Articles | Volume 13, issue 2
https://doi.org/10.5194/essd-13-281-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-281-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A daily, 250 m and real-time gross primary productivity product (2000–present) covering the contiguous United States
Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
College of Agricultural, Consumer & Environmental Sciences,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
DOE Center for Advanced Bioenergy and Bioproducts Innovation,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Kaiyu Guan
CORRESPONDING AUTHOR
Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
College of Agricultural, Consumer & Environmental Sciences,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
DOE Center for Advanced Bioenergy and Bioproducts Innovation,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
National Center for Supercomputing Applications, University of Illinois
at Urbana-Champaign, Urbana, IL 61801, USA
Genghong Wu
Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
College of Agricultural, Consumer & Environmental Sciences,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
DOE Center for Advanced Bioenergy and Bioproducts Innovation,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Bin Peng
Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
DOE Center for Advanced Bioenergy and Bioproducts Innovation,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
National Center for Supercomputing Applications, University of Illinois
at Urbana-Champaign, Urbana, IL 61801, USA
Sheng Wang
Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
College of Agricultural, Consumer & Environmental Sciences,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
National Center for Supercomputing Applications, University of Illinois
at Urbana-Champaign, Urbana, IL 61801, USA
Related authors
No articles found.
Julien Lamour, Shawn P. Serbin, Alistair Rogers, Kelvin T. Acebron, Elizabeth Ainsworth, Loren P. Albert, Michael Alonzo, Jeremiah Anderson, Owen K. Atkin, Nicolas Barbier, Mallory L. Barnes, Carl J. Bernacchi, Ninon Besson, Angela C. Burnett, Joshua S. Caplan, Jérôme Chave, Alexander W. Cheesman, Ilona Clocher, Onoriode Coast, Sabrina Coste, Holly Croft, Boya Cui, Clément Dauvissat, Kenneth J. Davidson, Christopher Doughty, Kim S. Ely, Jean-Baptiste Féret, Iolanda Filella, Claire Fortunel, Peng Fu, Maquelle Garcia, Bruno O. Gimenez, Kaiyu Guan, Zhengfei Guo, David Heckmann, Patrick Heuret, Marney Isaac, Shan Kothari, Etsushi Kumagai, Thu Ya Kyaw, Liangyun Liu, Lingli Liu, Shuwen Liu, Joan Llusià, Troy Magney, Isabelle Maréchaux, Adam R. Martin, Katherine Meacham-Hensold, Christopher M. Montes, Romà Ogaya, Joy Ojo, Regison Oliveira, Alain Paquette, Josep Peñuelas, Antonia Debora Placido, Juan M. Posada, Xiaojin Qian, Heidi J. Renninger, Milagros Rodriguez-Caton, Andrés Rojas-González, Urte Schlüter, Giacomo Sellan, Courtney M. Siegert, Guangqin Song, Charles D. Southwick, Daisy C. Souza, Clément Stahl, Yanjun Su, Leeladarshini Sujeeun, To-Chia Ting, Vicente Vasquez, Amrutha Vijayakumar, Marcelo Vilas-Boas, Diane R. Wang, Sheng Wang, Han Wang, Jing Wang, Xin Wang, Andreas P. M. Weber, Christopher Y. S. Wong, Jin Wu, Fengqi Wu, Shengbiao Wu, Zhengbing Yan, Dedi Yang, and Yingyi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-213, https://doi.org/10.5194/essd-2025-213, 2025
Preprint under review for ESSD
Short summary
Short summary
We present the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. This repository provides a unique source of information for creating hyperspectral models for predicting photosynthetic traits and associated leaf traits in terrestrial plants.
Zitong Li, Kang Sun, Kaiyu Guan, Sheng Wang, Bin Peng, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Karen Cady-Pereira, Mark W. Shephard, Mark Zondlo, and Daniel Moore
EGUsphere, https://doi.org/10.5194/egusphere-2025-725, https://doi.org/10.5194/egusphere-2025-725, 2025
Short summary
Short summary
We estimate ammonia fluxes over the contiguous U.S. from 2008 to 2022 using a directional derivative approach applied to satellite observations from IASI and CrIS. Satellite-based flux estimates reveal that ammonia emissions deposit in nearby vegetation, with pronounced seasonal and spatial variability driven by agricultural activities, underscoring the need for improved monitoring and management strategies.
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-340, https://doi.org/10.5194/hess-2024-340, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We explore tile drainage’ impacts on the integrated hydrology-biogeochemistry-plant system, using ecosys with soil oxygen and microbe dynamics. We found that tile drainage lowers soil water content and improves soil oxygen levels, which helps crops grow better, especially during wet springs, and the developed root system also helps mitigate drought stress on dry summers. Overall, tile drainage increases crop resilience to climate change, making it a valuable future agricultural practice.
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022, https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary
Short summary
By incorporating the domain knowledge into a machine learning model, KGML-ag overcomes the well-known limitations of process-based models due to insufficient representations and constraints, and unlocks the “black box” of machine learning models. Therefore, KGML-ag can outperform existing approaches on capturing the hot moment and complex dynamics of N2O flux. This study will be a critical reference for the new generation of modeling paradigm for biogeochemistry and other geoscience processes.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration-Guidelines for computing crop water requirements-FAO
Irrigation and drainage paper 56, Italy: Rome, available at:
http://www.fao.org/3/x0490E/x0490e00.htm (last access: 20 January 2021), 1998.
Augustine, J. A., DeLuisi, J. J., and Long, C. N.: SURFRAD – A national
surface radiation budget network for atmospheric research, B. Am.
Meteorol. Soc., 81, 2341–2357, https://doi.org/10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2, 2000.
Bacour, C., Maignan, F., Peylin, P., MacBean, N., Bastrikov, V., Joiner, J.,
Köhler, P., Guanter, L., and Frankenberg, C.: Differences Between OCO-2
and GOME-2 SIF Products From a Model-Data Fusion Perspective, J. Geophys.
Res.-Biogeosci., 124, 3143–3157, https://doi.org/10.1029/2018JG004938, 2019.
Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared reflectance
and terrestrial photosynthesis, Sci. Adv., 3, 1–6,
https://doi.org/10.1126/sciadv.1602244, 2017.
Badgley, G., Anderegg, L. D., Berry, J. A., and Field, C. B.: Terrestrial
Gross Primary Production: Using NIR V to Scale from Site to Globe, Glob.
Chang. Biol., 25, 3731–3740,, https://doi.org/10.1111/gcb.14729, 2019.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein,
A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel,
W., Paw, U. K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S.,
Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: a new tool to study the
temporal and spatial variability of ecosystem-scale carbon dioxide, water
vapor, and energy flux densities, B. Am. Meteorol. Soc., 82,
2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E.,
Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS cloud-top property
refinements for collection 6, J. Appl. Meteorol. Climatol., 51,
1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais,
N., Rödenbeck, C., Arain, M. A., Baldocchi, D., and Bonan, G. B.:
Terrestrial gross carbon dioxide uptake: global distribution and covariation
with climate, Science, 329, 834–838, 2010.
Bonan, G.: Climate Change and Terrestrial Ecosystem Modeling, Cambridge
University Press, Cambridge, UK, 354 pp., ISBN 978-1-107-04378-7, 2019.
Borbas, E. E., Seemann, S. W., Kern, A., Moy, L., Li, J., Gumley, L., and
Menzel, W. P.: MODIS atmospheric profile retrieval algorithm theoretical
basis document, Citeseer, available at:
http://modis-atmos.gsfc.nasa.gov/MOD07_L2/atbd.html (last access: January 2021), 2015.
Boryan, C., Yang, Z., Mueller, R., and Craig, M.: Monitoring US agriculture:
The US department of agriculture, national agricultural statistics service,
cropland data layer program, Geocarto Int., 26, 341–358,
https://doi.org/10.1080/10106049.2011.562309, 2011.
Cai, S., Liu, D., Sulla-Menashe, D., and Friedl, M. A.: Enhancing MODIS land
cover product with a spatial-temporal modeling algorithm, Remote Sens.
Environ., 147, 243–255, https://doi.org/10.1016/j.rse.2014.03.012, 2014.
Chabot, B. F. and Hicks, D. J.: The ecology of leaf life spans, Annu. Rev.
Ecol. Syst., 13, 229–259,
https://doi.org/10.1146/annurev.es.13.110182.001305, 1982.
Chang, L., Gao, G., Jin, S., He, X., Xiao, R., and Guo, L.: Calibration and
evaluation of precipitable water vapor from Modis infrared observations at
night, IEEE Trans. Geosci. Remote Sens., 53, 2612–2620,
https://doi.org/10.1109/TGRS.2014.2363089, 2015.
Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A., Goulas, Y., Li,
Z., Zhang, Q., Kang, M., Li, J., and Moya, I.: Canopy structure explains the
relationship between photosynthesis and sun-induced chlorophyll fluorescence
in crops, EarthArXiv Prepr., https://doi.org/10.31223/OSF.IO/CBXPQ, 2019.
Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A., Zhang, Y.,
Goulas, Y., Li, Z., Zhang, Q., Kang, M., Li, J., and Moya, I.: Canopy
structure explains the relationship between photosynthesis and sun-induced
chlorophyll fluorescence in crops, Remote Sens. Environ., 241, 111733,
https://doi.org/10.1016/j.rse.2020.111733, 2020.
Franch, B., Vermote, E. F., Roger, J. C., Murphy, E., Becker-reshef, I.,
Justice, C., Claverie, M., Nagol, J., Csiszar, I., Meyer, D., Baret, F.,
Masuoka, E., Wolfe, R., and Devadiga, S.: A 30+ year AVHRR land surface
re?ectance climate data record and its application to wheat yield
monitoring, Remote Sens., 9, 1–14, https://doi.org/10.3390/rs9030296, 2017.
Friedman, J. H.: Multivariate Adaptive Regression Splines, Ann. Stat.,
19, 1–67, https://doi.org/10.1214/aos/1176347963, 1991.
Gamon, J. A., Huemmrich, K. F., Wong, C. Y. S., Ensminger, I., Garrity, S.,
Hollinger, D. Y., Noormets, A., and Peñuelas, J.: A remotely sensed
pigment index reveals photosynthetic phenology in evergreen conifers, P.
Natl. Acad. Sci., 113, 201606162, https://doi.org/10.1073/pnas.1606162113, 2016.
GCOS: Systematic observation requirements for satellite-based data products
for climate, Supplemental details to the satellite-based component of the
“Implementation Plan for the Global Observing System for Climate in Support
of the UNFCCC,” Reference Number GCOS-154, available at:
http://www.wmo.int/pages/prog/gcos/Publications/gcos-154.pdf (last access: 20 January 2021), 2011.
Goldberger, J., Hinton, G. E., Roweis, S. T., and Salakhutdinov, R. R.: Neighbourhood components analysis, in Advances in neural information processing systems, 513–520, available at: http://www.cs.utoronto.ca/~rsalakhu/papers/ncanips.pdf (last access: 20 January 2021), 2005.
Green, T. R., Kipka, H., David, O., and McMaster, G. S.: Where is the USA
Corn Belt, and how is it changing?, Sci. Total Environ., 618, 1613–1618,
https://doi.org/10.1016/j.scitotenv.2017.09.325, 2018.
Guan, K., Berry, J. A., Zhang, Y., Joiner, J., Guanter, L., Badgley, G., and
Lobell, D. B.: Improving the monitoring of crop productivity using
spaceborne solar-induced fluorescence, Glob. Chang. Biol., 22, 716–726,
https://doi.org/10.1111/gcb.13136, 2016.
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. a,
Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J.-E., Moran, M. S.,
Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D.,
Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and
time-resolved monitoring of crop photosynthesis with chlorophyll
fluorescence, P. Natl. Acad. Sci. USA, 111, E1327-33,
https://doi.org/10.1073/pnas.1320008111, 2014.
Homer, C., Huang, C., Yang, L., Wylie, B., and Coan, M.: Development of a
2001 National Land-Cover Database for the United States, Photogramm. Eng.
Remote Sens., 70, 829–840, https://doi.org/10.14358/PERS.70.7.829, 2004.
Houborg, R. and McCabe, M. F.: High-Resolution NDVI from planet's
constellation of earth observing nano-satellites: A new data source for
precision agriculture, Remote Sens., 8, 768, https://doi.org/10.3390/rs8090768, 2016.
Jiang, C. and Fang, H.: GSV: a general model for hyperspectral soil
reflectance simulation, Int. J. Appl. Earth Obs. Geoinf., 83, 101932,
https://doi.org/10.1016/j.jag.2019.101932, 2019.
Jiang, C. and Guan, K.: SLOPE Daily 250 m CONUS Gross Primary Productivity
(2000–2019), ORNL DAAC, https://doi.org/10.3334/ORNLDAAC/1786, 2020.
Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross primary
productivity and evapotranspiration products derived from Breathing Earth
System Simulator (BESS), Remote Sens. Environ., 186, 528–547,
https://doi.org/10.1016/j.rse.2016.08.030, 2016.
Jiang, C., Ryu, Y., Fang, H., Myneni, R., Claverie, M., and Zhu, Z.:
Inconsistencies of interannual variability and trends in long-term satellite
leaf area index products, Glob. Chang. Biol., 23, 4133–4146,
https://doi.org/10.1111/gcb.13787, 2017.
Jiang, C., Guan, K., Pan, M., Ryu, Y., Peng, B., and Wang, S.: BESS-STAIR: a framework to estimate daily, 30 m, and all-weather crop evapotranspiration using multi-source satellite data for the US Corn Belt, Hydrol. Earth Syst. Sci., 24, 1251–1273, https://doi.org/10.5194/hess-24-1251-2020, 2020.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein,
P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B.,
Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y. P.,
Weber, U., Zaehle, S., and Zeng, N.: Compensatory water effects link yearly
global land CO2 sink changes to temperature, Nature, 541, 516–520,
https://doi.org/10.1038/nature20780, 2017.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Gustau-Camps-Valls,
Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
ensemble of global land-atmosphere energy fluxes, Sci. Data, 1–14,
https://doi.org/10.1038/s41597-019-0076-8, 2019.
Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Fokke Meirink, J., Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen, E., Sedlar, J., Benas, N., van Zadelhoff, G.-J., Schlundt, C., Stein, D., Finkensieper, S., Håkansson, N., and Hollmann, R.: CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data, Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, 2017.
Kimm, H., Guan, K., Jiang, C., Peng, B., Gentry, L. F., Wilkin, S. C., Wang,
S., Cai, Y., Bernacchi, C. J., Peng, J., and Luo, Y.: Deriving
high-spatiotemporal-resolution leaf area index for agroecosystems in the
U.S. Corn Belt using Planet Labs CubeSat and STAIR fusion data, Remote Sens.
Environ., 239, 111615, https://doi.org/10.1016/j.rse.2019.111615, 2020.
Kobrick, M. and Crippen, R.: SRTMGL1: NASA Shuttle Radar Topography Mission
Global 1 arc second V003, NASA EOSDIS L. Process. DAAC, https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2017.
Lark, T. J., Mueller, R. M., Johnson, D. M., and Gibbs, H. K.: Measuring
land-use and land-cover change using the U.S. department of agriculture's
cropland data layer: Cautions and recommendations, Int. J. Appl. Earth Obs.
Geoinf., 62, 224–235, https://doi.org/10.1016/j.jag.2017.06.007, 2017.
Li, W., MacBean, N., Ciais, P., Defourny, P., Lamarche, C., Bontemps, S., Houghton, R. A., and Peng, S.: Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015), Earth Syst. Sci. Data, 10, 219–234, https://doi.org/10.5194/essd-10-219-2018, 2018.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R
News, 2, 18–22, 2002.
Liu, L., Guan, L., and Liu, X.: Directly estimating diurnal changes in GPP
for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence,
Agr. Forest Meteorol., 232, 1–9, https://doi.org/10.1016/j.agrformet.2016.06.014, 2017.
Luo, Y., Guan, K., and Peng, J.: STAIR: A generic and fully-automated method
to fuse multiple sources of optical satellite data to generate a
high-resolution, daily and cloud-/gap-free surface reflectance product,
Remote Sens. Environ., 214, 87–99, https://doi.org/10.1016/j.rse.2018.04.042,
2018.
Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy,
R., and Reid, J. S.: Multiangle implementation of atmospheric correction
(MAIAC): 2. Aerosol algorithm, J. Geophys. Res.-Atmos., 116, D03211,
https://doi.org/10.1029/2010JD014986, 2011.
Magney, T. S., Bowling, D. R., Logan, B., Grossmann, K., Stutz, J., and
Blanken, P.: Mechanistic evidence for tracking the seasonality of
photosynthesis with solar-induced fluorescence, P. Natl. Acad. Sci., 116, 11640–11645, https://doi.org/10.1073/pnas.1900278116, 2019.
Monteith, J. L.: Solar Radiation and Productivity in Tropical Ecosystems, J.
Appl. Ecol., 9, 747, https://doi.org/10.2307/2401901, 1972.
Monteith, J. L. and Moss, C. J.: Climate and the Efficiency of Crop
Production in Britain, Philos. T. Roy. Soc. B Biol. Sci., 281,
277–294, https://doi.org/10.1098/rstb.1977.0140, 1977.
Remer, L. A., Mattoo, S., Levy, R. C., and Munchak, L. A.: MODIS 3 km aerosol product: algorithm and global perspective, Atmos. Meas. Tech., 6, 1829–1844, https://doi.org/10.5194/amt-6-1829-2013, 2013.
Román, M. O., Schaaf, C. B., Woodcock, C. E., Strahler, A. H., Yang, X.,
Braswell, R. H., Curtis, P. S., Davis, K. J., Dragoni, D., Goulden, M. L.,
Gu, L., Hollinger, D. Y., Kolb, T. E., Meyers, T. P., Munger, J. W.,
Privette, J. L., Richardson, A. D., Wilson, T. B., and Wofsy, S. C.: The
MODIS (Collection V005) BRDF/albedo product: Assessment of spatial
representativeness over forested landscapes, Remote Sens. Environ., 113,
2476–2498, https://doi.org/10.1016/j.rse.2009.07.009, 2009.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and
Hashimoto, H.: A continuous satellite-derived measure of global terrestrial
primary production, Bioscience, 54, 547,
https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004.
Ryu, Y., Berry, J. A., and Baldocchi, D. D.: What is global photosynthesis?
History, uncertainties and opportunities, Remote Sens. Environ.,
223, 95–114, https://doi.org/10.1016/j.rse.2019.01.016,
2019.
Smith, W. K., Biederman, J. A., Scott, R. L., Moore, D. J. P., He, M.,
Kimball, J. S., Yan, D., Hudson, A., Barnes, M. L., MacBean, N., Fox, A. M.,
and Litvak, M. E.: Chlorophyll Fluorescence Better Captures Seasonal and
Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of
Southwestern North America, Geophys. Res. Lett., 45, 748–757,
https://doi.org/10.1002/2017GL075922, 2018.
Tibshirani, R.: Regression Shrinkage and Selection Via the Lasso, J. R.
Stat. Soc. Ser. B, 58, 267–288, https://doi.org/10.1111/j.2517-6161.1996.tb02080.x,
1996.
Turner, A. J., Köhler, P., Magney, T. S., Frankenberg, C., Fung, I., and Cohen, R. C.: A double peak in the seasonality of California's photosynthesis as observed from space, Biogeosciences, 17, 405–422, https://doi.org/10.5194/bg-17-405-2020, 2020.
Vermote, E. F., El Saleous, N. Z., and Justice, C. O.: Atmospheric correction
of MODIS data in the visible to middle infrared: First results, Remote Sens.
Environ., 83, 97–111, https://doi.org/10.1016/S0034-4257(02)00089-5, 2002.
Wu, G., Guan, K., Jiang, C., Peng, B., Kimm, H., Chen, M., Yang, X., Wang,
S., Sukyer, A. E., Bernacchi, C., Moore, C. E., Zeng, Y., Berry, J., and
Cendrero-Mateo, M. P.: Radiance-based NIRv as a proxy for GPP of corn
and soybean, Environ. Res. Lett., 15, 034009, https://doi.org/10.1088/1748-9326/ab65cc, 2019.
Wu, G., Guan, K., Jiang, C., Peng, B., Kimm, H., Chen, M., Yang, X., Wang,
S., Suyker, A. E., Bernacchi, C., Moore, C. E., Zeng, Y., Berry, J., and
Cendrero-Mateo, M. P.: Radiance-based NIRv as a proxy for GPP of corn and
soybean, Environ. Res. Lett., 15, 034009, https://doi.org/10.1088/1748-9326/ab65cc,
2020.
Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A.
R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang, L.,
and Zhang, X.: Remote sensing of the terrestrial carbon cycle: A review of
advances over 50 years, Remote Sens. Environ., 233, 111383,
https://doi.org/10.1016/j.rse.2019.111383, 2019.
Yan, L. and Roy, D. P.: Conterminous United States crop field size
quantification from multi-temporal Landsat data, Remote Sens. Environ., 172,
67–86, https://doi.org/10.1016/j.rse.2015.10.034, 2016.
Yang, X., Tang, J., Mustard, J. F., Lee, J., Rossini, M., Joiner, J.,
Munger, J. W., Kornfeld, A., and Richardson, A. D.: Solar-induced chlorophyll
fluorescence that correlates with canopy photosynthesis on diurnal and
seasonal scales in a temperate deciduous forest, Geophys. Res. Lett., 42,
2977–2987, https://doi.org/10.1002/2015GL063201, 2015.
Yang, Y., Xiao, P., Feng, X., and Li, H.: Accuracy assessment of seven global
land cover datasets over China, ISPRS J. Photogramm. Remote Sens., 125,
156–173, https://doi.org/10.1016/j.isprsjprs.2017.01.016, 2017.
Yuan, W., Liu, S., Yu, G., Bonnefond, J.-M. M., Chen, J., Davis, K., Desai,
A. R., Goldstein, A. H., Gianelle, D., Rossi, F., Suyker, A. E., and Verma,
S. B.: Global estimates of evapotranspiration and gross primary production
based on MODIS and global meteorology data, Remote Sens. Environ., 114,
1416–1431, https://doi.org/10.1016/j.rse.2010.01.022, 2010.
Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., and Berry, J. A.: A
practical approach for estimating the escape ratio of near-infrared
solar-induced chlorophyll fluorescence, Remote Sens. Environ., 232, 111209, https://doi.org/10.1016/j.rse.2019.05.028, 2019.
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., and Dong, J.: A
global moderate resolution dataset of gross primary production of vegetation
for 2000–2016, Sci. Data, 4, 170165, https://doi.org/10.1038/sdata.2017.165, 2017.
Zhang, Y., Joiner, J., Gentine, P., and Zhou, S.: Reduced solar-induced
chlorophyll fluorescence from GOME-2 during Amazon drought caused by dataset
artifacts, Glob. Chang. Biol., 24, 2229–2230, https://doi.org/10.1111/gcb.14134,
2018.
Short summary
Photosynthesis, quantified by gross primary production (GPP), is a key Earth system process. To date, there is a lack of a high-spatiotemporal-resolution, real-time and observation-based GPP dataset. This work addresses this gap by developing a SatelLite Only Photosynthesis Estimation (SLOPE) model and generating a new GPP product, which is advanced in spatial and temporal resolutions, instantaneity, and quantitative uncertainty. The dataset will benefit a range of research and applications.
Photosynthesis, quantified by gross primary production (GPP), is a key Earth system process. To...
Altmetrics
Final-revised paper
Preprint