Articles | Volume 13, issue 2
https://doi.org/10.5194/essd-13-571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Petrophysical and mechanical rock property database of the Los Humeros and Acoculco geothermal fields (Mexico)
Leandra M. Weydt
CORRESPONDING AUTHOR
Department of Geothermal Science and Technology, Technische
Universität Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt,
Germany
Ángel Andrés Ramírez-Guzmán
Escuela Nacional de Estudios Superiores – Unidad Morelia, Universidad
Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701,
58190 Morelia, Michoacán, Mexico
Antonio Pola
Escuela Nacional de Estudios Superiores – Unidad Morelia, Universidad
Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701,
58190 Morelia, Michoacán, Mexico
Baptiste Lepillier
Faculty of Civil Engineering and Geosciences, Delft University of
Technology, Stevinweg 1, Delft 2628CD, the Netherlands
Juliane Kummerow
GFZ Research Centre for Geoscience, Telegrafenberg, 14473 Potsdam,
Germany
Giuseppe Mandrone
Department of Earth Sciences, University of Turin, Via Valperga
Caluso 35, 10125 Turin, Italy
Cesare Comina
Department of Earth Sciences, University of Turin, Via Valperga
Caluso 35, 10125 Turin, Italy
Paromita Deb
Institute for Applied Geophysics and Geothermal Energy, E.ON Energy
Research Center, RWTH Aachen, Mathieustraße 10, 52074 Aachen, Germany
Gianluca Norini
Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale
delle Ricerche, Via Roberto Cozzi 53, 20125 Milan, Italy
Eduardo Gonzalez-Partida
Centro de Geociencias, Universidad Nacional Autónoma de
México, 76230 Juriquilla, Querétaro, Mexico
Denis Ramón Avellán
CONACYT – Instituto de Geofísica, Universidad Nacional
Autónoma de México, Antigua Carretera a Pátzcuaro 8701, 58190
Morelia, Michoacán, Mexico
José Luis Macías
Instituto de Geofísica – Unidad Michoacán, Universidad
Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701,
58190 Morelia, Michoacán, Mexico
Kristian Bär
Department of Geothermal Science and Technology, Technische
Universität Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt,
Germany
Ingo Sass
Department of Geothermal Science and Technology, Technische
Universität Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt,
Germany
Darmstadt Graduate School of Excellence Energy Science and
Engineering, Jovanka-Bontschits Straße 2, 64287 Darmstadt, Germany
Related authors
Leandra M. Weydt, Kristian Bär, Chiara Colombero, Cesare Comina, Paromita Deb, Baptiste Lepillier, Giuseppe Mandrone, Harald Milsch, Christopher A. Rochelle, Federico Vagnon, and Ingo Sass
Adv. Geosci., 45, 281–287, https://doi.org/10.5194/adgeo-45-281-2018, https://doi.org/10.5194/adgeo-45-281-2018, 2018
Short summary
Short summary
The here submitted paper represents the first results of a larger project named
GEMex. The objective of the project – a Mexican–European cooperation – is to explore the geothermal potential of deep unconventional systems like enhanced geothermal systems (EGS) and super-hot geothermal systems (SHGS). New exploitation approaches and technologies are being developed, allowing the use of geothermal resources under challenging technical demands.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Lionel Bertrand, Claire Bossennec, Wan-Chiu Li, Cédric Borgese, Bruno Gavazzi, Matthis Frey, Yves Géraud, Marc Diraison, and Ingo Sass
EGUsphere, https://doi.org/10.5194/egusphere-2023-1316, https://doi.org/10.5194/egusphere-2023-1316, 2023
Preprint archived
Short summary
Short summary
The assessement of fracture networks is a key element for underground reservoir studies. The available methods for such assessement are unfortunately very limited in the case of complex 3 dimensions geometries. The paper shows a new method to overcome these limitations through automatic detection from images of outcrops.
Matthis Frey, Claire Bossennec, Lukas Seib, Kristian Bär, Eva Schill, and Ingo Sass
Solid Earth, 13, 935–955, https://doi.org/10.5194/se-13-935-2022, https://doi.org/10.5194/se-13-935-2022, 2022
Short summary
Short summary
The crystalline basement is considered a ubiquitous and almost inexhaustible source of geothermal energy in the Upper Rhine Graben. Interdisciplinary investigations of relevant reservoir properties were carried out on analogous rocks in the Odenwald. The highest hydraulic conductivities are expected near large-scale fault zones. In addition, the combination of structural geological and geophysical methods allows a refined mapping of potentially permeable zones.
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860, https://doi.org/10.5194/essd-13-4847-2021, https://doi.org/10.5194/essd-13-4847-2021, 2021
Short summary
Short summary
Knowledge of groundwater properties is relevant, e.g. for drinking-water supply, spas or geothermal energy. We compiled 1035 groundwater datasets from 560 springs or wells sampled since 1810, using mainly publications, supplemented by personal communication and our own measurements. The data can help address spatial–temporal variation in groundwater composition, uncertainties in groundwater property prediction, deep groundwater movement, or groundwater characteristics like temperature and age.
E. Adamopoulos, C. Colombero, C. Comina, F. Rinaudo, M. Volinia, M. Girotto, and L. Ardissono
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VIII-M-1-2021, 1–8, https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-1-2021, https://doi.org/10.5194/isprs-annals-VIII-M-1-2021-1-2021, 2021
Velio Coviello, Lucia Capra, Gianluca Norini, Norma Dávila, Dolors Ferrés, Víctor Hugo Márquez-Ramírez, and Eduard Pico
Earth Surf. Dynam., 9, 393–412, https://doi.org/10.5194/esurf-9-393-2021, https://doi.org/10.5194/esurf-9-393-2021, 2021
Short summary
Short summary
The Puebla–Morelos earthquake (19 September 2017) was the most damaging event in central Mexico since 1985. The seismic shaking produced hundreds of shallow landslides on the slopes of Popocatépetl Volcano. The larger landslides transformed into large debris flows that travelled for kilometers. We describe this exceptional mass wasting cascade and its predisposing factors, which have important implications for both the evolution of the volcanic edifice and hazard assessment.
Sebastian Weinert, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 1441–1459, https://doi.org/10.5194/essd-13-1441-2021, https://doi.org/10.5194/essd-13-1441-2021, 2021
Short summary
Short summary
Physical rock properties are a key element for resource exploration, the interpretation of results from geophysical methods or the parameterization of physical or geological models. Despite the need for physical rock properties, data are still very scarce and often not available for the area of interest. The database presented aims to provide easy access to physical rock properties measured at 224 locations in Bavaria, Hessen, Rhineland-Palatinate and Thuringia (Germany).
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Gianluca Norini and Gianluca Groppelli
Solid Earth, 11, 2549–2556, https://doi.org/10.5194/se-11-2549-2020, https://doi.org/10.5194/se-11-2549-2020, 2020
Short summary
Short summary
We identified several problems in Urbani et al. (2020), showing that their model does not conform to the age and location of faulting, identification and delimitation of uplifted areas and apical depressions, temperature and lithological well log, and stratigraphic and radiometric data. Published data indicate that the pressurization of the Los Humeros volcanic complex (LHVC) magmatic–hydrothermal system driving resurgence faulting occurs at a greater depth.
Kristian Bär, Thomas Reinsch, and Judith Bott
Earth Syst. Sci. Data, 12, 2485–2515, https://doi.org/10.5194/essd-12-2485-2020, https://doi.org/10.5194/essd-12-2485-2020, 2020
Short summary
Short summary
Petrophysical properties are key to populating numerical models of subsurface process simulations and the interpretation of many geophysical exploration methods. The P3 database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. The uniqueness of P3 emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding location, petrography, stratigraphy and original reference.
Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)by Urbani et al. (2020)
Gianluca Norini and Gianluca Groppelli
Solid Earth Discuss., https://doi.org/10.5194/se-2020-110, https://doi.org/10.5194/se-2020-110, 2020
Revised manuscript not accepted
Short summary
Short summary
We identify several problems of the Urbani et al. (2020) study, showing that their model does not conform to the geological constraints. These problems, which largely undermine their conclusions, are poor field data, inconsistencies between the caldera complex and the modelling, lack of any substantial validation, and contradictions with the reference stratigraphy. The Urbani et al. (2020) analysis fails identify the caldera deformation source and the geothermal field heat source.
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020, https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.
Philippe Calcagno, Gwladys Evanno, Eugenio Trumpy, Luis Carlos Gutiérrez-Negrín, José Luis Macías, Gerardo Carrasco-Núñez, and Domenico Liotta
Adv. Geosci., 45, 321–333, https://doi.org/10.5194/adgeo-45-321-2018, https://doi.org/10.5194/adgeo-45-321-2018, 2018
Short summary
Short summary
Geothermal resource is heat energy that can be recovered from underground in the Earth. As part of the European H2020 GEMex project, 3D geological models were constructed for the geothermal sites of Los Humeros and Acoculco in Mexico. These models allow a better understanding of the rock types and structure when targeting deep sources of geothermal energy; they will be updated during the project, serving as a framework for simulating the geothermal system.
Leandra M. Weydt, Kristian Bär, Chiara Colombero, Cesare Comina, Paromita Deb, Baptiste Lepillier, Giuseppe Mandrone, Harald Milsch, Christopher A. Rochelle, Federico Vagnon, and Ingo Sass
Adv. Geosci., 45, 281–287, https://doi.org/10.5194/adgeo-45-281-2018, https://doi.org/10.5194/adgeo-45-281-2018, 2018
Short summary
Short summary
The here submitted paper represents the first results of a larger project named
GEMex. The objective of the project – a Mexican–European cooperation – is to explore the geothermal potential of deep unconventional systems like enhanced geothermal systems (EGS) and super-hot geothermal systems (SHGS). New exploitation approaches and technologies are being developed, allowing the use of geothermal resources under challenging technical demands.
Meike Hintze, Barbara Plasse, Kristian Bär, and Ingo Sass
Adv. Geosci., 45, 251–258, https://doi.org/10.5194/adgeo-45-251-2018, https://doi.org/10.5194/adgeo-45-251-2018, 2018
Short summary
Short summary
The presented study is conducted within the scope of the joint research project "Hessen 3D 2.0" (BMWI-FKZ: 0325944) and aims at assessing the hydrothermal potential of the Pechelbronn Group for direct heat use by means of an integrated 3-D structural-geothermal model that serves to locate potential exploration areas. The assessment is based on reservoir temperature, (net)thickness of the reservoir horizon as well as on petrophysical, thermal and hydraulic rock properties.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Swarup Chauhan, Wolfram Rühaak, Hauke Anbergen, Alen Kabdenov, Marcus Freise, Thorsten Wille, and Ingo Sass
Solid Earth, 7, 1125–1139, https://doi.org/10.5194/se-7-1125-2016, https://doi.org/10.5194/se-7-1125-2016, 2016
Short summary
Short summary
Machine learning techniques are a promising alternative for processing (phase segmentation) of 3-D X-ray computer tomographic rock images. Here the performance and accuracy of different machine learning techniques are tested. The aim is to classify pore space, rock grains and matrix of four distinct rock samples. The porosity obtained based on the segmented XCT images is cross-validated with laboratory measurements. Accuracies of the different methods are discussed and recommendations proposed.
S. Homuth, A. E. Götz, and I. Sass
Geoth. Energ. Sci., 3, 41–49, https://doi.org/10.5194/gtes-3-41-2015, https://doi.org/10.5194/gtes-3-41-2015, 2015
C. Comina, M. Lasagna, D. A. De Luca, and L. Sambuelli
Hydrol. Earth Syst. Sci., 18, 3195–3203, https://doi.org/10.5194/hess-18-3195-2014, https://doi.org/10.5194/hess-18-3195-2014, 2014
C. Comina, M. Lasagna, D. A. De Luca, and L. Sambuelli
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10035-2013, https://doi.org/10.5194/hessd-10-10035-2013, 2013
Revised manuscript not accepted
Related subject area
Geosciences – Applied Geology
An integrated marine data collection for the German Bight – Part 1: Subaqueous geomorphology and surface sedimentology (1996–2016)
The hysteretic response of a shallow pyroclastic deposit
The Rocklea Dome 3D Mineral Mapping Test Data Set
A solar optical hyperspectral library of rare-earth-bearing minerals, rare-earth oxide powders, copper-bearing minerals and Apliki mine surface samples
Constructing a complete landslide inventory dataset for the 2018 monsoon disaster in Kerala, India, for land use change analysis
Integrated dataset of deformation measurements in fractured volcanic tuff and meteorological data (Coroglio coastal cliff, Naples, Italy)
Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: an integrated approach
Technical details concerning development of a 1200 yr proxy index for global volcanism
Julian Sievers, Peter Milbradt, Romina Ihde, Jennifer Valerius, Robert Hagen, and Andreas Plüß
Earth Syst. Sci. Data, 13, 4053–4065, https://doi.org/10.5194/essd-13-4053-2021, https://doi.org/10.5194/essd-13-4053-2021, 2021
Short summary
Short summary
Numerous coastal and marine actors, from both the public and private sectors, require bathymetric and surface sedimentological data for a wide range of economic applications and scientific analyses. With this publication, we establish an open-access, integrated marine data collection for the German Bight from 1996 to 2016 with bathymetric and sedimentological models that provide base data in an unprocessed form, as well as a range of base analysis products for easy accessibility.
Luca Comegna, Emilia Damiano, Roberto Greco, Lucio Olivares, and Luciano Picarelli
Earth Syst. Sci. Data, 13, 2541–2553, https://doi.org/10.5194/essd-13-2541-2021, https://doi.org/10.5194/essd-13-2541-2021, 2021
Short summary
Short summary
The set-up of an automatic field station allowed for the monitoring of the annual cyclic hydrological response of a deposit in pyroclastic air-fall soils covering a steep mountainous area in Campania region (Italy), which in 1999 was involved in a rainfall-induced flowslide. Data highlight the influence of the initial conditions, governed by the antecedent wetting/drying history, on the weather-induced hydraulic paths, allowing us to estimate their influence on the local stability conditions.
Carsten Laukamp, Maarten Haest, and Thomas Cudahy
Earth Syst. Sci. Data, 13, 1371–1383, https://doi.org/10.5194/essd-13-1371-2021, https://doi.org/10.5194/essd-13-1371-2021, 2021
Short summary
Short summary
Integration of drill core and Earth observation data is critical for cost-effective mineral exploration and mining. Publicly accessible data sets to evaluate analytical tools and their effectiveness for characterisation of mineral assemblages and lithologies or discrimination of ore from waste are however scarce. The open-access Rocklea Dome 3D Mineral Mapping Test Data Set allows an evaluation of subsurface and surface information for exploration of mineral resources and their characterisation.
Friederike Koerting, Nicole Koellner, Agnieszka Kuras, Nina Kristin Boesche, Christian Rogass, Christian Mielke, Kirsten Elger, and Uwe Altenberger
Earth Syst. Sci. Data, 13, 923–942, https://doi.org/10.5194/essd-13-923-2021, https://doi.org/10.5194/essd-13-923-2021, 2021
Short summary
Short summary
Mineral resource exploration and mining is an essential part of today's high-tech industry. Modern remote-sensing exploration techniques from multiple platforms (e.g., satellite) to detect the spectral characteristics of the surface require spectral libraries as an essential reference. To enable remote mapping, the spectral libraries for rare-earth-bearing minerals, copper-bearing minerals and surface samples from a copper mine are presented here with their corresponding geochemical validation.
Lina Hao, Rajaneesh A., Cees van Westen, Sajinkumar K. S., Tapas Ranjan Martha, Pankaj Jaiswal, and Brian G. McAdoo
Earth Syst. Sci. Data, 12, 2899–2918, https://doi.org/10.5194/essd-12-2899-2020, https://doi.org/10.5194/essd-12-2899-2020, 2020
Short summary
Short summary
Kerala in India was subjected to an extreme rainfall event in the monsoon season of 2018 which triggered extensive floods and landslides. In order to study whether the landslides were related to recent land use changes, we generated an accurate and almost complete landslide inventory based on two existing datasets and the detailed interpretation of images from the Google Earth platform. The final dataset contains 4728 landslides with attributes of land use in 2010 and land use in 2018.
Fabio Matano, Mauro Caccavale, Giuseppe Esposito, Alberto Fortelli, Germana Scepi, Maria Spano, and Marco Sacchi
Earth Syst. Sci. Data, 12, 321–344, https://doi.org/10.5194/essd-12-321-2020, https://doi.org/10.5194/essd-12-321-2020, 2020
Short summary
Short summary
Along the coastline of the Phlegraean Fields, Naples, Italy, severe retreat processes affect the tuff coastal cliffs, causing hazardous slope failures. An integrated monitoring system coupled with a weather station has been active since 2014. The measurements allowed us to assess the magnitude and temporal pattern of rock block deformations before failure and their correlation with meteorological parameters. A close correlation between temperature and deformation trends has been recognized.
Cristina Ponte Lira, Ana Nobre Silva, Rui Taborda, and Cesar Freire de Andrade
Earth Syst. Sci. Data, 8, 265–278, https://doi.org/10.5194/essd-8-265-2016, https://doi.org/10.5194/essd-8-265-2016, 2016
Short summary
Short summary
Beach erosion is one of the leading problems that coastal regions face worldwide, and coastline evolution studies show how much it affects the coastal system. Usually these studies are site-specific and lack an integrated approach to either a large spatial domain or quantification using a single measurement. The first global Portuguese study on the subject is presented using an integrated approach. Results show erosion as dominant trend (−0.24 m year−1), but it is highly variable in space.
T. J. Crowley and M. B. Unterman
Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013, https://doi.org/10.5194/essd-5-187-2013, 2013
Cited articles
Ali, A. and Potter, D. K.: Temperature dependence of the magnetic properties
of reservoir rocks and minerals and implications for in situ borehole
predictions of petrophysical parameters, Geophysics, 77, WA211–WA221,
https://doi.org/10.1190/GEO2011-0282.1, 2012.
Aretz, A., Bär, K., Götz, A. E., and Sass, I.: Outcrop analogue
study of Permocarboniferous geothermal sandstone reservoir formations
(northern Upper Rhine Graben, Germany): Impact of mineral content,
depositional environment and diagenesis on petrophysical properties, Int. J.
Earth Sci., 135, 1431–1452,
https://doi.org/10.1007/s00531-015-1263-2, 2015.
Árnason, K.: New Conceptual Model for the Magma-Hydrothermal-Tectonic
System of Krafla, NE Iceland, Geosciences, 10, 27 pp., https://doi.org/10.3390/geosciences10010034, 2020.
ASTM D2664-04: Standard Test Method for Triaxial Compressive Strength of
Undrained Rock Core Specimens Without Pore Pressure Measurements (Withdrawn
2005), ASTM International, West Conshohocken, PA, USA, 4 pp., https://doi.org/10.1520/D2664-04, 2004.
ASTM D2845-08: Standard Test Method for Laboratory Determination of Pulse
Velocities and Ultrasonic Elastic Constants of Rock, ASTM International,
West Conshohocken, PA, USA, 7 pp., https://doi.org/10.1520/D2845-08, 2008.
ASTM D3148-02: Standard Test Method for Elastic Moduli of Intact Rock Core
Specimens in Uniaxial Compression, ASTM International, West Conshohocken,
PA, USA, 6 pp., https://doi.org/10.1520/D3148-02, 2002.
ASTM D3967-16: Standard Test Method for Splitting Tensile Strength of Intact
Rock Core Specimens, ASTM International, West Conshohocken, PA, USA, 5 pp.,
https://doi.org/10.1520/D3967-16, 2016.
ASTM D4525-13e2: Standard Test Method for Permeability of Rocks by Flowing
Air, ASTM International, West Conshohocken, PA, USA, 5 pp.,
https://doi.org/10.1520/D4525-13E02, 2013.
ASTM D4543-19: Standard Practices for Preparing Rock Core Specimens and
Determining Dimensional and Shape Tolerances, ASTM International, West
Conshohocken, PA, USA, 13 pp.,
https://doi.org/10.1520/D4543-19, 2019.
ASTM D5550-14: Standard Test Method for Specific Gravity of Soil Solids by
Gas Pycnometer, ASTM International, West Conshohocken, PA, USA, 5 pp.,
https://doi.org/10.1520/D5550-14, 2014.
ASTM D5731-08: Standard Test Method for Determination of the Point Load
Strength Index of Rock and Application to Rock Strength Classifications,
ASTM International, West Conshohocken, PA, USA, 12 pp.,
https://doi.org/10.1520/D5731-08, 2008.
ASTM D6539-13: Standard Test Method for Measurement of the Permeability of
Unsaturated Porous Materials by Flowing Air, ASTM International, West
Conshohocken, PA, USA, 10 pp., https://doi.org/10.1520/D6539-13,
2013.
ASTM D7012-14: Test methods for compressive strength and elastic moduli of
intact rock corespecimens under varying states of stress and temperatures,
ASTM International, West Conshohocken, PA, USA, 9 pp.,
https://doi.org/10.1520/D7012-14, 2014.
ASTM D7263-16: Standard Test Methods for Laboratory Determination of Density
(Unit Weight) of Soil Specimens, ASTM International, West Conshohocken, PA,
USA, 7 pp., https://doi.org/10.1520/D7263-09R18E02, 2016.
ASTM D731-18: Standard Test Method for Molding Index of Thermosetting
Molding Powder, ASTM International, West Conshohocken, PA, USA, 4 pp.,
https://doi.org/10.1520/D0731-18, 2018.
Avellán, D. R., Macías, J. L., Layer, P. W., Sosa-Ceballos, G.,
Cisneros, G., Sanchez, J. M., Martha Gómez-Vasconcelos, G.,
López-Loera, H., Reyes Agustín, G., Marti, J., Osorio, S.,
García-Sánchez, L., Pola-Villaseñor, A., García-Tenorio,
F., and Benowitz, J.: Geology of the Pleistocene Acoculco Caldera Complex,
eastern Trans-Mexican Volcanic Belt (México), J. Maps, 15, 8–18,
https://doi.org/10.1080/17445647.2018.1531075, 2018.
Avellán, D. R., Macías, J. L., Layer, P. W., Sosa-Ceballos, G.,
Gómez-Vasconcelos, M. G., Cisneros-Máximo, G., and Benowitz, J.:
Eruptive chronology of the Acoculco caldera complex – A resurgent caldera
in the eastern Trans-Mexican Volcanic Belt (México), J. S.
Am. Earth Sci., 98, 102412, https://doi.org/10.1016/j.jsames.2019.102412, 2020.
Bär, K.: Untersuchung der tiefengeothermischen Potenziale von Hessen,
PhD thesis, Technische
Universität Darmstadt, Germany, 265 pp., 2012.
Bär, K. and Weydt, L. M.: Comprehensive report on the rock and
fluid samples and their physical properties in the Acoculco and Los Humeros
regions, Deliverable D6.1, WP6, GEMex H2020 project, European Comission, 304 pp., available at: http://www.gemex-h2020.eu (last access: 25 May 2020), 2019.
Bär, K., Reinsch, T., and Bott, J.: The PetroPhysical Property Database (P3) – a global compilation of lab-measured rock properties, Earth Syst. Sci. Data, 12, 2485–2515, https://doi.org/10.5194/essd-12-2485-2020, 2020.
Bayuk, I. and Tikhotskiy, S.: Upscaling and downscaling of reservoir elastic
properties – Rock Physics approach, in: SEG International Exposition and 88th Annual Meeting, 14–19
October 2018, Anaheim, CA, USA, 3653–3657, https://doi.org/10.1190/segam2018-2985365.1, 2018.
Békési, E., Struijk, M., Bonté, D., Veldkamp, H., Limberger, J.,
Fokker, P. A., Vrijlandt, M., and van Wees, J.-D.: An updated geothermal
model of the Dutch subsurface based on inversion of temperature data,
Geothermics, 88, 101880,
https://doi.org/10.1016/j.geothermics.2020.101880, 2020.
Benediktsdóttir, A., Arango-Galván, C., Páll Hersir, G., Held,
S., Romo-Jones, J. M., Luis-Salas, J., Avils, T.,
Ruiz-Aguilar, D., and Már Vilhjálmsson, A.: The Los Humeros superhot
geothermal resource in Mexico: Results from an extensive resistivity survey,
GEMex Final Conference, Potsdam, Germany, 18–19 February 2020, S6.1, 2020.
Bohnsack, D., Potten, M., Pfrang, D., Wolpert, P., and Zosseder, K.:
Porosity-permeability relationship derived from Upper Jurassic carbonate
rock cores to assess the regional hydraulic matrix properties of the Malm
reservoir in the South German Molasse Basin, Geotherm. Energy, 12, 1–47, https://doi.org/10.1186/s40517-020-00166-9, 2020.
Bourbiaux, B.: Fractured Reservoir Simulation: a Challenging and Rewarding
Issue, Oil Gas Sci. Technol., 65, 227–238,
https://doi.org/10.2516/ogst/2009063, 2010.
Bourbiaux, B., Basquet, R., Daniel, J. M., Hu, L. Y., Jenni, S., Lange, G.,
and Rasolofosaon, P.: Fractured reservoirs modelling a review of the
challenges and some recent solutions, First Break, 23, 33-40,
https://doi.org/10.3997/1365-2397.2005018, 2005.
BritGeothermal: Deep geothermal energy research in the UK, available at:
http://www.britgeothermal.org/ (last access: 21 October 2020), 2017.
BRITROCKS project: BRITROCKS Rock collections: BGS Mineralogy and petrology
collection database, available at:
https://www.bgs.ac.uk/technologies/databases/bgs-rock-collections/ (last
access: 21 October 2020), 2020.
Buntebarth, G.: Geothermie, Springer, Berlin ans Heidelberg, Germany,
https://doi.org/10.1007/978-3-662-00910-9, 1980.
Calcagno, P., Evanno, G., Trumpy, E., Gutiérrez-Negrín, L. C., Macías, J. L., Carrasco-Núñez, G., and Liotta, D.: Preliminary 3-D geological models of Los Humeros and Acoculco geothermal fields (Mexico) – H2020 GEMex Project, Adv. Geosci., 45, 321–333, https://doi.org/10.5194/adgeo-45-321-2018, 2018.
Calcagno, P., Trumpy, E., Gutiérrez-Negrín, L. C., Liotta, D.,
Carrasco-Núñez, G., Norini, G., Brogi, A.,
Garduño-Monroy, V. H., Benediktsdóttir, A., Gaucher, E.,
Toldeo, T., Páll Hersir, G., Manzella, A., Santilano, A., Gola, G.,
Macías, J. L., Vaessen, L., Evanno, G., and Arango-Galván, C.: 3D
Geomodels of Los Humeros and Acoculco geothermal systems (Mexico) – H2020
GEMex Project: Methodology, products and feedback,
GEMex Final Conference, Potsdam, Germany, 18–19 February 2020, S1.2, 2020.
Canet, C., Arana, L., González-Pertida, E., Pi, T., Prol-Ledesma, R. M.,
Franco, S. I., Villanueva-Estrada, R. E., Camprubí, A.,
Ramírez-Silva, G., and López-Hernández, A.: A statistics-based
method for the short-wave infrared spectral analysis of altered rocks: An
example from the Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt,
J. Geochem. Explor., 105, 1–10, https://doi.org/10.1016/j.gexplo.2010.01.010, 2010.
Canet, C., Trillaud, F., Prol-Ledesma, R., González-Hernández, G.,
Peláez, B., Hernández-Cruz, B., and Sánchez-Córdova, M. M.:
Thermal history of the Acoculco geothermal system, eastern Mexico: Insights
from numerical modeling and radiocarbon dating, J. Volcanol.
Geoth. Res., 305, 56–62, https://doi.org/10.1016/j.jvolgeores.2015.09.019, 2015.
Cant, J. L., Siratovich, P. A., Cole, J. W., Villeneuve, M. C., and Kennedy,
B. M.: Matrix permeability of reservoir rocks, Ngatamariki geothermal field,
Taupo Volcanic Zone, New Zealand, Geotherm. Energy, 2, 1–28,
https://doi.org/10.1186/s40517-017-0088-6, 2018.
Carrasco-Núñez, G., Gómez-Tuena, A., and Lozano, V. L.:
Geologic map of Cerro Grande volcano and surrounding area, Central Mexico,
Geological Society of America, Map and chart series, MCH 081, available at:
https://www.worldcat.org/title/geologic-map-of-cerro-grande-volcano-and-surrounding-area-central-mexico/oclc/37949323&referer (last access: 9 December 2020), 1997.
Carrasco-Núñez, G., Hernández, J., De Léon, L., Dávilla,
P., Norini, G., Bernal, J. P., Jicha, B., Jicha, B., Navarro, M., and
López-Quiroz, P.: Geologic Map of Los Humeros volcanic complex and
geothermal field eastern Trans-Mexican Volcanic Belt, terra digitalis, 1,
1–11, https://doi.org/10.22201/igg.terradigitalis.2017.2.24.78,
2017a.
Carrasco-Núñez, G., López-Martínez, M., Hernández, J.,
and Vargas, V.: Subsurface stratigraphy and its correlation with the
surficial geology at Los Humeros geothermal field, eastern Trans-Mexican
Volcanic Belt, Geothermics, 67, 1–17,
https://doi.org/10.1016/j.geothermics.2017.01.001, 2017b.
Carrasco-Núñez, G., Bernal, J. P., Dávilla, P., Jicha, B.,
Giordano, G., and Hernández, J.: Reappraisal of Los Humeros Volcanic
Complex by New U/Th Zircon and 40Ar/39Ar Dating: Implications for Greater
Geothermal Potential, Geochem. Geophy. Geosy., 19, 132–149,
https://doi.org/10.1002/2017GC007044, 2018.
Cavazos, J. and Carrasco-Núñez, G.: Anatomy of the Xáltipan
ignimbrite at Los Humeros Volcanic Complex; the largest eruption of the
Trans-Mexican Volcanic Belt, J. Volcanol. Geoth. Res.,
392, 106755, https://doi.org/10.1016/j.jvolgeores.2019.106755,
2020.
Christie, M.: Upscaling for reservoir simulation, J. Pet. Technol., 48,
1004–1010, https://doi.org/10.2118/37324-JPT, 1996.
Clauser, C.: Thermal Storage and Transport Properties of Rocks, II: Thermal
Conductivity and Diffusivity, in: Encyclopedia of Solid
Earth Geophysics. Encyclopedia of Earth Sciences Series, edited by: Gupta, H. K., Springer, Cham, Switzerland, 1–20, https://doi.org/10.1007/978-3-030-10475-7_67-1, 2020.
Clauser, C. and Huenges, E.: Thermal conductivity of rocks and minerals. Rock
Physics & Phase Relations, in: Rock Physics and Phase relations: A
Handbook of Physical Constants, edited by: Ahrens, T. J., American Geophysical Union, Washington, USA,
3, 105–126, https://doi.org/10.1029/rf003p0105, 1995.
Clement, R., Bergeron, M., and Moreau, S.: COMSOL Multiphysics modelling for
measurement device of electrical resistivity in laboratory test cell, in:
Proceedings of the 2011 COMSOL Conference, 26–28 October 2011, Stuttgart, 6 pp., 2011.
Codd, E. F.: A Relational Model of Data for Large Shared Data Banks,
Communications of the ACM, 13, 377–387, https://doi.org/10.1145/362384.362685, 1970.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J.-X.: The ICS
International Chronostratigraphic Chart, Episodes 36, 199–204, available
at: http://www.stratigraphy.org/ICSchart/ChronostratChart2020-01.pdf (last
access: 09 Decmeber 2020), 2013.
Contreras, L. E., Domínguez, A. B., and Rivera, M. O.: Mediciones
petrofisicas en nucleos de perforacion del campo geotermico Los Humeros,
Geotermia, 6, 9–42, 1990.
Cornejo, N.: Towards visualization ofthe reservoir settings in the Los
Humeros and Acoculco geothermal fields using gravity, GEMex Final
Conference, , Potsdam, Germany, 18–19 February 2020, S1.6, 2020.
Deb, P., Knapp, D., Clauser, C., and Montegrossi, G.: Modeling Natural
Steady-State of Super-Hot Geothermal Reservoir at Los Humeros, Mexico, in: Proceedings of the
European Geothermal Congress 2019, Den Haag, the Netherlands, 11–14 June
2019, 6 pp., 2019a.
Deb, P., Knapp, D., Marquart, G., and Clauser, C.: Report on the numerical
reservoir model used for the simulation of the Acoculco reservoir in Mexico,
Deliverable 6.2, WP6, GEMex H2020 project, European Comission, 1.2, available at: http://www.gemex-h2020.eu (26 May 2020), 2019b.
Deb, P., Salimzadeh, S., Dübner, S., and Clauser, C.: Laboratory
experiments and numerical simulations of hydraulic fracturing for enhanced
geothermal systems, in: Proceedings of the European Geothermal Congress 2019, Den Haag, the
Netherlands, 11–14 June 2019, 4 pp., 2019c.
DIN 18141-1: 2014-05: Baugrund-Untersuchung von Gesteinsproben – Teil 1:
Bestimmung der einaxialen Druckfestigkeit, Beuth,
https://doi.org/10.31030/2100323, 2014.
Ding, L. Y., Mehra, R. K., and Donnelly, J. K.: Stochastic Modeling in
Reservoir Simulation, SPE Reservoir Engineering, 7, 98–106, https://doi.org/10.2118/18431-PA, 1992.
DOE Data Explorer: U.S. Department of Energy Office of Scientific and
Technical Information, DOE Data Explorer Utah Forge, available at:
https://www.osti.gov/dataexplorer/biblio/dataset/1452765 (last
access: 21 October 2020), 2018.
Durán, E. L., Adam, L., Wallis, I. C., and Barnhoorn, A.: Mineral
Alteration and Fracture Influence on the Elastic Properties of
Volcaniclastic Rocks, J. Geophys. Res.-Sol. Ea., 124, 4576–4600,
https://doi.org/10.1029/2018JB016617, 2019.
Ebigbo, A., Niederau, J., Marquart, G., Dini, I., Thorwart, M., Rabbel, W.,
Peching, R., Bertani, R., and Clauser, C.: Influence of depth, temperature,
and structure of a crustal heat source on the geothermal reservoirs of
Tuscany: numerical modelling and sensitivity study, Geotherm. Energy, 5, 1–29, https://doi.org/10.1186/s40517-016-0047-7, 2016.
Ebong, E. D., Akpan, A. E., and Ekwok, S. E.: Stochastic modelling of
spatial variability of petrophysical properties in parts of the Niger Delta
Basin, southern Nigeria, Journal of Petroleum Exploration and Production
Technology, 10, 569–585,
https://doi.org/10.1007/s13202-019-00787-2, 2019.
Eggertsson, G. H., Lavallée, Y., Kendrick, J. E., and Markússon, S.
H.: Improving fluid flow in geothermal reservoirs by thermal and mechanical
stimulation: The case of Krafla volcano, Iceland, J. Volcanol.
Geoth. Res., 391, 106351,
https://doi.org/10.1016/j.jvolgeores.2018.04.008, 2020.
Enge, H. D., Buckley, S. J., Rotevatn, A., and Howell, J. A.: From outcrop
to reservoir simulation model: workflow and procedures, Geosphere, 3,
469–490, https://doi.org/10.1130/GES00099.1, 2007.
Farmer, C. L.: Upscaling: a review, Int. J. Numer. Meth. Fl., 40, 63–78,
https://doi.org/10.1002/fld.267, 2002.
Ferrari, L., Orozco-Esquivel, T., Manea, V., and Manea, M.: The dynamic
history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone,
Tectonophysics, 522/523, 122–149,
https://doi.org/10.1016/j.tecto.2011.09.018, 2012.
Ferriz, H. and Mahood, G.: Eruptive rates and compositional trends at Los
Humeros volcanic center, Puebla, Mexico, J. Geophys. Res.,
89, 8511–8524, https://doi.org/10.1029/JB089iB10p08511, 1984.
Filomena, C. M., Hornung, J., and Stollhofen, H.: Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices, Solid Earth, 5, 1–11, https://doi.org/10.5194/se-5-1-2014, 2014.
Fitz-Díaz, E., Lawton, T. F., Juárez-Arriaga, E., and
Chávez-Cabello, G.: The Cretaceous-Paleogene Mexican orogen: structure,
basin development, magmatism and tectonics, Earth-Sci. Rev., 183, 56–84,
https://doi.org/10.1016/j.earscirev.2017.03.002, 2017.
Flovenz, O. G., Spangenberg, E., Kuhlenkampff, J., Arnason, K., Karlsdottir,
R., and Huenges, E.: The role of electrical interface conduction in
geothermal exploration, in: Proceedings of the World Geothermal Congress 2005, Antalya,
Turkey, 24–29 April 2005, 9 pp., 2005.
Forchheimer, P.: Wasserbewegung durch Boden, Z. Ver. Dtsch. Ing., 45,
1782–1788, 1901.
Franco, A. and Donatini, F.: Methods for the estimation of the energy
stored in geothermal reservoirs, J. Phys., 796,
012025, https://doi.org/10.1088/1742-6596/796/1/012025,
2017.
Fuentes-Guzmán, E., González-Partida, E., Camprubí, A.,
Hernández-Avilés, G., Gabites, J., Ruggieri, G., Iriondo, A., and
López-Martínez, M.: The Miocene Tatatila-Las Minas IOCG skarn
deposits (Veracruz) as a result of adakitic magmatism in the Trans-Mexican
Volcanic Belt Short running title: Miocene IOCG deposits and adakitic magmas
in the Trans-Mexican Volcanic Belt, Boletín de la Sociedad
Geológica Mexicana, 73, A1105020, https://doi.org/10.18268/BSGM2020v72n3a110520, 2020.
Gan, Q. and Elsworth, D.: Production optimization in fractured geothermal
reservoirs by coupled discrete fracture network modelling, Geothermics, 62,
131–142, https://doi.org/10.1016/j.geothermics.2016.04.009,
2016.
García-Gutiérrez, A. and Contreras, E.: Measurement of Thermal
Conductivity and Diffusivity of Drill Core Samples from the Los Humeros
Geothermal Field, Mexico, by a Line-Source Technique, GRC Transactions, 31,
555–559, 2007.
García-Palomo, A., Macías, J. L., Tolson, G., Valdez, G., and
Mora, J. C.: Volcanic stratigraphy and geological evolution of the Apan
región, east-central sector of the Trans-Mexica Volcanic Belt,
Geofís. Int., 41, 133–150, 2002.
García-Palomo, A., Macías, J. L., Jiménez, A., Tolson, G.,
Mena, M., Sánchez-Núñez, J. M., Arce, J. L, Layer, P. W.,
Santoyo, M. A., and Lermo-Samaniego, J.: NW-SE Pliocene-Quaternary extension
in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt, J.
Volcanol. Geoth. Res., 349, 240–255, https://doi.org/10.1016/j.jvolgeores.2017.11.005, 2018.
Gard, M., Hasterok, D., and Halpin, J. A.: Global whole-rock geochemical database compilation, Earth Syst. Sci. Data, 11, 1553–1566, https://doi.org/10.5194/essd-11-1553-2019, 2019.
Georoc Mainz: GEOROC database, Geochemistry of Rocks of the Oceans and
Continents, available at:
http://georoc.mpch-mainz.gwdg.de/georoc/ (last access: 21 October 2020), 2020.
GeoScout database: geoLogicSystems, geoScout database, available at:
https://www.geologic.com/products/geoscout/ (last access: 11
November 2020), 2020.
Geotek: Multi-Sensor Core Logger, Manual, Geotek, Nene House, Drayton Fields, Daventry, Northants, UK, 2000.
Geotron-Elektronik: LightHouse UMPC V1.02, Installations- und
Bedienungshandbuch, 1.6, Pirna: Geotron-Elektronik, 2011.
Ghassemi, A: Application of rock failure simulation in design
optimization of the hydraulic fracturing, in: Porous Rock Fracture Mechanics with Application to Hydraulic
Fracturing, Drilling and Structural Engineering, edited by: Shojaei, A. K. and Shao, J., Elsevier, Duxford, UK, 3–23,
https://doi.org/10.1016/B978-0-08-100781-5.00001-4, 2017.
Gómez-Tuena, A. and Carrasco-Núñez, G.: Cerro Grande volcano:
the evolution of a Miocene stratocone in the early Trans-Mexican Volcanic
Belt. Tectonophysics, 318, 249–280, https://doi.org/10.1016/S0040-1951(99)00314-5, 2000.
Gu, Y., Rühaak, W., Bär, K., and Sass, I.: Using seismic data to
estimate the spatial distribution of rock thermal conductivity at reservoir
scale, Geothermics, 66, 61–72,
https://doi.org/10.1016/j.geothermics.2016.11.007, 2017.
Guo, H., Aziz, N. I., and Schmidt, L. C.: Rock fracture-toughness
determination by the Brazilian test, Eng. Geol., 33, 177–188,
https://doi.org/10.1016/0013-7952(93)90056-I, 1993.
Hartanato, L.: Different Scales and Integration of data in Reservoir
Simulation, PhD thesis, Curtin University of
Technology, Perth, Australia,
135 pp., 2004.
Hartmann, A., Rath, V., and Clauser, C.: Thermal conductivity from core and well
log data, Int. J. Rock Mech. Min. Sci., 42, 1042–1055, https://doi.org/10.1016/j.ijrmms.2005.05.015, 2005.
Hartmann, J. and Moosdorf, N.: The new global lithological map database
GLiM: A representation of rock properties at the Earth surface, Geochem.
Geophys. Geosyst., 13, Q12004,
https://doi.org/10.1029/2012GC004370, 2012.
Hassanzadegan, A., Blöcher, G., Milsch, H., Urpi, L., and Zimmermann,
G.: The Effects of Temperature and Pressure on the Porosity Evolution of
Flechtinger Sandstone, Rock Mech. Rock Eng., 47, 421–434,
https://doi.org/10.1007/s00603-013-0401-z, 2013.
Hatakeda, K., Lin, W., Hirose, T., Tanikawa, W., Hamada, Y., and Tadai,
O.: Electrical resistivity measurements of rocks under confining pressure
condition, JAMSTEC Report of Research and Development, 24, 1–9, https://doi.org/10.5918/jamstecr.24.1, 2017.
Heap, M. J. and Kennedy, B. M.: Exploring the scale-dependent permeability
of fractured andesite, Earth Planet. Sci. Lett., 447, 139–150, https://doi.org/10.1016/j.epsl.2016.05.004, 2016.
Heap, M. J., Lavallée, Y., Petrakova, L., Baud, P., Reuschlé, T.,
Varley, N. R., and Dingwell, D. B.: Microstructural controls on the physical and
mechanical properties of edifice-forming andesites at Volcán de Colima,
Mexico, J. Geophys. Res.-Sol. Ea., 119, 2925–2963, https://doi.org/10.1002/2013JB010521, 2014.
Heap, M. J., Gravley, D. M., Kennedy, B. M., Gilg, H. A., Bertolett, E., and
Barker, S. L.: Quantifying the role of hydrothermal alteration in creating
geothermal and epithermal mineral resources: The Ohakuri ignimbrite (Taupo
Volcanic Zone, New Zealand), J. Volcanol. Geoth. Res.,
390, 106703,
https://doi.org/10.1016/j.jvolgeores.2019.106703, 2020.
Horai, K.-I. and Susaki, J.-I.: The effect of pressure on the thermal
conductivity of silicate rocks up to 12 kbar, Phys. Earth. Planet. Inter.,
55, 292–305, https://doi.org/10.1016/0031-9201(89)90077-0,
1989.
Hornung, J. and Aigner, T.: Sedimentäre Architektur und Poroperm-Analyse
fluviatiler Sandsteine: Fallbeispiel Coburger Sandstein, Franken, Hallesches
Jahrb. Geowiss., 18, 121–138, 2004.
Howell, J. A., Allard, W. M., and Good, T. R.: The application of outcrop
analogues in geological modeling: a review, present status and future
outlook, Geol. Soc. Lond. Spec. Publ., 387, 1–25, https://doi.org/10.1144/SP387.12, 2014.
IHS Markit: The AccuMap database, available at:
https://ihsmarkit.com/products/oil-gas-tools-accumap.html (last access: 11
November 2020), 2020.
ISRM: Suggested methods for determining the uniaxial compressive strength
and deformability of rock materials, in:
The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006, edited by: Ulusay, R. and Hudson, J. A., Ankara, Turkey,
Pergamon Press, 137–138, 1979.
ISRM: Suggested Methods – Rock characterization testing and monitoring, edited by: Brown, E. T., Pergamon Press, Oxford, UK, 211 pp., 1981.
ISRM: Suggested methods for determining point load test, RTH 325-89, in: The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006, edited by: Ulusay, R. and Hudson, J. A., Pergamon Press, Ankara, Turkey, 53–60, 1984.
ISRM: Suggested methods for determining the fracture toughness of rock, Int. J. Rock Mech. Min. Sci. Geomech., 25, 71–96,
https://doi.org/10.1016/0148-9062(88)91871-2, 1988.
Jaritz, R.: Quantifizierung der Heterogenität einer Sandsteinmatrix am
Beispiel des Stubensandstein (Mittlerer Keuper, Württemberg),
Tübinger Geol. Abhandlungen, 48, 104 pp., 1999.
Jentsch, A., Jolie, E., Jones, D. G., Taylor-Curran, H., Peiffer, L.,
Zimmer, M., and Lister, B.: Magmatic volatiles to assess permeable
volcano-tectonic structures in the Los Humeros geothermal field, Mexico,
J. Volcanol. Geoth. Res., 394, 106820,
https://doi.org/10.1016/j.jvolgeores.2020.106820, 2020.
Jolie, E., Bruhn, D., López Hernández, A., Liotta, D.,
Garduño-Monroy, V. H., Lelli, M., Páll Hersir, G.,
Arango-Galván, C., Bonté, D., Calcagno, P., Deb, P., Clauser, C.,
Peters, E., Hernández Ochoa, A. F., Huenges, E., González Acevedo,
Z. I., Kieling, K., Trumpy, E., Vargas, J., Gutiérrez-Negrín, L.
C., Aragón-Aguilar, A., Halldórsdóttir, S., González
Partida, E., van Wees, J.-D., Ramírez Montes, M. A., Diez León, H.
D., and the GEMex team: GEMex – A Mexican-European Research Cooperation on
Development of Superhot and Engineered Geothermal Systems, in: Proceedings of the 43rd
Workshop on Geothermal Reservoir Engineering, Stanford,
CA, USA, 12–14 February 2018, 10 pp., 2018.
Khajeh, M. M.: Heterogeneity Consideration and Upscaling of Elastic
Properties in Coupled Geomechanical Flow Simulation of SAGD, PhD thesis,
University of Alberta, Edmonton, Canada, 131 pp., 2013.
Klinkenberg, L. J.: The permeability of porous media to liquids and gas, Drilling and Production Practice, 200–213, API-41-200, 1941.
Kozdrój, W., Nawrocki, J., Pańczyk-Nawrocka, M., ZiółkowskaKozdrój, M., Wójcik, K., Kumek, J., and González-Partida,
E.: Stratigraphic, petrological features and datings of Los Humeros rocks
from outcrops and boreholes, in: Final report on active systems: Los Humeros
and Acoculco, Deliverable 4.1, WP4, GEMex H2020 project, European Comission,
available at: http://www.gemex-h2020.eu (26 May 2020), 2019.
Kruszewski, M., Hofmann, H., Gomez-Alvarez, F., Bianco, C., Jimenez-Haro,
A., Garduno, V. H., Liotta, D., Trumpy, E., Brogi, A., Wheeler, W.,
Bastesen, E., Parisio, F., and Saenger, E. H.: Integrated Stress Field
Estimation and Implications for Enhanced Geothermal System Development in
Acoculco, Mexico, Geothermics, 89, 101931, https://doi.org/10.1016/j.geothermics.2020.101931, 2021.
Kummerow, J. and Raab, S.: Temperature dependence of electrical resistivity
– Part II: A new experimental set-up to study fluid-saturated rocks, Energy
Proced., 76, 247–255, https://doi.org/10.1016/j.egypro.2015.07.855, 2015.
Kummerow, J., Raab, S., and Spangenberg, E.: The impact of reactive flow on
electrical and hydraulic rock properties in supercritical geothermal
settings, GEMex Final Conference, Potsdam, Germany, 18–19 February 2020,
32, 2020.
Kushnir, A. R. L., Heap, M. J., and Baud, P.: Assessing the role of
fractures on the permeability of the Permo-Triassic sandstones at the
Soultz-sous-Forêts (France) geothermal site, Geothermics, 74, 181–189,
https://doi.org/10.1016/j.geothermics.2018.03.009, 2018.
Lacinska, A. M., Rochelle, C., Kilpatrick, A., Rushton, J., Weydt, L. M.,
Bär, K., and Sass, I.: Evidence for fracture-hosted fluid-rock reactions
within geothermal reservoirs of the eastern Trans-Mexican Volcanic Belt,
GEMex Final Conference, Potsdam, Germany, 18–19 February 2020, 33, 2020.
Le Maitre, R. W. and Streckeisen, A.: Igneous rocks: a classification and
glossary of terms – recommendations of the International Union of
Geological Sciences Subcommission on the Systematics of Igneous Rocks,
Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511535581, 2003.
Lenhardt, N. and Götz, A. E.: Volcanic settings and their reservoir
potential: an outcrop analog study on the Miocene Tepoztlán Formation,
Central Mexico, J. Volcanol. Geoth. Res., 204, 66–75, https://doi.org/10.1016/j.jvolgeores.2011.03.007, 2011.
Lepillier, B., Daniilidis, A., Doonechaly Gholizadeh, N., Bruna, P.-O.,
Kummerow, J., and Bruhn, D.: A fracture flow permeability and stress
dependency simulation applied to multi-reservoirs, multi-production
scenarios analysis, Geotherm. Energy, 24, 1–16,
https://doi.org/10.1186/s40517-019-0141-8, 2019.
Lepique, M.: Empfehlung Nr. 10 des Arbeitskreises 3.3 “Versuchstechnik
Fels” der Deutschen Gesellschaft für Geotechnik e. V.: Indirekter
Zugversuch an Gesteinsproben – Spaltzugversuch, Bautechnik, 85, 623–627,
https://doi.org/10.1002/bate.200810048, 2008.
Lévy, L., Gibert, B., Sigmundsson, F., Flóvenz, Ó. G., Hersir,
G. P., Briole, P., Pezard, P. A.: The role of smectites in the electrical
conductivity of active hydrothermal systems: electrical properties of core
samples from Krafla volcano, Iceland, Geophys. J. Int., 215, 1558–1582, https://doi.org/10.1093/gji/ggy342, 2018.
Lévy, L., Maurya, P. K., Byrdina, S., Vandemeulebrouck, J., Sigmundsson,
F., Árnson, K., Ricci, T., Deldicque, D., Roger, M., Gibert, B., and
Labazuy, P.: Electrical resistivity tomography and time-domain induced
polarization field investigations of geothermal areas at Krafla, Iceland:
comparison to borehole and laboratory frequency-domain electrical
observations, Geophys. J. Int., 218, 1469–1489,
https://doi.org/10.1093/gji/ggz240, 2019.
Li, C., Chen, X., and Du, Z.: A New Relationship of Rock Compressibility
with Porosity, SPE 88464-MS, in: SPE Asia Pacific Oil and Gas Conference and
Exhibition, Perth, Australia, 18–20 October 2004, 2004.
Linsel, A., Wiesler, S., Hornung, J., and Hinderer, M.: High-resolution analysis of the physicochemical characteristics of sandstone media at the lithofacies scale, Solid Earth, 11, 1511–1526, https://doi.org/10.5194/se-11-1511-2020, 2020.
Liotta, D., Brogi, A., Garduño-Monroy, V. H., Gomez, F., Wheeler, W. H.,
Bastesen, E., Torabi, A., Bianco, C., Jimenez-Haro, A., Olvera-Garcia, E.,
and Zucchi, E.: Regional Geological Structures, in: Final report on active
systems: Los Humeros and Acoculco, Deliverable 4.1, WP4, GEMex H2020
project, European Comission, available at: http://www.gemex-h2020.eu (last access: 26 May 2020), 2019.
Lippmann, E. and Rauen, A.: Measurements of Thermal Conductivity (TC) and
Thermal Diffusivity (TD) by the Optical Scanning Technology, Lippmann and
Rauen GbR, Schaufling, Germany, 2009.
López-Hernández, A.: Estudio Regional Volcánico y Estructural
del Campo Geotérmico de Los Humeros, Puebla., México, Geotermia
Revista Mexicana de Geoenergía, 11, 17–36, 1995.
López-Hernández, A., García-Estrada, G., Aguirre-Díaz, G.,
González-Partida, E., Palma-Guzmán, H., and Quijano-Léon, J.:
Hydrothermal activity in the Tulancingo-Acoculco Caldera Complex, central
Mexico: Exploratory studies, Geothermics, 38, 279–293,
https://doi.org/10.1016/j.geothermics.2009.05.001, 2009.
Lorenzo-Pulido, C., Armenta-Flores, M., and Ramírez-Silva, G.:
Characterization of the Acoculco Geothermal Zone as a HDR System, GRC
Transactions, 34, 369–372, 2010.
Macías, J. L., Arce, J. L., García-Tenorio, F., Layer, P. W.,
Rueda, H., Reyes-Agustin, G., and Avellán, D.: Geology and geochronology
of Tlaloc, Telapón, Iztaccíhuatl, and Popocatépetl volcanoes,
Sierra Nevada, central México, Field Guides 25, 163–193, https://doi.org/10.1130/2012.0025(08), 2012.
Mandrone, G., Comina, C., and Vacha, D.: Faults characterization aimed at
geothermal fluid path identification and quantification, GEMex Final
Conference, Potsdam, Germany, 18–19 February 2020, 41, 2020.
Merriman, D., Hofmeister, A. M., Roy, D. J., and Whittington, A. G.:
Temperature-dependent thermal transport properties of carbonate minerals and
rocks, Geosphere, 14, 1961–1987,
https://doi.org/10.1130/GES01581.1, 2018.
Micromeritics: AccuPyc 1330 Pycnometer, V2.02, Part No. 133-42808-01,
Micromeritics GmbH, Munich, Germany, 1997.
Micromeritics: GeoPyc 1360, V3., Part 136-42801-01, Micromeritics GmbH,
Munich, Germany, 1998.
Micromeritics: AccuPyc II 1340, Product Broschure,
Micromeritics Instrument Corporation, Norcross, available at: http://www.micromeritics.com/Product-Showcase/AccuPyc-II-1340.aspx (last
access: 9 December 2020), 2014.
Mielke, P., Nehler, M., Bignall, G., and Sass, I.: Thermo-physical rock
properties and the impact of advancing hydrothermal alteration – a case
study from the Tauhara geothermal field, New Zealand, J. Volcanol. Geoth.
Res., 301, 14–28, https://doi.org/10.1016/j.jvolgeores.2015.04.007, 2015.
Mielke, P., Weinert, S., Bignall, G., and Sass, I.: Thermo-physical rock
properties of greywacke basement rock and intrusive lavas from the Taupo
Volcanic Zone, New Zealand, J. Volcanol. Geoth. Res., 324, 179–189,
https://doi.org/10.1016/j.jvolgeores.2016.06.002, 2016.
Mobarak, S. A. and Somerton, W. H.: The Effect Of Temperature And Pressure
On Wave Velocities In Porous Rocks, in: Proceedings of the Fall Meeting of the Society of Petroleum
Engineers of AIME, New Orleans, Louisiana, 18 pp.,
https://doi.org/10.2118/3571-MS,
1971.
Moosavi, S. A., Goshtasbi, K., Kazemzadeh, E., Bakhtiari, H. A., Esfahani,
M. R., and Vali, J.: Relationship between porosity and permeability with
stress using pore volume compressibility characteristic of reservoir rocks,
Arab. J. Geosci., 7, 231–239, https://doi.org/10.1007/s12517-012-0760-x, 2014.
Mordensky, S. P., Heap, M. J., Kennedy, B. M., Gilg, H. A., Villeneuve, M.
C., Farquharson, J. I., and Gravley, D. M.: Influence of alteration on the
mechanical behaviour and failure mode of andesite: implications for shallow
seismicity and volcano monitoring, B. Volcanol., 44, 1–12,
https://doi.org/10.1007/s00445-019-1306-9, 2019.
Mutschler, T.: Neufassung der Empfehlung Nr. 1 des Arbeitskreises
“Versuchstechnik Fels” der Deutschen Gesellschaft für Geotechnik e. V.:
Einaxiale Druckversuche an zylindrischen Gesteinsprüfkörpern,
Bautechnik, 81, 825–834,
https://doi.org/10.1002/bate.200490194, 2004.
National Geochemical Database USGS: Geochemical database of the US
Geological Survey, USA, available at:
https://www.usgs.gov/energy-and-minerals/mineral-resources-program/science/national-geochemical-database?qt-science_center_objects (last access: 21 October 2020), 2014.
National Geothermal data system NGDS: Database of various reports and data
sets related to geothermal and geological projects in the USA, available
at: https://data.geothermaldata.org/ (last access: 11
November 2020), 2014.
NAVDAT data base: The North American Volcanic and Intrusive Rock Database
(NAVDAT), available in the EarthChem Portal, available at:
http://portal.earthchem.org/ (last access: 21 October 2020), 2020.
Navelot, V., Géraud, Y., Favier, A., Diraison, M., Corsini, M.,
Lardeaux, J.-M., Verati, C., de Lépinary, J. M., Legendre, L., and
Beauchamps, G.: Petrophysical properties of volcanic rocks and impacts of
hydrothermal alteration in the Guadeloupe Archipelago (West Indies), J.
Volcanol. Geoth. Res., 360, 1–21, https://doi.org/10.1016/j.jvolgeores.2018.07.004, 2018.
Nono, F., Gibert, B., Parat, F., Loggia, D., Cichy, S. B., and Violay, M.:
Electrical conductivity of Icelandic deep geothermal reservoirs up to
supercritical conditions: Insight from laboratory experiments, JVGR, 391,
106364, https://doi.org/10.1016/j.jvolgeores.2018.04.021, 2020.
Norden, B., Förster, A., Förster, H.-J., and Fuchs, S.: Temperature
and pressure corrections applied to rock thermal conductivity: impact on
subsurface temperature prognosis and heat-flow determination in geothermal
exploration, Geotherm. Energy, 1, 1–19,
https://doi.org/10.1186/s40517-020-0157-0, 2020.
Norini, G., Gropelli, G., Sulpizio, R., Carrasco-Núñez, G.,
Dávila-Harris, P., Pellicioli, C., Zucca, F., and De Franco, R.:
Structural analysis and thermal remote sensing of the Los Humeros Volcanic
Complex: Implications for volcano structure and geothermal exploration,
J. Volcanol. Geoth. Res., 301, 221–237, https://doi.org/10.1016/j.jvolgeores.2015.05.014, 2015.
Norini, G., Carrasco-Núñez, G., Corbo, F., Lermo, J., Hernández,
J., Castro, C., Bonini, M., Montanari, D., Corti, G., Moratti, G., Piccardi,
L., Chavez, G., Zuluaga, M. C., Ramírez, M., and Cedillo, F.: The
structural architecture of the Los Humeros volcanic complex and geothermal
field, J. Volcanol. Geoth. Res., 381, 312–329,
https://doi.org/10.1016/j.jvolgeores.2019.06.010, 2019.
Nurhandoko, B. E. B., Kurniadi, R., Susilowati, Tryoso, K., Widowati, S.,
Hadi, M. R. A., Abda, M. R., Martha, R. K., Fatiah, E., and Komara, R.:
Integrated Subsurface Temperature Modeling beneath Mt. Lawu and Mt. Muriah
in The Northeast Java Basin, Indonesia, Open Geosci., 11, 341–351,
https://doi.org/10.1515/geo-2019-0027, 2019.
Ohnaka, M.: Stability of Remanent Magnetization of Rocks under Compression
– Its Relation to the Grain Size of Rock-forming Ferromagnetic Minerals,
J. Geomagn. Geoelectr., 21, 495–505, https://doi.org/10.5636/jgg.21.495, 1969.
Ólavsdóttir, J., Andersen, M. S., and Boldreel, L. O.: Reservoir
quality of intrabasalt volcaniclastic units onshore Faroe Islands, North
Atlantic Igneous Province, northeast Atlantic, AAPG Bull., 99, 467–497,
https://doi.org/10.1306/08061412084, 2015.
Oliva-Urcia, B., Kontny, A., Vahle, C., and Schleicher, A. M.: Modification
of the magnetic mineralogy in basalts due to fluid-rock interactions in a
high-temperature geothermal system (Krafla, Iceland), Geophys. J.
Int., 186, 155–174, https://doi.org/10.1111/j.1365-246X.2011.05029.x, 2011.
Pérez-Campos, X., Kim, Y., Husker, A., Davis, P. M., Clayton, R. W.,
Iglesias, A., Pacheco, J., Singh, S., Constantin, M. V., and Gurnis, M.:
Horizontal subduction and truncation of the Cocos plate beneath central
Mexico, Geophys. Res. Lett. 35, 1–6,
https://doi.org/10.1029/2008GL035127, 2008.
Petlab database: GNS Science, Petlab database, available at:
http://pet.gns.cri.nz/ (last access: 21 October 2020), 2020.
Pola, A., Crosta, G., Fusi, N., Barberini, V., and Norini, G.: Influence of
alteration on physical properties of volcanic rocks, Tectonophysics,
566/567, 67–86, https://doi.org/10.1016/j.tecto.2012.07.017,
2012.
Pola, A., Crosta, G. B., Fusi, N., and Castellanza, R.: General characterization
of the mechanical behaviour of different volcanic rocks with respect to
alteration, Eng. Geol., 169, 1–13,
https://doi.org/10.1016/j.enggeo.2013.11.011, 2014.
Popov, Y., Beardsmore, G., Clauser, C., and Roy, S.: ISRM Suggested Methods
for Determining Thermal Properties of Rocks from Laboratory Tests at
Atmospheric Pressure, Rock Mech. Rock Eng., 49, 4179–4207,
https://doi.org/10.1007/s00603-016-1070-5, 2016.
Popov, Y. A., Sass, P. D., Williams, C. F., and Burkhardt, H.:
Characterization of rock thermal conductivity by high resolution optical
scanning, Geothermics, 28, 253–276,
https://doi.org/10.1016/S0375-6505(99)00007-3, 1999.
Qi, D. and Hesketh, T.: An Analysis of Upscaling Techniques for Reservoir
Simulation, Pet. Sci. Technol., 23, 827–842, https://doi.org/10.1081/LFT-200033132, 2005.
Qu, H., Yang, B., Tian, X., Liu, X., Yang, H., Dong, W., and Chen, Y.: The
primary controlling parameters of porosity, permeability, and seepage
capability of tight gas reservoirs: a case study on Upper Paleozoic
Formation in the eastern Ordos Basin, Northern China, Pet. Sci., 16,
1270–1284, https://doi.org/10.1007/s12182-019-00373-5, 2019.
Ringrose, P. and Bentley, M.: Reservoir Model Design,
Springer, Dordrecht, the Netherlands,
https://doi.org/10.1007/978-94-007-5497-3, 2015.
Rock Properties Database British Columbia Canada: Rock Properties Database,
a collaborative Geoscience BC project among Mira Geoscience, the Geological
Survey of Canada and CAMIRO, Open file resource, available at: https://catalogue.data.gov.bc.ca/dataset/2dc8a4f1-c8f8-4603-813e-855af99b7ba5/resource/51f0620a-42cf-458f-821c-bdd895f24fdc/download/of2008-4rpd.xls
(last access: 21 October 2020), 2018.
RockViewer: Software for Organization of Petrographic
Photomicrographs, available at:
https://www.endeeper.com/product/rockviewer (last access: 21 October 2020), 2020.
Romo-Jones, J. M., Gutiérrez-Negrín, L. C., and
Canchaela-Félix, I.: 2018 México Country Report, IEA Geothermal,
available at: https://drive.google.com/file/d/1G2mYo4rKScLyHe_zpUHr50RvtxdmvVKo/view (last access: 28 May 2020), 2019.
Ruggeri, G., Morelli, G., Zucchi, M., Braschi, E., Agostini, S., Ventruti,
G., Brogi, A., Liotta, D., Boschi, C., and Gonzalez-Partida, E.: Insight
into the fluids occurring in the super-hot reservoir of the Los Humeros
geothermal system from fluid inclusions and isotopic data of the Las Minas
exhumed system (Mexico), GEMex Final Conference, Potsdam, Germany, 18–19 February 2020, 53, 2020.
Rühaak, W., Bär, K., and Sass, I.: Combining numerical modeling with
geostatistical analysis for an improved reservoir exploration, Energy
Proced., 59, 315–322, https://doi.org/10.1016/j.egypro.2014.10.383, 2014.
Rühaak, W., Guadagnini, A., Geiger, S., Bär, K., Gu, Y., Aretz, A.,
Hohmuth, S., and Sass, I.: Upscaling thermal conductivities of sedimentary
formations for geothermal exploration, Geothermics, 58, 49–61, https://doi.org/10.1016/j.geothermics.2015.08.004, 2015.
Rybacki, E., Meier, T., and Dresen, G.: What controls the mechanical properties
of shale rocks? – Part II: Brittleness, J. Petrol. Sci.
Eng., 144, 39–58, https://doi.org/10.1016/j.petrol.2016.02.022, 2016.
Saller, A. H. and Henderson, N.: Distribution of Porosity and Permeability
in Platform Dolomites: Insight from the Permian of West Texas, AAPG
Bull., 82, 1528–1550, https://doi.org/10.1306/1D9BCB01-172D-11D7-8645000102C1865D, 1998.
Sánchez-Vila, X., Guadagnini, A., and Carrera, J.: Representative hydraulic
conductivities in saturated groundwater flow, Rev. Geophys., 44, RG3002,
https://doi.org/10.1029/2005RG000169, 2006.
Sass, I. and Götz, A. E.: Geothermal reservoir characterization: a
thermofacies concept, Terra Nova, 24, 142–147,
https://doi.org/10.1111/j.1365-3121.2011.01048.x, 2012.
Sass, J. H., Lachenbruch, A. H., Munroe, R. J., Greene, G. W., and Moses Jr., T.
H.: Heat flow in the Western United States, J. Geophys. Res., 76,
6376–6413, https://doi.org/10.1029/JB076i026p06376, 1971.
Scheibe, T. and Yabusaki, S.: Scaling of flow and transport behavior in
heterogeneous groundwater systems, Adv. Water Resour., 22, 223–238,
https://doi.org/10.1016/S0309-1708(98)00014-1, 1998.
Scheidegger, A. E.: The Physics of Flow Through Porous Media, 3rd ed., 372 pp., University
of Toronto Press, Toronto, Canada,
https://www.jstor.org/stable/10.3138/j.ctvfrxmtw (last access: 25 May 2020), 1974.
Schön, J. H.: Physical properties of rocks: Fundamentals and principles
of petrophysics, Developments in petroleum science, Elsevier,
Amsterdam, the Netherlands, 512 pp., 2015.
Sciencebase Minnesota: US Geological Survey (USGS) – Collection of rock
properties database from Minnesota USA, available at:
https://www.sciencebase.gov/catalog/item/4f4e49d8e4b07f02db5df226 (last
access: 21 October 2020), 2010.
Scott, S. W., Covell, C., Júlíusson, E., Valfells, Á., Newson,
J., Hrafnkelsson, B., Pállson, H., and Gudjónsdóttir, M.: A
probalistic geological model of the Krafla geothermal system constrained by
gravimetric data, Geotherm. Energy, 29, 1–30,
https://doi.org/10.1186/s40517-019-0143-6, 2019.
Setaram Instrumentation: K/C80-1A C80 Commissioning, Setaram Instrumentation
KEP Technologies, Caluire, France, 52 pp., 2009.
SGM: CARTA GEOLÓGICO – MINERA, E14-2, Servicio Geológico Mexicano, Ciudad de Mexico, Mexico, first
edition, 2002a.
SGM: CARTA GEOLÓGICO – MINERA, E14-3, Servicio Geológico Mexicano,
Veracruz, Mexico, first edition, 2002b.
Shankland, T. J., Duba, A. G., Mathez, E. A., and Peach, C. L.: Increase of
electrical conductivity with pressure as an indicator of conduction through
a solid phase in midcrustal rocks, J. Geophys. Res., 102, 14741–14750,
https://doi.org/10.1029/96JB03389, 1997.
Siratovich, P., Heap, M. J., Villeneuve, M., Cole, J., and Reuschlé,
T.: Physical property relationships of the Rotokawa Andesite, a significant
geothermal reservoir rock in the Taupo Volcanic Zone, New Zealand, Geotherm.
Energy, 10, 1–31, https://doi.org/10.1186/s40517-014-0010-4, 2014.
Siratovich, P. A., Sass, I., Homuth, S., and Bjornsson, A.: Thermal
Stimultaion of Geothermal Reservoirs and Laboratory Investigation of
Thermally Induced Fractures, GRC Transactions, 35, 1529–1536, 2011.
Somerton, W. H.: Thermal properties and temperature-related behavior
of rock-fluid systems, Dev. Pet. Sci., 37, Elsevier, Amsterdam, the Netherlands, 257 pp., 1992.
Sosa-Ceballos, G., Macías, J. L., Avellán, D. R.,
Salazar-Hermenegildo, N., Boijseauneau-López, M. E., and
Pérez-Orozco, J. D.: The Acoculco Caldera Complex magmas: genesis,
evolution and relation with the Acoculco geothermal system, J. Volcanol.
Geoth. Res., 358, 288–306,
https://doi.org/10.1016/j.jvolgeores.2018.06.002, 2018.
Stimac, J. A., Powell, T. S., and Golla, G. U.: Porosity and permeability of
the Tiwi geothermal field, Philippines, based on continuous and spot core
measurements, Geothermics, 33, 87–107,
https://doi.org/10.1016/j.geothermics.2003.03.002, 2004.
Tanikawa, W. and Shimamoto, T.: Comparison of Klinkenberg corrected gas
permeability and water permeability in sedimentary rocks, Int. J. Rock Mech.
Min. Sci., 46, 229–238,
https://doi.org/10.1016/j.ijrmms.2008.03.004, 2008.
Toledo, T., Gaucher, E., Jousset, P., Maurer, H., Krawczyk, C., Calò,
M., and Figueroa, Á.: Local earthquake tomography at the Los Humeros
geothermal field, GEMex Final Conference, Potsdam,
Germany, 18–19 February 2020, 6.3, 2020.
Urbani, S., Giordano, G., Lucci, F., Rossetti, F., Acocella, V., and Carrasco-Núñez, G.: Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico), Solid Earth, 11, 527–545, https://doi.org/10.5194/se-11-527-2020, 2020.
Vagnon, F., Colombero, C., Colombo, F., Comina, C., Ferrero, A. M.,
Mandrone, G., and Vinciguerra, S. C.: Effects of thermal treatment on physical
and mechanical properties of Valdieri Marble, NW Italy, Int. J. Rock Mech.
Min. Sci., 116, 75–86,
https://doi.org/10.1016/j.ijrmms.2019.03.006, 2019.
Vagnon, F., Colombero, C., Comina, C., Ferrero, A. M., Mandrone, G., Missagia, R., and Vinciguerra, S. C.: Relating physical properties to temperature induced damage in carbonate rocks, Geotechnique Letters, accepted, 2021.
Vinciguerra, S., Trovato, C., Meredith, P. G., and Benson, P. M.: Relating
seismic velocities, thermal cracking and permeability in Mt. Etna and
Iceland basalts, Int. J. Rock Mech. Min. Sci., 42, 900–910,
https://doi.org/10.1016/j.ijrmms.2005.05.022, 2005.
Vosteen, H.-D. and Schellschmidt, R.: Influence of temperature on thermal
conductivity, thermal capacity and thermal diffusivity for different types
of rock, Phys. Chem. Earth, 28, 499–509,
https://doi.org/10.1016/S1474-7065(03)00069-X, 2003.
Walia, S. and Leahy, G.: Addressing challenges in petrophysical modelling,
HARTENERGY, available at: https://www.hartenergy.com/exclusives/addressing-challenges-petrophysical-modeling-20246 (last access: 6 November 2020), 2014.
Weides, S. and Majorowicz, J.: Implications of Spatial Vari-ability in Heat
Flow for Geothermal Resource Evalua-tion in Large Foreland Basins: The Case
of the West-ern Canada Sedimentary Basin, Energies, 7, 2573–2594,
https://doi.org/10.3390/en7042573, 2014.
Weides, S., Moeck, I., Majorowicz, J., Palombi, D., and Grobe, M.:
Geothermal exploration of Paleozoic forma-tions in Central Alberta, Can. J.
Earth Sci., 50, 519–534,
https://doi.org/10.1139/cjes-2012-0137, 2013.
Weinert, S., Bär, K., and Sass, I.: Database of Petrophysical Properties of the Mid-German Crystalline High, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2020-211, in review, 2021.
Wen, X.-H. and Gomez-Hernandez, J.: Upscaling hydraulic conductivities in
heterogeneous media: an overview, J. Hydrol., 183, ix–xxxii,
https://doi.org/10.1016/S0022-1694(96)80030-8, 1996.
Weydt, L. M., Heldmann, C.-D. J., Machel, H. G., and Sass, I.: From oil field to geothermal reservoir: assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada, Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, 2018a.
Weydt, L. M., Bär, K., Colombero, C., Comina, C., Deb, P., Lepillier, B., Mandrone, G., Milsch, H., Rochelle, C. A., Vagnon, F., and Sass, I.: Outcrop analogue study to determine reservoir properties of the Los Humeros and Acoculco geothermal fields, Mexico, Adv. Geosci., 45, 281–287, https://doi.org/10.5194/adgeo-45-281-2018, 2018b.
Weydt, L. M., Ramírez-Guzmán, Á. A., Pola, A., Lepillier, B.,
Kummerow, J., Mandrone, G., Comina, C., Deb, P., Norini, G.,
Gonzalez-Partida, E., Avellán, D. R., Macías, J. L., Bär, K.,
and Sass, I.: Petrophysical and mechanical rock property database of the Los
Humeros and Acoculco geothermal fields (Mexico), TU Darmstadt datalib,
https://doi.org/10.25534/tudatalib-201.10, 2020.
Weydt, L. M., Lucci, F., Lacinska, A., Scheuvens, D., Carrasco-Núñez, G., Giordano, G., Rochelle, Schmidt, S., Bär, K., and Sass, I.: Modeling of volcanic systems – part I: Petrophysical
characterization and the affect of hydrothermal alteration - the case of the
Los Humeros geothermal field (Mexico), in preparation, 2021.
Whittington, A. G., Hofmeister, A. M., and Nabelek, P. I.:
Temperature-dependent thermal diffusivity of the Earth's crust and
implications for magmatism, Nature, 458, 319–321, https://doi.org/10.1038/nature07818, 2009.
Yáñez, C. and García, S.: Exploración de la región
geotérmica Los Humeros-Las Derrumbadas, Estados de Puebla y Veracruz
(Internal report), Comisión Federal de Electricidad, Mexico City, Mexico, 96 pp., 1982.
You, B., Xu, J., Shi, S., Liu, H., and Li, H.: Effect of Stress and Water
Pressure on Permeability of Fractured Sandstone Based on Response Surface
Method, Front. Earth. Sci., 11, 1–8,
https://doi.org/10.3389/feart.2020.00011, 2020.
Zahner Scientific Instruments: Zahner-Zennium Electrochemical Workstation,
User's manual, 212 pp., Zahner Scientific Instruments, Kronach, Germany, 2008.
Zhao, X. G., Wang, J., Chen, F., Li, P. F., Ma, L. K., Xie, J. L., and Liu, Y.:
Experimental investigation on the thermal conductivity characteristics of
Beishan granitic rocks for China's HLW disposal, Tectonophysics, 683,
124–137, https://doi.org/10.1016/j.tecto.2016.06.021, 2016.
Zhang, H., Sun, Q., and Ge, Z.: Analysis of the characteristics of magnetic
properties change in the rock failure process, Acta Geophys., 68
289–302, https://doi.org/10.1007/s11600-020-00406-3, 2020.
Zheng, J., Zheng, L., Liu, H.-H., and Ju, Y.: Relationships between
permeability, porosity and effective stress for low-permeability sedimentary
rock, Int. J. Rock Mech. Min., 78,
304–318, https://doi.org/10.1016/j.ijrmms.2015.04.025, 2015.
ZH Instruments: ZH Instruments Magnetic suceptibility meter SM30, User's
manual, Brno, Czech Republic, 2008.
Zimmermann, R. W., Somerton, W. H., and King, M. S.: Compressibility of porous
rocks, J. Geophys. Res., 91, 765–777,
https://doi.org/10.1029/JB091iB12p12765, 1986.
Zoback, M. D.: Reservoir geomechanics, Cambridge University Press, Cambridge, UK, 2011.
Zoth, G. and Hänel, R.: Thermal conductivity, in: Handbook of terrestrial heat flow density determination, edited by: Hanel, R., Rybach, L., and
Stegena, L., Kluwer, Dordrecht, the Netherlands,
449–453, 1988.
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Petrophysical and mechanical rock properties are essential for reservoir characterization of the...
Altmetrics
Final-revised paper
Preprint