Cerrati, G., and Delfanti, R.:
Biogeochemical tracers and fl uxes in the Western Mediterranean Sea, spring 2005,
J. Marine Syst.,
80, 8–24, https://doi.org/10.1016/j.jmarsys.2009.08.002, 2010.
Schroeder, K., Tanhua, T., Bryden, H., Alvarez, M., Chiggiato, J., and Aracri, S.:
Mediterranean Sea Ship-based Hydrographic Investigations Program (Med-SHIP),
Oceanography,
28, 12–15, https://doi.org/10.5670/oceanog.2015.71, 2015.
Schroeder, K., Chiggiato, J., Bryden, H. L., Borghini, M., and Ben Ismail, S.:
Abrupt climate shift in the Western Mediterranean Sea,
Scientific Reports,
6, 23009, https://doi.org/10.1038/srep23009, 2016.
Schroeder, K., Chiggiato, J., Josey, S. A., Borghini, M., Aracri, S., and Sparnocchia, S.:
Rapid response to climate change in a marginal sea,
Scientific Reports, 7,
1–7, https://doi.org/10.1038/s41598-017-04455-5, 2017.
Schroeder, K., Cozzi, S., Belgacem, M., Borghini, M., Cantoni, C., Durante, S., Petrizzo, A., Poiana, A., and Chiggiato, J.:
Along-Path Evolution of Biogeochemical and Carbonate System Properties in the Intermediate Water of the Western Mediterranean,
Front. Mar. Sci.,
7, 1–19, https://doi.org/10.3389/fmars.2020.00375, 2020.
Schröder, K., Gasparini, G. P., Tangherlini, M., and Astraldi, M.:
Deep and intermediate water in the western Mediterranean under the influence of the Eastern Mediterranean Transient,
Geophys. Res. Lett.,
33, 2–7, https://doi.org/10.1029/2006GL027121, 2006.
SeaDataNet Group: Data Quality Control Procedures, Tech. Rep. Version 2.0, SeaDataNet consortium, available at:
https://www.seadatanet.org/Standards/Data-Quality-Control (last access: September 2019), 2010.
Shepherd, J. G., Brewer, P. G., Oschlies, A., and Watson, A. J.: Ocean ventilation and deoxygenation in a warming world: introduction and overview. Philos. T. R. Soc. A, 375, 20170240, https://doi.org/10.1098/rsta.2017.0240, 2017.
Simoncelli, S. and Oliveri, P.: SeaDataCloud Mediterranean Sea – Temperature and Salinity Climatology V1, https://doi.org/10.12770/ad07a55f-5de7-4abc-ba89-8899b16c4b59, 2019.
Simoncelli, S., Tonani, M., Grandi, A., Coatanoan, C., Myroshnychenko, V., Sagen H., Bäck Ö., Scory, S., Schlitzer, R., and Fichaut, M.: First Release of the SeaDataNet Aggregated Data Sets Products, WP10 Second Year Report – DELIVERABLE D10.2, https://doi.org/10.13155/49827, 2014.
Simoncelli, S., Coatanoan, C., Myroshnychenko, V., Sagen, H., Back, O., Scory, S., Grandi, A., Barth, A., and Fichaut, M.: SeaDataNet, First Release of Regional Climatologies, WP10 Third Year Report – DELIVERABLE D10.3, https://doi.org/10.13155/50381, 2015.
Simoncelli, S., Coatanoan, C., Back, O., Sagen, H., Scory, S., Myroshnychenko, V., Schaap, D., Schlitzer, R., Iona, S., and Fichaut, M.: The SeaDataNet data products: regional temperature and salinity historical data collections, EGU 2016 – European Geosciences Union General Assembly 2016, 17–22 April 2016, Austria, available at: https://archimer.ifremer.fr/doc/00326/43753/ (last access: 3 September 2019), 2016.
Simoncelli S., Oliveri P., and Mattia G.: SeaDataCloud Temperature and Salinity Climatology for the Mediterranean Sea (Version 1), Product Information Document (PIDoc), https://doi.org/10.13155/77506, 2020a.
Simoncelli, S., Oliveri, P., and Mattia, G.: SeaDataCloud Mediterranean Sea – V2 Temperature and Salinity Climatology, https://doi.org/10.12770/3f8eaace-9f9b-4b1b-a7a4-9c55270e205a, 2020b.
Simoncelli, S., Oliveri, P., Mattia, G., Myroshnychenko, V., Barth, A., and Troupin, C.: SeaDataCloud Temperature and Salinity Climatology for the Mediterranean Sea (Version 2), Product Information Document (PIDoc), https://doi.org/10.13155/77514, 2020c.
Simoncelli, S., Coatanoan, C., Myroshnychenko, V., Bäck, Ö., Sagen, H., Scory, S., Pinardi, N., Barth, A., Troupin, C., Shahzadi, K., Oliveri, P., Schlitzer, R., Fichaut, M., and Schaap, D.: SeaDataCloud temperature and salinity climatologies for the European marginal seas and the Global Ocean, Proceedings of the International Conference on Marine Data and Information Systems (IMDIS), 12–14 April, 2021, Bollettino di Geofisica, Vol. 62 – Supplement, 2021, 321 pp., available at: https://imdis.seadatanet.org/content/download/151922/file/IMDIS2021_proceedings.pdf, last access: 5 January 2021.
Simoncelli, S., Coatanoan, C., Back, O., Sagen, H., Scory, S., Myroshnychenko, V., Schaap, D., Schlitzer, R., Iona, S., and Fichaut, M.: The SeaDataNet data products: regional temperature and salinity historical data collections, EGU 2016 – European Geosciences Union General Assembly 2016, 17–22 April 2016, Austria, available at: https://archimer.ifremer.fr/doc/00326/43753/ (last access: 5 January 2020), 2016.
Sospedra, J., Niencheski, L. F. H., Falco, S., Andrade, C. F. F., Attisano, K. K., and Rodilla, M.: Identifying the main sources of silicate in coastal waters of the Southern Gulf of Valencia (Western Mediterranean Sea),
Oceanologia,
60, 52–64, https://doi.org/10.1016/j.oceano.2017.07.004, 2018.
Stöven, T. and Tanhua, T.: Ventilation of the Mediterranean Sea constrained by multiple transient tracer measurements, Ocean Sci., 10, 439–457, https://doi.org/10.5194/os-10-439-2014, 2014.
Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., and Civitarese, G.: The Mediterranean Sea system: a review and an introduction to the special issue, Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, 2013.
Teruzzi, A., Bolzon, G., Cossarini, G., Lazzari, P., Salon, S., Crise, A., and Solidoro, C.: Mediterranean Sea Biogeochemical Reanalysis (CMEMS MED-Biogeochemistry), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/MEDSEA_REANALYSIS_BIO_006_008, 2019.
Testor, P., Le Goff, H., Labaste, M., Coppola, L., Mortier, L., Taillandier, V., Dausse, D., Kunesch, S., Diamond-Riquier, E., Garcia, N., Durrieu de Madron, X., Raimbault, P.:
MOOSE-GE, French Oceanographic Cruises [data set], https://doi.org/10.18142/235,, 2010.
Testor, P., Coppola, L., and Mortier, L.: MOOSE-GE 2011 cruise, RV Téthys II, https://doi.org/10.17600/11450160, 2011.
Testor, P., Coppola, L., and Mortier, L.: MOOSE-GE 2012 cruise, RV Le Suroît, https://doi.org/10.17600/12020030, 2012.
Testor, P., Coppola, L., and Mortier, L.: MOOSE-GE 2013 cruise, RV Téthys II, https://doi.org/10.17600/13450110, 2013.
Testor, P., Coppola, L., and Mortier, L.: MOOSE-GE 2014 cruise, RV Le Suroît, https://doi.org/10.17600/14002300, 2014.
Testor, P., Coppola, L., and Mortier, L.: MOOSE-GE 2015 cruise, RV Le Suroît, https://doi.org/10.17600/15002500, 2015.
Testor, P., Bosse, A., Houpert, L., Margirier, F., Mortier, L., Legoff, H., Dausse, D., Labaste, M., Karstensen, J., Hayes, D., Olita, A., Ribotti, A., Schroeder, K., Chiggiato, J., Onken, R., Heslop, E., Mourre, B., D'ortenzio, F., Mayot, N., Lavigne, H., de Fommervault, O., Coppola, L., Prieur, L., Taillandier, V., Durrieu de Madron, X., Bourrin, F., Many, G., Damien, P., Estournel, C., Marsaleix, P., Taupier-Letage, I., Raimbault, P., Waldman, R., Bouin, M. N., Giordani, H., Caniaux, G., Somot, S., Ducrocq, V., and Conan, P.:
Multiscale Observations of Deep Convection in the Northwestern Mediterranean Sea During Winter 2012–2013 Using Multiple Platforms,
J. Geophys. Res.-Oceans,
123, 1745–1776, https://doi.org/10.1002/2016JC012671, 2018.
Theocharis, A., Lascaratos, A., and Sofianos, S.: Variability of sea water properties in the Ionian , Cretan and Levantine seas during the last century, In Tracking Long-Term Hydrological Change in the Mediterranean Sea, CIESM Workshop Series, 16, 71–78, 2002.
Troupin, C., MacHín, F., Ouberdous, M., Sirjacobs, D., Barth, A., and Beckers, J. M.:
High-resolution climatology of the northeast Atlantic using Data-Interpolating Variational Analysis (Diva),
J. Geophys. Res.-Oceans,
115, 1–20, https://doi.org/10.1029/2009JC005512, 2010.
Troupin, C., Barth, A., Sirjacobs, D., Ouberdous, M., Brankart, J. M., Brasseur, P., Rixen, M., Alvera-Azcárate, A., Belounis, M., Capet, A., Lenartz, F., Toussaint, M. E., and Beckers, J. M.:
Generation of analysis and consistent error fields using the Data Interpolating Variational Analysis (DIVA),
Ocean Model.,
52–53, 90–101, https://doi.org/10.1016/j.ocemod.2012.05.002, 2012.
Troupin, C., Watelet, S., Ouberdous, M., Sirjacobs, D., Alvera-Azcárate, A., Barth, A., Toussaint, M., and Beckers, J.: Data Interpolating Variational Analysis User Guide, Zenodo [code], https://doi.org/10.5281/zenodo.836723, 2018.
Van Cappellen, P., Powley, H. R., Emeis, K. C., and Krom, M. D.:
A biogeochemical model for phosphorus and nitrogen cycling in the Eastern Mediterranean Sea: Part 1: Model development, initialization and sensitivity,
J. Marine Syst.,
139, 460–471, https://doi.org/10.1016/j.jmarsys.2014.08.016, 2014.
Vargas-yáñez, M.:
Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED project Progress in Oceanography Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED project,
Prog. Oceanogr.,
157, 27–46, https://doi.org/10.1016/j.pocean.2017.09.004, 2017.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.:
A new digital bathymetric model of the world's oceans,
Earth and Space Science,
2, 331–345, https://doi.org/10.1002/2015EA000107, 2015.
Williams, R. G. and Follows, M. J.: Physical Transport of Nutrients and the Maintenance of Biological Production, in: Ocean Biogeochemistry. Global Change – The IGBP Series (closed), edited by: Fasham, M. J. R., Springer, Berlin, Heidelberg, 19–51, https://doi.org/10.1007/978-3-642-55844-3_3, 2003.
Short summary
The Mediterranean Sea exhibits an anti-estuarine circulation, responsible for its low productivity. Understanding this peculiar character is still a challenge since there is no exact quantification of nutrient sinks and sources. Because nutrient in situ observations are generally infrequent and scattered in space and time, climatological mapping is often applied to sparse data in order to understand the biogeochemical state of the ocean. The dataset presented here partly addresses these issues.
The Mediterranean Sea exhibits an anti-estuarine circulation, responsible for its low...
Altmetrics
Final-revised paper
Preprint