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Abstract. Gross primary productivity (GPP) quantifies the amount of carbon dioxide (CO2) fixed by plants
through photosynthesis. Although as a key quantity of terrestrial ecosystems, there is a lack of high-spatial-
and-temporal-resolution, real-time and observation-based GPP products. To address this critical gap, here we
leverage a state-of-the-art vegetation index, near-infrared reflectance of vegetation (NIRV), along with accu-
rate photosynthetically active radiation (PAR), to produce a SatelLite Only Photosynthesis Estimation (SLOPE)
GPP product for the contiguous United States (CONUS). Compared to existing GPP products, the proposed
SLOPE product is advanced in its spatial resolution (250 m versus >500 m), temporal resolution (daily ver-
sus 8 d), instantaneity (latency of 1 d versus >2 weeks) and quantitative uncertainty (on a per-pixel and daily
basis versus no uncertainty information available). These characteristics are achieved because of several tech-
nical innovations employed in this study: (1) SLOPE couples machine learning models with MODIS atmo-
sphere and land products to accurately estimate PAR. (2) SLOPE couples highly efficient and pragmatic gap-
filling and filtering algorithms with surface reflectance acquired by both Terra and Aqua MODIS satellites
to derive a soil-adjusted NIRV (SANIRV) dataset. (3) SLOPE couples a temporal pattern recognition ap-
proach with a long-term Cropland Data Layer (CDL) product to predict dynamic C4 crop fraction. Through
developing a parsimonious model with only two slope parameters, the proposed SLOPE product explains
85 % of the spatial and temporal variations in GPP acquired from 49 AmeriFlux eddy-covariance sites (324
site years), with a root-mean-square error (RMSE) of 1.63 gC m−2 d−1. The median R2 over C3 and C4
crop sites reaches 0.87 and 0.94, respectively, indicating great potentials for monitoring crops, in particu-
lar bioenergy crops, at the field level. With such a satisfactory performance and its distinct characteristics
in spatiotemporal resolution and instantaneity, the proposed SLOPE GPP product is promising for biologi-
cal and environmental research, carbon cycle research, and a broad range of real-time applications at the re-
gional scale. The archived dataset is available at https://doi.org/10.3334/ORNLDAAC/1786 (download page:
https://daac.ornl.gov/daacdata/cms/SLOPE_GPP_CONUS/data/, last access: 20 January 2021) (Jiang and Guan,
2020), and the real-time dataset is available upon request.
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1 Introduction

Gross primary productivity (GPP) quantifies the amount of
carbon dioxide (CO2) fixed by plants through photosynthe-
sis (Beer et al., 2010; Jung et al., 2017). Because GPP is
the largest carbon flux and influences other ecosystem pro-
cesses such as respiration and transpiration, monitoring GPP
is crucial for understanding the global carbon budget and
terrestrial-ecosystem dynamics (Bonan, 2019; Friedlingstein
et al., 2019). In addition, biomass accumulation driven by
GPP is the basis for food, feed, wood and fiber production,
and therefore monitoring GPP is crucial for human welfare
and development (Guan et al., 2016; Ryu et al., 2019).

Over the past 2 decades, a number of GPP products with
different spatial and temporal characteristics have been de-
rived using remote sensing approaches (Xiao et al., 2019).
However, since GPP cannot be directly observed at large
scales, different models have been developed and used in
generating GPP products. Process-based models use a se-
ries of nonlinear equations to represent the atmosphere–
vegetation–soil system and associated fluxes. For example,
a publicly available global GPP product using process-based
models is the Breathing Earth System Simulator (BESS)
(Jiang and Ryu, 2016). Machine-learning models upscale
site-observed GPP to a larger scale by establishing non-
parametric relationships between the ground truth and grid-
ded explanatory variables. The FLUXCOM GPP product is
a typical example of this approach (Jung et al., 2019). Semi-
empirical approaches utilize equations with a concise physio-
logical meaning (e.g., light use efficiency) that are parameter-
ized with several empirical constraint functions. The MOD17
(MODIS GPP/NPP – net primary production – Project) GPP
product (Running et al., 2004), the Vegetation Photosynthe-
sis Model (VPM) GPP product (Zhang et al., 2017) and the
Global LAnd Surface Satellite (GLASS) GPP product (Yuan
et al., 2010) belong to this category.

With differing principles, assumptions and complexity, ex-
isting remote sensing GPP models heavily rely upon inputs
with large uncertainties. First, climate forcing, such as tem-
perature, humidity, precipitation and wind speed, is com-
monly used in these GPP models. However, these meteo-
rological data are not observed but derived from reanaly-
sis approaches and usually have coarse spatial resolution
(e.g., >10 km) and large time lags (e.g., weeks). Second,
plant functional types (PFTs) are used to define different
parameterization schemes in those models. To date, satel-
lite land cover products are usually characterized by con-
siderably large time lags (>1 year), relatively low accuracy
(≤ 70 %) (Yang et al., 2017) and more uncertainties with re-
gards to year-to-year variations (Cai et al., 2014; Li et al.,
2018). Third, high-level remote sensing land products such
as the leaf area index (LAI), fraction of absorbed photosyn-
thetically active radiation (FPAR), clumping index (CI), land
surface temperature (LST) and soil moisture (SM) are used
by some models. These variables are not directly observed

but retrieved by complicated algorithms, and their accuracy
still needs significant improvement to meet requirements of
Earth system models (GCOS, 2011).

Alternative approaches which heavily rely on reliable
satellite observations with low dependence on uncertain
model structure or parameterization and model inputs are
highly required. Solar-induced fluorescence (SIF) emerged
in recent years and may provide a new opportunity for GPP
estimation (Guanter et al., 2014). Linear relationships have
been found between SIF and GPP at various ecosystems (Liu
et al., 2017; Magney et al., 2019; Yang et al., 2015). How-
ever, satellite SIF data generally have coarse resolution, large
spatial gaps, short temporal coverage and limited quality (Ba-
cour et al., 2019; Zhang et al., 2018) and are therefore not
suitable for many applications.

Near-infrared reflectance of vegetation (NIRV,Ref), de-
fined as the product of the normalized difference vegeta-
tion index (NDVI) and observed NIR reflectance (NIRRef)
(Eq. 1), has recently been presented as a proxy of GPP (Bad-
gley et al., 2017). A global monthly 0.5◦ GPP dataset has
been produced from satellite data using the linear relation-
ship between NIRV,Ref and GPP (Badgley et al., 2019), ex-
plaining 68 % GPP variations observed by the FLUXNET
network. Several field studies have recently found that taking
incoming radiation into account further improves the NIRV–
GPP relationship (Dechant et al., 2020; Wu et al., 2020).
Because MODIS provides long-term and real-time (2000–
present) observations of red (RedRef) and NIR (NIRRef)
reflectance and atmospheric conditions with high spatial
(250 m for reflectance and 1 km for atmosphere) and tem-
poral (daily) resolutions, now there is an unprecedented op-
portunity to generate an observation-based GPP product.

NIRV,Ref = NDVI×NIRRef =
NIRRef−RedRef

NIRRef+RedRef
×NIRRef (1)

Leveraging the concept of NIRV, here we present a new
GPP model and the resultant daily, 250 m and real-time
GPP product (2000–present) covering the contiguous United
States (CONUS) (Jiang and Guan, 2020). The product is
named SatelLite Only Photosynthesis Estimation (SLOPE)
because (1) the model only uses satellite data and (2) the
model only has two slope parameters. Detailed model de-
sign, multi-source satellite data processing and comprehen-
sive evaluation procedures are elucidated below.

2 Production of the SLOPE product

The method we used to estimate GPP using the novel veg-
etation index NIRV,Ref follows the concept of light use effi-
ciency (LUE) (Monteith, 1972; Monteith and Moss, 1977):

GPP= PAR×FPAR×LUE. (2)

Since NIRV,Ref has been found strongly correlated to
FPAR (Badgley et al., 2017) and moderately correlated to
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LUE (Dechant et al., 2019), it is possible to simplify Eq. (2)
as

GPP≈ PAR×
(
a×NIRV,Ref+ b

)
, (3)

where a and b are the slope and intercept, which can be fitted
from ground GPP observations. Both PAR (photosyntheti-
cally active radiation) and NIRV,Ref can be easily derived
from satellite observations with high spatial and temporal
resolutions in real time, avoiding complicated but uncertain
algorithm or parameterization to quantify FPAR and LUE in
Eq. (2). This linear relationship is likely to converge within
C3 species (Badgley et al., 2019) but differs between C3 and
C4 species (Wu et al., 2019). Accordingly, land cover data
with considerably large time lags and relatively low accu-
racy may not be necessary for the model parameterization.
Instead, an in-season C3–C4 species dataset is needed for
the accurate calibration of the linear relationship.

Defining the ratio of GPP to PAR as the incident PAR use
efficiency (iPUE) gives

iPUE= GPP/PAR= FPAR×LUE≈ a×NIRV,Ref+b. (4)

Here iPUE is a confounding factor of canopy structure and
leaf physiology, representing the capacity of plants to use in-
coming radiation for photosynthesis. When vegetation is ab-
sent, iPUE is zero and NIRV,Ref is expected to be zero too.
However, this is not true in reality, as >99.9 % soils have
positive NIRV,Ref values according to a global soil spectral li-
brary (Jiang and Fang, 2019), and the correction of NIRV,Ref
for soil is needed for better performance at low vegetation
cover (Zeng et al., 2019). To address this issue, we will pro-
pose a spatially explicit correction for NIRV,Ref to derive a
soil-adjusted index SANIRV (see details in Sect. 2.2). Since
SANIRV = 0 when iPUE= 0, Eq. (4) becomes

iPUE≈ c×SANIRV, (5)

where c is the slope coefficient.
Considering the presence of mixed pixels of C3 and C4

species with the 250 m pixels, Eq. (5) can be rewritten as

iPUE≈
[
cC4× fC4+ cC3× (1− fC4)

]
×SANIRV, (6)

where cC4 and cC3 are the coefficients for C4 and C3 species,
respectively, and fC4 is the fraction of C4 species in vegeta-
tion. Therefore, the SLOPE GPP model is

GPP≈
[
cC4× fC4+ cC3× (1− fC4)

]
×PAR×SANIRV. (7)

In the SLOPE model (Eq. 7), PAR, SANIRV and fC4
are remote sensing inputs, whereas cC4 and cC3 are model
parameters to be calibrated using ground-truth GPP data
(Fig. 1). In the following sections, we will elaborate on the
derivation of PAR, SANIRV and fC4, along with their quanti-
tative uncertainties, and the model calibration for parameters
cC4 and cC3. With the uncertainty of each term (1cC4, 1cC3,

1fC4, 1PAR and 1SANIRV), the uncertainty of GPP can
be estimated in a spatiotemporally explicit manner by

1GPP= (fC4×PAR×SANIRV)×1cC4

+
[
(1− fC4)×PAR×SANIRV

]
1cC3

+ [(cC4− cC3)×PAR×SANIRV]1fC4

+
{[

cC4× fC4+ cC3× (1− fC4)
]
×SANIRV

}
1PAR

+
{[

cC4× fC4+ cC3× (1− fC4)
]
×PAR

}
1SANIRV. (8)

2.1 Derivation of PAR

SLOPE adopts several machine learning approaches to com-
pute PAR using forcing data mainly from Terra and Aqua
MODIS Atmosphere and Land products (data solely from
morning satellite Terra, afternoon satellite Aqua and com-
bination of the two satellites are called MOD, MYD and
MCD, respectively, hereinafter). The list of inputs includes
aerosol optical depth (AOD) at 3 km resolution from the
MOD04_3K (MODIS/Terra Aerosol 5Min L2 Swath 3km)
and MYD04_3K (MODIS/Aqua Aerosol 5Min L2 Swath
3km) products (Remer et al., 2013), total column wa-
ter vapor (TWV) at 1 km resolution from the MOD05_L2
(MODIS/Terra Total Precipitable Water Vapor 5-Min L2
Swath 1km and 5km) and MYD05_L2 (MODIS/Aqua To-
tal Precipitable Water Vapor 5-Min L2 Swath 1km and 5km)
products (Chang et al., 2015), cloud optical thickness (COT)
at 1 km resolution from the MOD06_L2 (MODIS/Terra
Clouds 5-Min L2 Swath 1km and 5km) and MYD06_L2
(MODIS/Aqua Clouds 5-Min L2 Swath 1km and 5km) prod-
ucts (Baum et al., 2012), total column ozone burden (TO3) at
5 km resolution from the MOD07_L2 (MODIS/Terra Tem-
perature and Water Vapor Profiles 5-Min L2 Swath 5km) and
MYD07_L2 (MODIS/Aqua Temperature and Water Vapor
Profiles 5-Min L2 Swath 5km) products (Borbas et al., 2015),
white-sky land surface shortwave albedo (ALB) at 500 m res-
olution from the MCD43A3 (MODIS/Terra+Aqua Albedo
Daily L3 Global 500m SIN Grid) product (Román et al.,
2009), and altitude (ALT) at 30 m resolution from the Shuttle
Radar Topography Mission Global 1 arc second (SRTMGL1)
product (Kobrick and Crippen, 2017).

MODIS atmosphere products are swath data, and swaths
vary day by day. To maintain consistency and facilitate fur-
ther usage, all data are reprojected using the nearest neigh-
bor resampling approach to the Conus Albers projection on
the North American Datum of 1983 (NAD83) (European
Petroleum Survey Group – EPSG:6350) with 1 km spatial
resolution. For swath data, an overlap area exists between
two paths. In this case, data with smaller sensor view zenith
angles provided by MOD/MYD03_L2 products are chosen.
MODIS land products and SRTMGL1 are tile data with
finer resolution than 1 km. They are reprojected to the EPSG
6350 spatial reference by aggregating all fine-resolution pix-
els within each 1 km grid.
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Figure 1. Framework to produce the SLOPE GPP product. The box with dashed lines is the legend.

Data gaps exist in all MODIS products, and a gap-filling
measure is required. For MODIS atmosphere products, gaps
in MOD and MYD are first filled by data in the MYD and
MOD counterpart on the same day, followed by a multi-year
average on that day. Since the multi-year average of COT is
always non-zero, directly using it for a gap-filling measure
always implies a cloudy condition. Therefore, a CLARA-2
(cLoud, Albedo and surface Radiation) cloud mask at 0.05◦

acquired from NOAA AVHRR (Advanced Very High Reso-
lution Radiometer) data is employed (Karlsson et al., 2017).
Only MODIS data gaps for AVHRR cloudy pixels are filled
by a multi-year average of COT, whereas MODIS COT data
gaps for AVHRR clear pixels are set to 0. For the MODIS
land product, i.e., ALB, a temporally moving window with a
7 d radius is utilized for a specific day, and a Gaussian filter
is applied to the time series data within the moving window
on a per-pixel basis. The filtered values are used to fill gaps
on that specific day.

Machine learning approaches are used to upscale the
ground truth to satellite data. The ground truth is from the
Surface Radiation Budget (SURFRAD) Network (Augus-
tine et al., 2000), including seven long-term continuous sites
across the CONUS. Daily-mean shortwave radiation (SWR)
and PAR on the surface are calculated from site observations
at 1–3 min intervals from 2000 through 2018. Daily-mean
top-of-atmosphere SWR (SWRTOA) is calculated using lati-
tude and day-of-year (DOY) information (Allen et al., 1998).
Subsequently, atmospheric transmittance (tSWR) and propor-
tion of PAR in SW (pPAR) are calculated as SWR / SWRTOA
and PAR / SWR.

Models are built to estimate tSWR first, followed by pPAR.
MOD data representing atmospheric conditions in the morn-
ing and MYD for the afternoon are used separately for the
estimation, and the two estimates are averaged to account
for discrepancies between the morning and afternoon. Clear
and cloudy conditions are also treated separately in modeling
considering the absence or presence of non-zero COT data.
For the estimation of tSWR, ALB, ALT and SWRTOA are used

in addition to atmosphere data, whereas for pPAR, ALB, ALT
and the estimated tSWR are used. A summary of model inputs
is listed in Table 1.

Four different machine learning approaches are em-
ployed to estimate tSWR and pPAR. They are the least ab-
solute shrinkage and selection operator (LASSO) (Tibshi-
rani, 1996), multivariate adaptive regression splines (MARS)
(Friedman, 1991), k-nearest neighbor regression (KNN)
(Goldberger et al., 2005), and random forest regression (RF)
(Liaw and Wiener, 2002). We used scikit-learn, a free soft-
ware machine learning library for the Python programming
language to build the models. All the four algorithms were
automatically optimized by tuning their hyperparameters us-
ing 5-fold cross validation on their training dataset. All inputs
and outputs are the same for the four approaches. Four differ-
ent PAR estimations are then obtained by Eq. (9), and their
ensemble mean and standard deviation are considered as the
final estimation and uncertainty, respectively.

PAR= SWRTOA× tSWR×pPAR (9)

2.2 Derivation of SANIRV

SLOPE derives NIRV,Ref (Eq. 1) from MODIS band 1 (red)
and band 2 (NIR) surface reflectance (SR) at 250 m resolu-
tion from MOD/MYD09GQ products (Vermote et al., 2002).
Only pixels with quality control (QC) information defined as
“corrected product produced at ideal quality all bands” were
used. Since cloud and cloud shadows substantially reduce
NIRV,Ref values, SLOPE adopts three strategies to mitigate
the cloud contamination.

First, the cloud mask is applied. MOD–MYD COT data
processed in Sect. 2.1 are resampled to the same spatial refer-
ence with MOD–MYD SR data and used to mask out cloudy
pixels. At this point, a morphological dilation operation is
used to enlarge the cloud mask to account for cloud edges.
However, since COT data have a coarser resolution (1 km)
than SR data (250 m), there are still partial clouds and cloud
shadows left after this step.
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Table 1. Summary of machine learning model inputs for the estimation of tSWR and pPAR. Daily estimations from MOD and MYD atmo-
sphere data are averaged.

Inputs For daily tSWR estimation For daily pPAR estimation

MOD MYD MOD MYD

Clear Cloudy Clear Cloudy Clear Cloudy Clear Cloudy

log(COT)
√ √ √ √

log(AOD)
√ √ √ √ √ √ √ √

TWV
√ √ √ √ √ √ √ √

TO3
√ √ √ √ √ √ √ √

ALB
√ √ √ √ √ √ √ √

ALT
√ √ √ √ √ √ √ √

SWRTOA
√ √ √ √

tSWR
√ √ √ √

Second, MOD and MYD data are combined. Ideally, on
a specific day, MOD and MYD NIRV,Ref should be identi-
cal if they are obtained under the same conditions. However,
the remaining cloud contamination and sun-target-sensor ge-
ometry could cause differences between morning and after-
noon observations. Considering that the vegetation index is
more sensitive to cloud contamination than the sensor view
zenith angle, a simple criterion is applied to combine MOD
and MYD observations. If the difference between MOD and
MYD NIRV,Ref is greater than or equal to a predefined
threshold (0.1 in this study), then the smaller one is likely
cloud contaminated, and the larger one is used. Otherwise,
the average value of the two is used. However, in many cases,
both MOD and MYD data are contaminated, and the sensor
view zenith angle may cause unexpected day-to-day varia-
tions.

Third, a temporal filter is applied. The filter is based on the
assumption that NIRV,Ref should change smoothly within a
short time period. Accordingly, a temporally moving win-
dow with a 7 d radius is utilized for a specific day. The mean
and standard deviation are calculated from the NIRV,Ref
time series on a per-pixel basis. Values outside the range of
mean±1.5 standard deviations are considered as outliers and
dropped. Subsequently, the mean of the first 3 d and that of
the last 7 d are calculated, respectively. If the NIRV,Ref value
of the target day is 20 % smaller or larger than both the first
3 d mean and the last 3 d mean, then that NIRV,Ref value is
considered as an outlier and dropped.

After the removal of outliers, a large amount of data gaps
exist, and a gap-filling measure is required. Similar to ALB
in Sect. 2.1, a temporally moving window with a 7 d radius
is utilized for a specific day, and a Gaussian filter is applied
and used to fill gaps on that day. The rest of the data gaps are
filled with the multi-year average of NIRV,Ref. Considering
extreme cases for which no data are available on a specific
day over all years, the multi-year average of ±3 d is used for
the final gap-filling measure.

To minimize the effects of variations in soil brightness
on NIRV,Ref, soil background NIRV (NIRV,Soil) is identified
from multi-year average NIRV,Ref time series. For a spe-
cific pixel, soil background NIRV (NIRV,Soil) is supposed
to be (1) smaller than seasonal mean NIRV,Ref, which in-
cludes the vegetated period, and (2) smaller than 0.2 indi-
cated by a global soil spectral library (Jiang and Fang, 2019).
Therefore, NIRV,Soil is supposed to within a range of [0,
min(mean(NIRV,Ref), 0.2)]. The mode of daily NIRV,Ref av-
eraged over 2000–2019 within this value range is considered
as NIRV,Soil. An example is given in Fig. S5. Theoretically,
NIRV,Soil for evergreen species cannot be obtained from time
series NIRV,Ref because of the persistent vegetation cover.
Pixels with a NIRV,Soil value larger than 0.1 and seasonal
coefficient of variation (CV) of NIRV,Ref smaller than 33 %
are empirically considered as evergreen species, and their
NIRV,Soil values are set to 0.

Finally, SANIRV is defined as

SANIRV =
NIRV,Ref−NIRV,Soil

NIRV,Peak−NIRV,Soil
×NIRV,Peak, (10)

where NIRV,Peak is the maximum value of the multi-
year average NIRV,Ref time series on a per-pixel basis.
SANIRV does not change NIRV,Peak but changes more
for low NIRV,Ref values. SANIRV,Ref is set to 0 when
NIRV,Ref ≤NIRV,Soil. In general, SANIRV is supposed to be
smooth within a short time period; therefore, the standard
deviation within the ±3 d temporal window is calculated as
uncertainty.

2.3 Derivation of the C4 fraction

A National Land Cover Database (NLCD) along with a crop-
specific land cover product Cropland Data Layer (CDL)
are used to derive the fraction cover of C4 crop in vegeta-
tion (fC4). NLCD is a comprehensive land cover database
produced by the United States Geological Survey (USGS).
It provides several main thematic classes such as urban,
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agriculture and forest with high accuracy (Homer et al.,
2004). The 30 m nationwide NLCD data are available for
2001, 2004, 2006, 2008, 2011, 2013 and 2016. CDL is an
agriculture-oriented product produced by the United States
Department of Agriculture (USDA). It provides >100 crop
cover types and leverages other land cover types from NLCD
(Boryan et al., 2011). Across the CONUS CDL data are
available at a 30 m spatial resolution and in a yearly tem-
poral frequency from 2008 through 2019, whereas in some
areas annual data are available back to the 1990s.

The fraction of C4 crop in vegetated areas is first derived
using existing CDL data. NLCD land cover types are cat-
egorized into vegetated areas and non-vegetated areas with
30 m resolution. The fraction of vegetated areas in total area
is subsequently calculated for each 250 m pixel. Similarly,
CDL crop types are categorized into C4-planted areas and
non-C4 areas with 30 m resolution. The fraction of C4 crops
in total area is subsequently calculated for each 250 m pixel.
The ratio of the fraction of C4 crops in total area to the frac-
tion of vegetated areas in total area is calculated to derive
the fraction of C4 crops in vegetated areas at 250 m resolu-
tion. Since NLCD data are not available for every year, an
assumption is made that 1 year of NLCD data can represent
adjacent years. Specifically, NLCD 2001 is used for 2000–
2002; NLCD 2004 is used for 2003 and 2004; NLCD 2006 is
used for 2005 and 2006; NLCD 2008 is used for 2007–2009;
NLCD 2011 is used for 2010 and 2011; NLCD 2013 is used
for 2012–2014; and NLCD 2016 is used for 2015–2019.

To predict the fraction of C4 crop in vegetation for re-
gion years for which no CDL data are available, crop rotation
patterns are identified from historical data. Assuming that C4
crops are planted following three rotation strategies: C4–non-
C4, C4–C4–non-C4 and non-C4–non-C4–C4 and assigning
1 to C4 and 0 to non-C4, a total of eight possible time se-
ries during the period of 2008–2019 when nationwide CDL
data are available are listed in Table 2. On a per-pixel basis,
the time series of the fraction of C4 crop in vegetation ar-
eas during 2008–2019 is compared with the eight predefined
rotation patterns. The Pearson coefficient r is calculated be-
tween actual time series and each of the eight patterns, and
the pattern yielding the largest r is the identified rotation pat-
tern. Once the pattern is identified, the fraction of C4 crop
in vegetated areas in any unknown year can be inferred. If
1 year is inferred as C4, then the multi-year average of the
C4 fraction over C4-dominated years is used. Otherwise, the
multi-year average over C3-dominated years is used. If the
largest r is smaller than 0.497, i.e., p>0.1 for 12 years, then
it is considered as no significant pattern, and the multi-year
average over all years is used. The RMSE between the pre-
dicted and reference CDL C4 fraction is calculated as uncer-
tainty. To account for the land cover change, the predicted
C4 crop fraction is set to 0 in years when NLCD data are not
classified as cropland. It is worth mentioning that C4 grass-
land and shrubland are not considered in this study, as no
nationwide high-resolution distribution data are available.

2.4 Calibration for iPUE coefficients

SLOPE was calibrated using the GPP data derived from
AmeriFlux site observations. The AmeriFlux network is a
community of sites that use eddy-covariance technology to
measure landscape-level carbon, water and energy fluxes
across the Americas (Baldocchi et al., 2001). A total of
48 sites (324 site years) were involved in this study (Ta-
ble S3). All of the 43 sites in the FLUXNET2015 Tier
1 dataset (variable name: GPP_DT_VUT_MEAN; qual-
ity control: NEE_VUT_REF_QC) in the CONUS were
used because this dataset was produced by a standard-
ized data processing pipeline with strict data quality con-
trol protocols and is commonly considered the ground truth.
Additionally, seven sites were from the AmeriFlux level
4 dataset (variable name: GPP_or_MDS; quality control:
NEE_or_fMDSsqc). This dataset was generated more than
10 years ago, and only AmeriFlux Core Sites that are not
covered by FLUXNET2015 were used for data quality con-
sideration. For both datasets, only days with the best quality
control flags were used in the SLOPE modeling and evalua-
tion procedures.

We used Eq. (5) to conduct model calibration. Although
SLOPE considers the iPUE–SANIRV relationship for C3 and
C4 species, we also tested other configurations for compar-
ison purposes. Configuration 1 (“all”) is defined as follows:
all data were used together to fit a universal iPUE coefficient
c. Configuration 2 (“C3–C4”) is defined as follows: data were
separated for C3 and C4 species to fit cC3 and cC4, respec-
tively. It is worth mentioning that only C4 crops (six sites)
were considered as C4 species, whereas C4 grass and shrubs
(three sites: US-SRG, Santa Rita Grassland; US-SRM, Santa
Rita Mesquite; and US-Wkg, Walnut Gulch Kendall Grass-
lands) were still categorized into C3 species because of the
lack of nationwide and high-resolution C4 grass and shrub
data. Configuration 3 (“PFTs”) is defined as follows: data
were separated for different PFTs, evergreen needleleaf for-
est (ENF; 14 sites), deciduous broadleaf forest and mixed
forest (DBF and MF; 8 sites), shrubland and woody savannah
(SHR and WSA; 5 sites), grassland (GRA; 8 sites), wetland
(WET; 5 sites), C3 cropland (10 sites) and C4 cropland (6
sites), to fit PFT-specific iPUE coefficients. The RMSE be-
tween SANIRV-derived and AmeriFlux iPUE for C3 and C4
are calculated as uncertainties of cC3 and cC4, respectively.

3 Evaluation of the SLOPE product

3.1 Performance of PAR

SLOPE PAR demonstrates distinctive and detailed spatial
variations in the CONUS because of the large spatial vari-
ations of atmospheric conditions (Fig. 2a). As an example,
on 10 July 2020, large areas in New Jersey, Wisconsin, Okla-
homa, South Dakota and Montana display significantly lower
values than other areas, due to dominant impacts of clouds
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Table 2. Predefined C4-planting patterns from 2008 through 2019. If the C4 crop dominates in a specific year, 1 is assigned. Otherwise, 0 is
assigned.

Year Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 8

2008 1 0 1 1 0 0 0 1
2009 0 1 1 0 1 0 1 0
2010 1 0 0 1 1 1 0 0
2011 0 1 1 1 0 0 0 1
2012 1 0 1 0 1 0 1 0
2013 0 1 0 1 1 1 0 0
2014 1 0 1 1 0 0 0 1
2015 0 1 1 0 1 0 1 0
2016 1 0 0 1 1 1 0 0
2017 0 1 1 1 0 0 0 1
2018 1 0 1 0 1 0 1 0
2019 0 1 0 1 1 1 0 0

(Fig. S1). Aerosol optical depth (Fig. S2), total water va-
por (Fig. S3) and total ozone burden (Fig. S4) also influence
the amount of clear-sky PAR to some degree. For example,
the southeastern part of the CONUS shows more aerosol and
thus lower PAR values than other cloud-free areas. In addi-
tion to the total amount of PAR, SLOPE PAR also reveals
variations in the ratio of PAR to SWR (Fig. S5). Despite a
relatively small range (0.40–0.46), it is negatively correlated
with cloud optical thickness and total ozone burden and pos-
itively correlates with total water vapor. PAR uncertainties
caused by the difference of the four machine learning algo-
rithms are generally small (<5 %; Fig. 2b). Higher uncertain-
ties are mainly distributed in cloudy and desert areas.

To evaluate SLOPE PAR, we used two different site ob-
servation datasets which are independent of the PAR deriva-
tion procedure. The first dataset is SURFRAD (Table S1).
While SURFRAD data from 2000 through 2018 were used
for model training, we used data in 2019 for evaluation. The
second dataset is FLUXNET2015 (Table S2). A total of 41
sites providing PAR data were used for the evaluation. For
both datasets, only days with the best quality control flags
were used.

Evaluation results show that SLOPE PAR is in a highly
aligned agreement with the ground truth independent from
the training procedure (Fig. 3). Across the seven SURFRAD
sites in 2019 and the 41 AmeriFlux sites from 2000 to 2014,
SLOPE PAR achieves an overall coefficient of determination
(R2) of 0.91 and root-mean-square error (RMSE) values of
1.09 and 1.19 MJ m−2 d−1, respectively. In addition, the per-
formance is reasonably stable under different sky conditions,
indicated by similar R2 and RMSE values from low to high
atmospheric transmittance (Fig. S6).

3.2 Performance of SANIRV

SLOPE SANIRV demonstrates detailed and distinctive spa-
tial variations in the CONUS (Fig. 4a). In the peak grow-

ing season, remarkably high SANIRV values (∼ 0.5) from
the Corn Belt in the central US are observed. This area is
one of the most productive areas on Earth, producing more
than 30 % of global corn and soybean (Green et al., 2018).
Forested areas in the eastern and western US are character-
ized by relatively high values (0.3–0.4) and medium values
(0.2–0.3), respectively. Low values (<0.2) are mainly ob-
served in grasslands and shrublands in the western US. Un-
certainty is associated with SANIRV data on the pixel basis
(Fig. 4b). In general, areas with higher SANIRV values also
have higher uncertainties. However, this pattern is altered by
atmospheric conditions, where areas with higher cloud op-
tical thickness (Fig. S1), aerosol optical depth (Fig. S2) and
water vapor (Fig. S3) values tend to have larger uncertainties.

Figure 5 demonstrates that SLOPE SANIRV is able to cap-
ture spatial and temporal variations at a small scale (e.g.,
within a county). An overall drop in SANIRV due to an ex-
treme event damage can be observed within a short time pe-
riod, thanks to the high temporal resolution (daily) of the
SLOPE product. In addition, differences between plots pos-
sibly indicating different varieties, planting density and man-
agement can also be observed, thanks to the high spatial res-
olution (250 m) of the SLOPE product.

SLOPE SANIRV shows significantly different seasonality
for different PFTs (Fig. 6). The evergreen needleleaf forest
site US-Blo (Blodgett Forest) is characterized by a relatively
stable SANIRV seasonal cycle in 2019 (Fig. 6a), indicated
by a CV of 14.9 % only. The deciduous broadleaf forest site
US-Ha1 (Harvard Forest EMS Tower) has a large seasonal
variation with a CV of 108.6 % (Fig. 6b). The SANIRV value
suddenly rises from 0 to 0.3 in May, reaches 0.4 in June and
July and gradually decreases back to 0 in October. The hot
desert open shrubland site US-Whs (Walnut Gulch Lucky
Hills Shrub) has an overall low SANIRV value (Fig. 6c),
with a peak value observed in early October. The grassland
site US-AR1 (ARM USDA UNL OSU Woodward Switch-
grass 1) shows a distinct double-peak (in June and Septem-
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Figure 2. Spatial distribution of 1 km resolution (a) PAR (MJ m−2 d−1) and (b) PAR uncertainty (MJ m−2 d−1) on 10 July 2020.

Figure 3. Comparison between site-observed PAR and SLOPE PAR. (a) Comparison across seven SURFRAD sites in 2019. (b) Comparison
across 41 AmeriFlux sites from 2000 to 2014. All site data are independent of the training procedure.

ber) seasonal pattern (Fig. 6d), which is caused by the pre-
cipitation seasonality there. The wetland site US-Myb (May-
berry Wetland) is characterized by a long growing season
and a flat peak from April to November (Fig. 6e). The crop-
land site US-Bo1 (Bondville) has corn planted in 2019, and
it shows the highest SANIRV peak up to 0.5 among all the
shown six sites (Fig. 6f). It is worth mentioning that com-
pared to the two raw satellite-observed NIRV values pro-
vided by MOD09GQ and MYD09GQ products, respectively,
SLOPE SANIRV successfully removes the soil impact in the
non-growing season as the values equal to or close to 0. In
addition, SLOPE SANIRV is gap-free and much less con-
taminated by noises. Furthermore, spatiotemporally explicit
uncertainty is associated with each SANIRV value.

3.3 Performance of the C4 fraction

SLOPE predicts a reasonable fraction of the C4 crop in veg-
etation in the CONUS (Fig. 7a). Most of the C4 crops are

located in the Corn Belt, especially in Indiana, Illinois, Iowa
and Nebraska. A direct comparison between the predicted C4
crop fraction (Fig. 8a) and independent reference CDL data
(Fig. 8b) indicates that the SLOPE prediction is able to re-
construct the spatial patterns of the fraction of C4 crop in
vegetation at 250 m resolution. It is worth mentioning that
the uncertainty metric RMSE is sensitive to extreme values,
and it is different from the misclassification rate (0.4 does
not mean 40 %). For a pure pixel of a corn–soybean rotation
field, the RMSE equals 0.39 if 3 out of 20 years are mis-
classified, i.e., misclassification rate of 0.15. A further inves-
tigation with regard to interannual dynamics shows that the
SLOPE predictions can even perform better than CDL refer-
ence data (Fig. 9), benchmarked with the ground truth col-
lected in the field. At this point, the CDL land cover could be
prone to uncertainties in both satellite observation and clas-
sification algorithm, and classification is conducted year by
year without an interannual consideration (Lark et al., 2017).
SLOPE employs a rotation model to match decadal time se-

Earth Syst. Sci. Data, 13, 281–298, 2021 https://doi.org/10.5194/essd-13-281-2021



C. Jiang et al.: SLOPE GPP product 289

Figure 4. Spatial distribution of 250 m resolution (a) SANIRV and (b) SANIRV uncertainty across the CONUS on 10 July 2020.

Figure 5. SANIRV in a 50× 75 km2 area at Cedar Rapids, Iowa (red marker in Fig. 4a), on (a) 9 Aug 2020 and (b) 13 Aug 2020. A severe
derecho took place from 10–11 August 2020. The maps are shown with the sinusoidal projection.

ries of CDL data, during which procedure noises in CDL
data are suppressed. The features for which SLOPE is able
to reconstruct spatial and interannual patterns of CDL data
enable producing GPP in years when CDL data are unavail-
able (e.g., 2020 and years before 2008 for most regions). It
is worth mentioning that uncertainty is also associated with
each pixel (Fig. 7b).

3.4 Performance of GPP

SLOPE SANIRV shows a strong linear correlation with iPUE
(Fig. 10). When data from all 49 sites (324 site years) are
used together, the SANIRV–iPUE relationship has an over-
all R2 value of 0.73 (Fig. 10a). This is composed of an R2

value of 0.92 from C4 species (Fig. 10b) and 0.70 from C3
species (Fig. 10c). C3 species can be further decomposed
into six PFTs (Fig. 10d–i), among which cropland has the
highest R2 value up to 0.80 (Fig. 10i), whereas evergreen
needleleaf forest has the lowest value of 0.46 (Fig. 10d). This
relatively weak iPUE–SANIRV relationship is expected be-
cause evergreen needleleaf forest tends to allocate resources
for leaf construction and maintenance at large timescales and
does not have much flexibility to change canopy structure
and leaf color as a response to varying environment at small

timescales (Badgley et al., 2019; Chabot and Hicks, 1982).
Previous studies found that changes in the xanthophyll cy-
cle instead of chlorophyll concentration or absorbed PAR
explained the seasonal variation of photosynthetic capacity
in evergreen needleleaf forest (Gamon et al., 2016; Magney
et al., 2019). Therefore, SIF was suggested by some studies
as a better proxy of photosynthetic capacity in this ecosys-
tem (Smith et al., 2018; Turner et al., 2020), though satellite
SIF has coarser spatial resolution, shorter temporal coverage,
larger temporal latency and a lower signal-to-noise ratio than
SANIRV. In addition, the relatively weak iPUE–SANIRV re-
lationship is also partly because of the small value ranges in
both SANIRV and iPUE.

The overall slope is 3.82 gC MJ−1 for all data (Fig. 10a).
A distinct difference is found between C4 (5.18; Fig. 10b)
and C3 (3.54; Fig. 10c) species, suggesting the importance of
separating C4 from C3 species in modeling. The slope values
vary to a limited degree within C3 species (Fig. 10d–i), rang-
ing from 3.26 gC MJ−1 (cropland; Fig. 10i) to 3.80 gC MJ−1

(evergreen needleleaf forest; Fig. 10d), indicating the in-
significance of separating different PFTs. It is worth men-
tioning that the SANIRV–iPUE relationship has a zero inter-
cept because of the successful removal of the soil impact.
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Figure 6. Comparison between SANIRV and raw NIRV derived from MOD09GQ and MYD09GQ products at six AmeriFlux sites (Table S3)
in 2019. (a) US-Blo (evergreen needleleaf forest, ENF). (b) US-Ha1 (deciduous broadleaf forest, DBF). (c) US-Whs (open shrubland, OSH).
(d) US-AR1 (grassland, GRA). (e) US-Myb (wetland, WET). (f) US-Bo1 (cropland, CRO). Shaded areas indicate uncertainties of SANIRV.

Figure 7. Spatial distribution of 250 m resolution (a) predicted fraction of C4 crop in vegetation in 2000 and (b) C4 crop fraction uncertainty
across the CONUS.

A 100-time-repeated 5-fold cross validation reveals the ro-
bustness of the SANIRV–iPUE relationships (Fig. 11). Here
the repeated cross validation means the whole GPP dataset
from all 49 sites (324 site years) is randomly split into five
folds, four folds for training and one fold for testing, and the
process is repeated 100 times yielding 500 training–testing
splits in total. In all subsets, the uncertainties of the iPUE
coefficient c (the slope of the SANIRV–iPUE relationship)
are less than 1 % (Fig. 11a). When using the three differ-
ent model configurations, the model performances in sim-
ulating the whole training–testing datasets also show little
variation (Fig. 11b), in general <0.5 % and <1.5 % for the
training and testing datasets, respectively. Moreover, the R2

values between training and testing datasets, and between
C3–C4 and PFT-based configurations are almost identical
(∼ 0.76). These results suggest using cC4 = 5.18 (Fig. 10b)
and cC3 = 3.54 (Fig. 10c) in SLOPE is reasonable. The 95 %
confidential intervals of c for C4 and C3 species (Fig. 11a)
are used as their uncertainties in SLOPE.

SLOPE GPP demonstrates detailed and distinctive spa-
tial variations in the CONUS (Fig. 12a). The Corn Belt is
the most productive area, largely contributed by the C4 crop
corn whose GPP could reach up to 30 gC m−2 d−1 (Fig. 13a).
Forested areas in the eastern US show medium GPP val-
ues, followed by forests and croplands in the western US.
Grasslands and shrublands in the central and western US
generally show low productivity. On this example day, the
R2 of spatial patterns between GPP and SANIRV, GPP and
C4 fraction, and GPP and PAR across the CONUS are 0.89,
0.34 and 0.01, respectively. SANIRV, an integrated vegeta-
tion index containing information of both FPAR and LUE
(Eq. 4), explains the majority of GPP spatial variation. C4
fraction mainly contributes to the distribution and magni-
tude of the peak in GPP spatial variation. Although PAR
does not influence the nationwide GPP spatial variation, it
regulates GPP values at local scale. For example, northeast-
ern Nebraska shows smaller GPP values than southeastern
Nebraska in spite of a similar SANIRV (Fig. 4a) and C4
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Figure 8. C4 crop fraction of (a) SLOPE predicted and (b) CDL reference data in a 50×75 km2 area in Keith County, Nebraska (red marker
in Fig. 7a), in 2000. Only CDL data during 2008–2019 are used in the modeling procedure, and therefore (b) is independent of (a). The maps
are shown with the sinusoidal projection.

Figure 9. Comparison of fraction of C4 crop in vegetation between the field-collected ground truth, 250 m resolution CDL data and 250 m
resolution SLOPE predictions at six AmeriFlux sites (Table S3) in the US Corn Belt from 2000 to 2020. (a) US-Ne1 (uncertainty: 0.17; Mead
– irrigated continuous maize site). (b) US-Ne2 (uncertainty: 0.40; Mead – irrigated maize–soybean rotation site). (c) US-Ne3 (uncertainty:
0.18; Mead – rainfed maize–soybean rotation site). (d) US-Bo1 (uncertainty: 0; Bondville). (e) US-Ro1 (uncertainty: 0.16; Rosemount –
G21). Uncertainty is the RMSE between the predicted and the CDL reference.

fraction (Fig. 7a) because of smaller PAR values (Fig. 2a).
At a small scale (e.g., within a county), the 250 m resolu-
tion (∼ 0.06 km2 per pixel) SLOPE GPP is close to revealing
field-level heterogeneity, considering that the mean and me-
dian crop field sizes in the CONUS are 0.19 and 0.28 km2, re-
spectively (Yan and Roy, 2016). For example, Fig. 13a shows
large contrast in GPP, but Fig. 13b is more homogeneous.
This is because corn reaches peak growing season in early
July when soybean canopy is still open and sparse. SLOPE
GPP with its pixel size much smaller than field area is there-
fore able to show GPP difference between corn and soybean.
In late August, corn turns yellow, while soybean is still green
and active, and therefore they have similar GPP values con-
sidering corn is C4, while soybean is C3. We suggest that
the 250 m resolution makes a big difference compared to ex-
isting global GPP products whose spatial resolutions are at
least 500 m (∼ 0.25 km2 per pixel). Quantitative uncertainty
is provided for each SLOPE GPP estimate (Eq. 8). The spa-

tial pattern shows that the Corn Belt has the largest uncer-
tainty (Fig. 12b; e.g., 5 gC m−2 d−1) due to the considerable
contribution from the uncertainty of the C4 fraction (Fig. 7b).

SLOPE GPP agrees fairly well with the ground truth from
the AmeriFlux sites (Fig. 14). Across all of the 49 sites
(328 site years; Fig. 14a), SLOPE GPP achieves an over-
all R2 value of 0.85, RMSE of 1.63 gC m−2 d−1 and rela-
tive error of 37.8 %. For individual sites (Fig. 14b), the me-
dian R2 and RMSE values are 0.80 and 1.69 gC m−2 d−1,
respectively. C4 cropland generally shows the highest me-
dian R2 value (0.94), followed by deciduous broadleaf for-
est and mixed forest (0.88) and C3 cropland (0.87). The
lowest median R2 value (0.69) is observed for evergreen
needleleaf forest. With regard to RMSE, smaller median
values are found in grassland (1.09 gC m−2 d−1), shrub-
land and woody savannah (1.48 gC m−2 d−1), and decidu-
ous broadleaf forest and mixed forest (1.48 gC m−2 d−1),
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Figure 10. Comparison between SANIRV and iPUE over different subsets. The slope value of the SANIRV–iPUE relationship is the model
parameter c (Eq. 5). Panel (a) is used by the model configuration 1 (all). Panels (b) and (c) are used by the model configuration 2 (C3–C4),
which is actually used by SLOPE. Panels (b) and (d)–(i) are used by the model configuration 3 (PFTs).
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Figure 11. Statistics of the SANIRV–iPUE relationship from cross validation. (a) Slopes of the SANIRV–iPUE relationship over different
subsets. (b) R2 between AmeriFlux GPP and estimated GPP using different model configurations for the training and testing datasets,
respectively. Error bars in both subplots indicate 95 % confidential intervals over 500 experiments.

Figure 12. Spatial distribution of 250 m resolution (a) GPP (gC m−2 d−1) and (b) GPP uncertainty (gC m−2 d−1) across the CONUS on 10
July 2020.

whereas C3 (2.15 gC m−2 d−1) and C4 (2.01 gC m−2 d−1)
cropland tend to have larger RMSE values.

SLOPE GPP generally captures seasonal and interannual
variations of AmeriFlux GPP for different PFTs (Fig. 15).
At the evergreen needleleaf forest site US-Blo (Fig. 15a), the
GPP seasonal cycle is mainly driven by PAR, as the iPUE
indicated by SANIRV is fairly stable (Fig. 6a). At the decid-
uous broadleaf forest site US-Ha1 (Fig. 15b), the start of the
season and the end of the season agree well between Ameri-
Flux GPP and SLOPE GPP. At the open-shrubland site US-
Whs (Fig. 15c), the quick rise and drop of GPP in response
to the start and end of the wet season are clearly observed
in SLOPE GPP. Even the double-peak pattern in 2011 can
be observed in SLOPE GPP. At the grassland site US-AR1
(Fig. 15d), the impact of a severe drought in the southern
Great Plains in 2011 is distinct in SLOPE GPP, as the GPP
values in 2011 are only about half of those in 2010 and 2012.
At the cropland site US-Bo1 (Fig. 15f), the rotation-caused
year-to-year variation is distinct, indicated by higher values
in odd-numbered years with C4 crop corn planted and lower
values in even-numbered years with C3 crop soybean planted

(Fig. 9d). The lowest GPP peak is observed in 2012 when a
severe drought attacked the central US.

4 Data availability and data format

The archived daily 250 m resolution SLOPE GPP data
product from 2000 to 2019 is distributed under a Creative
Commons Attribution 4.0 License. It is publicly available
at NASA’s Oak Ridge National Laboratory Distributed
Active Archive Center (ORNL DAAC) with a DOI of
https://doi.org/10.3334/ORNLDAAC/1786 (download page:
https://daac.ornl.gov/daacdata/cms/SLOPE_GPP_CONUS/
data/, last access: 20 January 2021) (Jiang and Guan,
2020). Data from 2020 are available from the authors upon
request. All data are projected in the standard MODIS Land
Integerized Sinusoidal tile map projection and are stored
in GeoTIFF format files with a data type of signed 16 bit
integer. Each processing tile has a size of 4800 pixels by
4800 pixels, representing a land region of approximately
1200 km by 1200 km . In addition to the GPP product,
SLOPE PAR, SANIRV and C4 fraction, along with their
uncertainties, are also released. These datasets are also
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Figure 13. GPP (gC m−2 d−1) in a 50× 75 km2 area in Champaign County, Illinois (red marker in Fig. 12a), on (a) 10 July 2020 and (b)
20 August 2020. The maps are shown with the sinusoidal projection.

Figure 14. Performance of the SLOPE GPP. (a) Comparison between AmeriFlux GPP and SLOPE GPP across all sites. (b) R2 and RMSE
of individual sites. Sites with a C3–C4 rotation are separated into C3 CRO and C4 CRO.

stored in the same spatial projection and file format with
the GPP dataset. PAR (resampled from 1 km to 250 m to be
consistent with GPP) and SANIRV are provided on a daily
basis, whereas C4 fraction is provided on an annual basis. A
README file is provided along with the SLOPE product,
which instructs the usage of the data.

5 Conclusions

This study produces a long-term and real-time (2000–
present) GPP product with daily and 250 m spatial and
temporal resolutions. The product is based on a remote-
sensing-only (SLOPE) model, which uses accurate PAR,
soil-adjusted NIRV and dynamic C4 fractions as inputs.
Evaluation against AmeriFlux ground-truth GPP shows that
the SLOPE GPP product has a reasonable accuracy, with
an overall R2 of 0.85 and RMSE of 1.63 gC m−2 d−1. To
demonstrate the real-time capacity of the SLOPE GPP prod-
uct, the latest GPP data on 2 November 2020, 2 d prior to the
revision of this paper, is shown in Fig. S7. The spatiotem-

poral resolution and instantaneity of the SLOPE GPP prod-
uct are higher than existing global GPP products, such as
MOD17, VPM, GLASS, FLUXCOM and BESS. We expect
this novel GPP product can significantly contribute to various
researchers and stakeholders in fields related to the regional
carbon cycle, land surface processes, ecosystem monitoring
and management, and agriculture. The approaches used in
this study, in particular, the derivation of SANIRV, can also
be applied to any other satellite platform with the two most
classical bands: red and NIR, for example, SaTellite dAta In-
tegRation (STAIR) from Landsat–MODIS fusion data, which
has daily, 30 m spatiotemporal resolution and can be applied
at a large scale (Jiang et al., 2020; Luo et al., 2018); com-
mercial Planet Labs data with a daily interval and spatial res-
olution up to 3m (Houborg and McCabe, 2016; Kimm et al.,
2020); and the Advanced Very High Resolution Radiome-
ter (AVHRR) with a temporal coverage as far back as 1982
(Franch et al., 2017; Jiang et al., 2017). However, caution
should be used in the interpretation of GPP seasonal trajec-
tory in evergreen needleleaf forests because of the relatively
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Figure 15. Comparison between AmeriFlux (black dots) and SLOPE (red curves) daily GPP at six AmeriFlux sites (Table S3) from 2000 to
2019. (a) US-Blo (evergreen needleleaf forest, ENF). (b) US-Ha1 (deciduous broadleaf forest, DBF). (c) US-Whs (open shrubland, OSH).
(d) US-AR1 (grassland, GRA). (e) US-Myb (wetland, WET). (f) US-Bo1 (cropland, CRO). Shaded areas indicate uncertainties of SLOPE
GPP.

poor relationship between SANIRV–iPUE and GPP magni-
tude in southwestern US grasslands because of the ignorance
of the fraction of C4 grasslands. Finally, although the SLOPE
product has been generated from 2000 to present, caution
should also be used in the interpretation of the long-term
trend because the SLOPE model, as many other LUE mod-
els, does not explicitly consider the CO2 fertilization effects
on vegetation productivity.
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