Articles | Volume 12, issue 1
https://doi.org/10.5194/essd-12-387-2020
https://doi.org/10.5194/essd-12-387-2020
Data description paper
 | 
17 Feb 2020
Data description paper |  | 17 Feb 2020

A 439-year simulated daily discharge dataset (1861–2299) for the upper Yangtze River, China

Chao Gao, Buda Su, Valentina Krysanova, Qianyu Zha, Cai Chen, Gang Luo, Xiaofan Zeng, Jinlong Huang, Ming Xiong, Liping Zhang, and Tong Jiang

Related authors

Projected changes of Active layer thickness over permafrost under 1.5~5.0 °C climate warming on the Qinghai-Tibet Plateau
Zhenjie Li, Buda Su, Jinlong Huang, Peni Hausia Havea, Runhong Xu, Cheng Jing, Yu Gong, and Tong Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1169,https://doi.org/10.5194/egusphere-2024-1169, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
An improved Approximate Bayesian Computation approach for high-dimensional posterior exploration of hydrological models
Song Liu, Dunxian She, Liping Zhang, and Jun Xia
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-414,https://doi.org/10.5194/hess-2022-414, 2023
Publication in HESS not foreseen
Short summary
A harmonized global land evaporation dataset from model-based products covering 1980–2017
Jiao Lu, Guojie Wang, Tiexi Chen, Shijie Li, Daniel Fiifi Tawia Hagan, Giri Kattel, Jian Peng, Tong Jiang, and Buda Su
Earth Syst. Sci. Data, 13, 5879–5898, https://doi.org/10.5194/essd-13-5879-2021,https://doi.org/10.5194/essd-13-5879-2021, 2021
Short summary
Deep-Learning-Based Harmonization and Super-Resolution of Near-Surface Air Temperature from CMIP6 Models (1850–2100)
Xikun Wei, Guojie Wang, Donghan Feng, Zheng Duan, Daniel Fiifi Tawia Hagan, Liangliang Tao, Lijuan Miao, Buda Su, and Tong Jiang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-418,https://doi.org/10.5194/essd-2021-418, 2021
Preprint withdrawn
Short summary
Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates
Lei Gu, Jie Chen, Jiabo Yin, Sylvia C. Sullivan, Hui-Min Wang, Shenglian Guo, Liping Zhang, and Jong-Suk Kim
Hydrol. Earth Syst. Sci., 24, 451–472, https://doi.org/10.5194/hess-24-451-2020,https://doi.org/10.5194/hess-24-451-2020, 2020
Short summary

Related subject area

Hydrology
Features of Italian large dams and their upstream catchments
Giulia Evangelista, Paola Mazzoglio, Daniele Ganora, Francesca Pianigiani, and Pierluigi Claps
Earth Syst. Sci. Data, 17, 1407–1426, https://doi.org/10.5194/essd-17-1407-2025,https://doi.org/10.5194/essd-17-1407-2025, 2025
Short summary
Gridded rainfall erosivity (2014–2022) in mainland China using 1 min precipitation data from densely distributed weather stations
Yueli Chen, Yun Xie, Xingwu Duan, and Minghu Ding
Earth Syst. Sci. Data, 17, 1265–1274, https://doi.org/10.5194/essd-17-1265-2025,https://doi.org/10.5194/essd-17-1265-2025, 2025
Short summary
High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data, 17, 703–717, https://doi.org/10.5194/essd-17-703-2025,https://doi.org/10.5194/essd-17-703-2025, 2025
Short summary
CAMELS-IND: hydrometeorological time series and catchment attributes for 228 catchments in Peninsular India
Nikunj K. Mangukiya, Kanneganti Bhargav Kumar, Pankaj Dey, Shailza Sharma, Vijaykumar Bejagam, Pradeep P. Mujumdar, and Ashutosh Sharma
Earth Syst. Sci. Data, 17, 461–491, https://doi.org/10.5194/essd-17-461-2025,https://doi.org/10.5194/essd-17-461-2025, 2025
Short summary
LakeBeD-US: a benchmark dataset for lake water quality time series and vertical profiles
Bennett J. McAfee, Aanish Pradhan, Abhilash Neog, Sepideh Fatemi, Robert T. Hensley, Mary E. Lofton, Anuj Karpatne, Cayelan C. Carey, and Paul C. Hanson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-27,https://doi.org/10.5194/essd-2025-27, 2025
Revised manuscript accepted for ESSD
Short summary

Cited articles

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: model development, J. Am. Water Resour. As., 34, 73–89, https://https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998. 
Bergström, S. and Forsman, A.: Development of a conceptual deterministic rainfall-runoff model, Hydrol. Res., 4, 147–170, https://doi.org/10.2166/nh.1973.0012, 1973. 
Braud, I., Roux, H., Anquetin, S., Maubourguet, M. M., Manus, C., Viallet, P., and Dartus, D.: The use of distributed hydrological models for the Gard 2002 flash flood event: analysis of associated hydrological processes, J. Hydrol., 394, 162–181, https://doi.org/10.1016/j.jhydrol.2010.03.033, 2010. 
Changjiang Water Resources Commission of the Ministry of Water Resources: The flood and drought disasters in the Yangtze River Basin, China Water & Power Press, Beijing, China, 2002. 
Chen, J., Gao, C., Zeng, X. F., Xiong, M., Wang, Y. J., Jing, C., Krysanova, V., Huang, J. L., Zhao, N., and Su, B. D.: Assessing changes of river discharge under global warming of 1.5 C and 2 C in the upper reaches of the Yangtze River Basin: Approach by using multiple- GCMs and hydrological models, Quat. Int., 453, 63–73, https://doi.org/10.1016/j.quaint.2017.01.017, 2017. 
Download
Short summary
The study produced the daily discharge time series for the upper Yangtze River basin (Cuntan hydrological station) in the period 1861–2299 under scenarios with and without anthropogenic climate change. The daily discharge was simulated by using four hydrological models (HBV, SWAT, SWIM and VIC) driven by multiple GCM outputs. This dataset could be compared to assess changes in river discharge in the upper Yangtze River basin attributable to anthropogenic climate change.
Share
Altmetrics
Final-revised paper
Preprint