Articles | Volume 12, issue 1
https://doi.org/10.5194/essd-12-387-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-387-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 439-year simulated daily discharge dataset (1861–2299) for the upper Yangtze River, China
Department of Geography & Spatial Information Techniques, Ningbo
University, Ningbo 315211, China
Buda Su
National Climate Centre, China Meteorological Administration, Beijing 100081, China
Valentina Krysanova
Potsdam Institute for Climate Impact Research, Potsdam, Germany
Qianyu Zha
Department of Geography & Spatial Information Techniques, Ningbo
University, Ningbo 315211, China
Cai Chen
Department of Geography & Spatial Information Techniques, Ningbo
University, Ningbo 315211, China
Gang Luo
Department of Geography & Spatial Information Techniques, Ningbo
University, Ningbo 315211, China
Xiaofan Zeng
School of Hydropower and Information Engineering, Huazhong University
of Science and Technology, Wuhan 430074, China
Jinlong Huang
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, Institute for Disaster Risk Management, School of
Geographical Science, Nanjing University of Information Science &
Technology, Nanjing 210044, China
Ming Xiong
Bureau of Hydrology, Changjiang River Water Resources Commission,
Wuhan 430010, China
Liping Zhang
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan 430072, China
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, Institute for Disaster Risk Management, School of
Geographical Science, Nanjing University of Information Science &
Technology, Nanjing 210044, China
Data sets
A 439-year daily discharge dataset (1861 - 2299) for the upper Yangtze River, China C. Gao, B. D. Su, V. Krysanova, Q. Y. Zha, C. Chen, G. Luo, X. F. Zeng, J. L. Huang, M. Xiong, L. P. Zhang, and T. Jiang https://doi.org/10.4121/uuid:8658b22a-8f98-4043-9f8f-d77684d58cbc
Short summary
The study produced the daily discharge time series for the upper Yangtze River basin (Cuntan hydrological station) in the period 1861–2299 under scenarios with and without anthropogenic climate change. The daily discharge was simulated by using four hydrological models (HBV, SWAT, SWIM and VIC) driven by multiple GCM outputs. This dataset could be compared to assess changes in river discharge in the upper Yangtze River basin attributable to anthropogenic climate change.
The study produced the daily discharge time series for the upper Yangtze River basin (Cuntan...
Altmetrics
Final-revised paper
Preprint