Articles | Volume 12, issue 2
https://doi.org/10.5194/essd-12-1385-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-1385-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Description of the multi-approach gravity field models from Swarm GPS data
João Teixeira da Encarnação
CORRESPONDING AUTHOR
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, the Netherlands
Center for Space Research, The University of Texas at Austin, 3925
West Braker Lane, Suite 200 Austin, TX 78759-5321, USA
Pieter Visser
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, the Netherlands
Daniel Arnold
Astronomical Institute of the University of Bern, Sidlerstrasse 5,
3012 Bern, Switzerland
Aleš Bezdek
Astronomical Institute of the Czech Academy of Sciences, Fricova 298,
251 65 Ondřejov, Czech Republic
Eelco Doornbos
Royal Netherlands Meteorological
Institute, Utrechtseweg 297, 3731 GA De Bilt, the Netherlands
Matthias Ellmer
Jet
Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
Junyi Guo
School of Earth Sciences of The Ohio State University, 125 Oval Dr S,
Columbus, OH 43210, USA
Jose van den IJssel
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, the Netherlands
Elisabetta Iorfida
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, the Netherlands
Adrian Jäggi
Astronomical Institute of the University of Bern, Sidlerstrasse 5,
3012 Bern, Switzerland
Jaroslav Klokocník
Astronomical Institute of the Czech Academy of Sciences, Fricova 298,
251 65 Ondřejov, Czech Republic
Sandro Krauss
Institute of Geodesy of the Graz University of Technology, Steyergasse
30/III, 8010 Graz, Austria
Xinyuan Mao
Astronomical Institute of the University of Bern, Sidlerstrasse 5,
3012 Bern, Switzerland
Torsten Mayer-Gürr
Institute of Geodesy of the Graz University of Technology, Steyergasse
30/III, 8010 Graz, Austria
Ulrich Meyer
Astronomical Institute of the University of Bern, Sidlerstrasse 5,
3012 Bern, Switzerland
Josef Sebera
Astronomical Institute of the Czech Academy of Sciences, Fricova 298,
251 65 Ondřejov, Czech Republic
C. K. Shum
School of Earth Sciences of The Ohio State University, 125 Oval Dr S,
Columbus, OH 43210, USA
Chaoyang Zhang
School of Earth Sciences of The Ohio State University, 125 Oval Dr S,
Columbus, OH 43210, USA
School of Earth Sciences of The Ohio State University, 125 Oval Dr S,
Columbus, OH 43210, USA
Christoph Dahle
GFZ German Research Centre for Geosciences, Potsdam, Germany
Astronomical Institute of the University of Bern, Sidlerstrasse 5,
3012 Bern, Switzerland
Related authors
No articles found.
Maksym Vasiuta, Angel Navarro Trastoy, Sanam Motlaghzadeh, Lauri Tuppi, Torsten Mayer-Gürr, and Heikki Järvinen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-136, https://doi.org/10.5194/gmd-2024-136, 2024
Preprint under review for GMD
Short summary
Short summary
Propagation of electromagnetic signals in the Earth's neutral atmosphere inflicts errors in space geodetic observations. To model these errors as accurately as possible, it is necessary to use a signal ray tracing algorithm which is informed of the state of the atmosphere. We developed such algorithm and tested it by modelling errors in GNSS network observations. Our algorithm's main advantage is loss-less utilization of atmospheric information provided by numerical weather prediction models.
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-347, https://doi.org/10.5194/essd-2024-347, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The satellite missions GRACE and GRACE-FO are unique observing systems to quantify global mass changes at the Earth’s surface from space. Time series of these mass changes are of high value for various applications, e.g., in hydrology, glaciology, and oceanography. GravIS provides easy access to user-friendly, regularly updated mass anomaly products. The associated portal visualizes and describes these data, aiming to highlight their significance for understanding changes in the climate system.
Jaroslav Klokocnik, Vaclav Cilek, Jan Kostelecky, and Ales Bezdek
EGUsphere, https://doi.org/10.5194/egusphere-2024-866, https://doi.org/10.5194/egusphere-2024-866, 2024
Short summary
Short summary
Gravity aspects applied to the well-known impact craters Popigai and Chicxulub. Findings about them from 2010 confirmed and extended with better data and more advanced method. Both craters are double or multiple craters. Both crater formations seem to be associated with impact induced tectonics that triggered development of impact grabens.
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Athina Peidou, Donald F. Argus, Felix W. Landerer, David N. Wiese, and Matthias Ellmer
Earth Syst. Sci. Data, 16, 1317–1332, https://doi.org/10.5194/essd-16-1317-2024, https://doi.org/10.5194/essd-16-1317-2024, 2024
Short summary
Short summary
This study recommends a framework for preparing and processing vertical land displacements derived from GPS positioning for future integration with Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) measurements. We derive GPS estimates that only reflect surface mass signals and evaluate them against GRACE (and GRACE-FO). We also quantify uncertainty of GPS vertical land displacement estimates using various uncertainty quantification methods.
Angel Navarro Trastoy, Sebastian Strasser, Lauri Tuppi, Maksym Vasiuta, Markku Poutanen, Torsten Mayer-Gürr, and Heikki Järvinen
Geosci. Model Dev., 15, 2763–2771, https://doi.org/10.5194/gmd-15-2763-2022, https://doi.org/10.5194/gmd-15-2763-2022, 2022
Short summary
Short summary
Production of satellite products relies on information from different centers. By coupling a weather model and an orbit determination solver we eliminate the dependence on one of the centers. The coupling has proven to be possible in the first stage, where no formatting has been applied to any of the models involved. This opens a window for further development and improvement to a coupling that has proven to be as good as the predecessor model.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Andreas Kvas, Jan Martin Brockmann, Sandro Krauss, Till Schubert, Thomas Gruber, Ulrich Meyer, Torsten Mayer-Gürr, Wolf-Dieter Schuh, Adrian Jäggi, and Roland Pail
Earth Syst. Sci. Data, 13, 99–118, https://doi.org/10.5194/essd-13-99-2021, https://doi.org/10.5194/essd-13-99-2021, 2021
Short summary
Short summary
Earth's gravity field provides invaluable insights into the state and changing nature of our planet. GOCO06s combines over 1 billion measurements from 19 satellites to produce a global gravity field model. The combination of different observation principles allows us to exploit the strengths of each satellite mission and provide a high-quality data set for Earth and climate sciences.
Martin Lasser, Ulrich Meyer, Adrian Jäggi, Torsten Mayer-Gürr, Andreas Kvas, Karl Hans Neumayer, Christoph Dahle, Frank Flechtner, Jean-Michel Lemoine, Igor Koch, Matthias Weigelt, and Jakob Flury
Adv. Geosci., 55, 1–11, https://doi.org/10.5194/adgeo-55-1-2020, https://doi.org/10.5194/adgeo-55-1-2020, 2020
Short summary
Short summary
Correctly determining the orbit of Earth-orbiting satellites requires to account multiple background effects which appear in the system Earth. Usually, these effects are introduced by various complex force models, which are not always easy to handle. We publish and validate a data set of commonly used models to make it easier to track down potential issues when applying such background forces in orbit and gravity field determination.
Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Adv. Geosci., 50, 101–113, https://doi.org/10.5194/adgeo-50-101-2020, https://doi.org/10.5194/adgeo-50-101-2020, 2020
Short summary
Short summary
We compute gravity field solutions from kinematic orbit positions of GRACE. These positions are derived from GPS based observations, and hence, they are contaminated by measurement noise. We present three methods of dealing with the noise in the data to obtain not only high-quality gravity field solutions but also an accurate quality information of the gravity fields.
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Stephen Coss, Michael Durand, Yuchan Yi, Yuanyuan Jia, Qi Guo, Stephen Tuozzolo, C. K. Shum, George H. Allen, Stéphane Calmant, and Tamlin Pavelsky
Earth Syst. Sci. Data, 12, 137–150, https://doi.org/10.5194/essd-12-137-2020, https://doi.org/10.5194/essd-12-137-2020, 2020
Short summary
Short summary
We present a new radar-altimeter-satellite-measured river surface height dataset. Our novel approach is broadly applicable rather than location specific. We were able to measure rivers that account for > 34 % of global drainage area with an accuracy comparable to much of the established literature. 389 of our 932 measurement locations include river gage validation. We have focused our efforts on creating a consistent, well-documented data product to encourage use by the broader science community.
Anasuya Aruliah, Matthias Förster, Rosie Hood, Ian McWhirter, and Eelco Doornbos
Ann. Geophys., 37, 1095–1120, https://doi.org/10.5194/angeo-37-1095-2019, https://doi.org/10.5194/angeo-37-1095-2019, 2019
Short summary
Short summary
Winds near the top of the atmosphere are expected to be the same at all heights for a given location by assuming high viscosity in rarefied gases. However, wind measurements from satellite drag at 350–400 km altitude were found to be up to 2 times larger than optical measurements at ∼240 km. Satellites provide global measurements, and ground-based FPIs provide long-term monitoring at single sites. So we must understand this inconsistency to model and predict atmospheric behaviour correctly.
Cyril Kobel, Daniel Arnold, and Adrian Jäggi
Adv. Geosci., 50, 27–37, https://doi.org/10.5194/adgeo-50-27-2019, https://doi.org/10.5194/adgeo-50-27-2019, 2019
Short summary
Short summary
In this article we analyze the benefit of computing a combined solution from individual orbit solutions for the low Earth orbiting satellite Sentinel-3A. The selected combination scheme for calculating the combined solution is Variance Component Estimation. It could be shown that a combination of individual solutions can be beneficial in terms of Satellite Laser Ranging validation. In our opinion the findings are well transferable to other satellite missions.
Saniya Behzadpour, Torsten Mayer-Gürr, Jakob Flury, Beate Klinger, and Sujata Goswami
Geosci. Instrum. Method. Data Syst., 8, 197–207, https://doi.org/10.5194/gi-8-197-2019, https://doi.org/10.5194/gi-8-197-2019, 2019
Short summary
Short summary
In this paper, we present an approach to represent underlying errors in measurements and physical models in the temporal gravity field determination using GRACE observations. This study provides an opportunity to improve the error model and the accuracy of the GRACE parameter estimation, as well as its successor GRACE Follow-On.
Lucas Schreiter, Daniel Arnold, Veerle Sterken, and Adrian Jäggi
Ann. Geophys., 37, 111–127, https://doi.org/10.5194/angeo-37-111-2019, https://doi.org/10.5194/angeo-37-111-2019, 2019
Short summary
Short summary
Comparing Swarm GPS-only gravity fields to the ultra-precise GRACE K-Band gravity field schematic errors occurs around the geomagnetic equator. Due to the end of the GRACE mission, and the gap to the GRACE-FO mission, only Swarm can provide a continuous time series of gravity fields. We present different and assess different approaches to remove the schematic errors and thus improve the quality of the Swarm gravity fields.
Qiang Shen, Hansheng Wang, C. K. Shum, Liming Jiang, Hou Tse Hsu, Jinglong Dong, Song Mao, and Fan Gao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-149, https://doi.org/10.5194/essd-2018-149, 2018
Revised manuscript not accepted
Short summary
Short summary
Thorough and continued monitoring of ice-sheet dynamics is of utmost importance for accurate predictions of ice-sheet behavior in the future. We present a new Antarctic ice velocity map at a 100-m grid spacing inferred from Landsat 8 imagery data. The datasets will allow for a comprehensive continent-wide investigation of ice dynamics and mass balance with the existing and future ice velocity measurements, provide control and calibration for ice-sheet modelling.
Ben T. Gouweleeuw, Andreas Kvas, Christian Gruber, Animesh K. Gain, Thorsten Mayer-Gürr, Frank Flechtner, and Andreas Güntner
Hydrol. Earth Syst. Sci., 22, 2867–2880, https://doi.org/10.5194/hess-22-2867-2018, https://doi.org/10.5194/hess-22-2867-2018, 2018
Short summary
Short summary
Daily GRACE gravity field solutions have been evaluated against daily river runoff data for major flood events in the Ganges–Brahmaputra Delta in 2004 and 2007. Compared to the monthly gravity field solutions, the trends over periods of a few days in the daily gravity field solutions are able to reflect temporal variations in river runoff during major flood events. This implies that daily gravity field solutions released in near-real time may support flood monitoring for large events.
Libin Weng, Jiuhou Lei, Eelco Doornbos, Hanxian Fang, and Xiankang Dou
Ann. Geophys., 36, 489–496, https://doi.org/10.5194/angeo-36-489-2018, https://doi.org/10.5194/angeo-36-489-2018, 2018
Short summary
Short summary
Thermospheric mass density from the GOCE satellite for Sun-synchronous orbits between 83.5° S and 83.5° N normalized to 270 km during 2009–2013 has been used to develop our GOCE model at dawn/dusk local solar time sectors based on the empirical orthogonal function (EOF) method. We find that both amplitude and phase of the seasonal variations have strong latitudinal and solar activity dependences, and the annual asymmetry and effect of the Sun–Earth distance vary with latitude and solar activity.
Quang Thai Trinh, Manfred Ern, Eelco Doornbos, Peter Preusse, and Martin Riese
Ann. Geophys., 36, 425–444, https://doi.org/10.5194/angeo-36-425-2018, https://doi.org/10.5194/angeo-36-425-2018, 2018
Qiang Shen, Hansheng Wang, Che-Kwan Shum, Liming Jiang, Hou Tse Hsu, and Jinglong Dong
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-34, https://doi.org/10.5194/tc-2017-34, 2017
Preprint withdrawn
Short summary
Short summary
We constructed two present-day continent-wide ice flow maps on Antarctica, and estimated its mass balances over the last decade. An increased mass discharge from Wilkes Land, East Antarctica was found, contrary to the long-standing belief that accelerated mass loss primarily originates from West Antarctica and Antarctic Peninsula. Our maps allow the first continent-wide assessment of mass discharge changes in the last decade, which will contribute to our understanding of Antarctic ice dynamics.
K.-H. Tseng, K. T. Liu, C. K. Shum, Y. Jia, K. Shang, and C. Dai
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 399–402, https://doi.org/10.5194/isprs-archives-XLI-B8-399-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-399-2016, 2016
Christiane Meyer, Ulrich Meyer, Andreas Pflitsch, and Valter Maggi
The Cryosphere, 10, 879–894, https://doi.org/10.5194/tc-10-879-2016, https://doi.org/10.5194/tc-10-879-2016, 2016
Short summary
Short summary
In the paper a new method to calculate airflow speeds in static ice caves by using air temperature data is presented. As most study sites are in very remote places, where it is often not possible to use sonic anemometers and other devices for the analysis of the cave climate, we show how one can use the given database for calculating airflow speeds. Understanding/quantifying all elements of the specific cave climate is indispensable for understanding the evolution of the ice body in ice caves.
Y. B. Sulistioadi, K.-H. Tseng, C. K. Shum, H. Hidayat, M. Sumaryono, A. Suhardiman, F. Setiawan, and S. Sunarso
Hydrol. Earth Syst. Sci., 19, 341–359, https://doi.org/10.5194/hess-19-341-2015, https://doi.org/10.5194/hess-19-341-2015, 2015
Short summary
Short summary
This paper investigates the possibility of monitoring small water bodies through Envisat altimetry observation. A novel approach is introduced to identify qualified and non-qualified altimetry measurements by assessing the waveform shapes for each returned radar signal. This research indicates that small lakes (extent < 100 km2) and medium-sized rivers (e.g., 200--800 m in width) can be successfully monitored by satellite altimetry.
S. Krauss, M. Pfleger, and H. Lammer
Ann. Geophys., 32, 1305–1309, https://doi.org/10.5194/angeo-32-1305-2014, https://doi.org/10.5194/angeo-32-1305-2014, 2014
Y. L. Zhou, S. Y. Ma, R. S. Liu, H. Luehr, and E. Doornbos
Ann. Geophys., 31, 15–30, https://doi.org/10.5194/angeo-31-15-2013, https://doi.org/10.5194/angeo-31-15-2013, 2013
Related subject area
Geosciences – Geodesy
HydroSat: geometric quantities of the global water cycle from geodetic satellites
The cooperative IGS RT-GIMs: a reliable estimation of the global ionospheric electron content distribution in real time
RECOG RL01: correcting GRACE total water storage estimates for global lakes/reservoirs and earthquakes
Open access to regional geoid models: the International Service for the Geoid
GOCO06s – a satellite-only global gravity field model
ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans
Mohammad J. Tourian, Omid Elmi, Yasin Shafaghi, Sajedeh Behnia, Peyman Saemian, Ron Schlesinger, and Nico Sneeuw
Earth Syst. Sci. Data, 14, 2463–2486, https://doi.org/10.5194/essd-14-2463-2022, https://doi.org/10.5194/essd-14-2463-2022, 2022
Short summary
Short summary
HydroSat as a global water cycle database provides estimates of and uncertainty in geometric quantities of the water cycle: (1) surface water extent of lakes and rivers, (2) water level time series of lakes and rivers, (3) terrestrial water storage anomaly, (4) water storage anomaly of lakes and reservoirs, and (5) river discharge estimates for large and small rivers.
Qi Liu, Manuel Hernández-Pajares, Heng Yang, Enric Monte-Moreno, David Roma-Dollase, Alberto García-Rigo, Zishen Li, Ningbo Wang, Denis Laurichesse, Alexis Blot, Qile Zhao, Qiang Zhang, André Hauschild, Loukis Agrotis, Martin Schmitz, Gerhard Wübbena, Andrea Stürze, Andrzej Krankowski, Stefan Schaer, Joachim Feltens, Attila Komjathy, and Reza Ghoddousi-Fard
Earth Syst. Sci. Data, 13, 4567–4582, https://doi.org/10.5194/essd-13-4567-2021, https://doi.org/10.5194/essd-13-4567-2021, 2021
Short summary
Short summary
The upper part of the atmosphere, the ionosphere, is partially ionized, and it is being crossed by many multi-frequency signals of the Global Navigation Satellite System (GNSS) satellites. This unique source of data can be acquired in real time from hundreds of permanent GNSS receivers. The real-time processing providing the distribution of the ionospheric free electrons (Global Ionospheric Maps) can be done as well in real time. We present their updated real-time assessment and combination.
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021, https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Short summary
GRACE provides us with global changes of terrestrial water storage. However, the data have a low spatial resolution, and localized storage changes in lakes/reservoirs or mass change due to earthquakes causes leakage effects. The correction product RECOG RL01 presented in this paper accounts for these effects. Its application allows for improving calibration/assimilation of GRACE into hydrological models and better drought detection in earthquake-affected areas.
Mirko Reguzzoni, Daniela Carrion, Carlo Iapige De Gaetani, Alberta Albertella, Lorenzo Rossi, Giovanna Sona, Khulan Batsukh, Juan Fernando Toro Herrera, Kirsten Elger, Riccardo Barzaghi, and Fernando Sansó
Earth Syst. Sci. Data, 13, 1653–1666, https://doi.org/10.5194/essd-13-1653-2021, https://doi.org/10.5194/essd-13-1653-2021, 2021
Short summary
Short summary
The International Service for the Geoid provides free access to a repository of geoid models. The most important ones are freely available to perform analyses on the evolution of the geoid computation research field. Furthermore, the ISG performs research taking advantage of its archive and organizes specific training courses on geoid determination. This paper aims at describing the service and showing the added value of the archive of geoid models for the scientific community and technicians.
Andreas Kvas, Jan Martin Brockmann, Sandro Krauss, Till Schubert, Thomas Gruber, Ulrich Meyer, Torsten Mayer-Gürr, Wolf-Dieter Schuh, Adrian Jäggi, and Roland Pail
Earth Syst. Sci. Data, 13, 99–118, https://doi.org/10.5194/essd-13-99-2021, https://doi.org/10.5194/essd-13-99-2021, 2021
Short summary
Short summary
Earth's gravity field provides invaluable insights into the state and changing nature of our planet. GOCO06s combines over 1 billion measurements from 19 satellites to produce a global gravity field model. The combination of different observation principles allows us to exploit the strengths of each satellite mission and provide a high-quality data set for Earth and climate sciences.
E. Sinem Ince, Franz Barthelmes, Sven Reißland, Kirsten Elger, Christoph Förste, Frank Flechtner, and Harald Schuh
Earth Syst. Sci. Data, 11, 647–674, https://doi.org/10.5194/essd-11-647-2019, https://doi.org/10.5194/essd-11-647-2019, 2019
Short summary
Short summary
ICGEM is a non-profit scientific service that contributes to any research area in which the use of gravity information is essential. ICGEM offers the largest collection of global gravity field models, interactive calculation and visualisation services and delivers high-quality datasets to researchers and students in geodesy, geophysics, glaciology, hydrology, oceanography, and climatology and most importantly general public. Static, temporal, and topographic gravity field models are available.
Cited articles
Abdalati, W., Gail, W. B., Busalacchi, A. J., Battel, S. J., Boland, S. W.,
Braun, R. D., Chen, S. S., Dietrich, W. E., Doney, S. C., Field,
C. B., Fricker, H. A., Gille, S. T., Hartmann, D. L., Jacob, D. J., Janetos,
A. C., Joseph, E., Macauley, M. K., Penner, J. E., Sorooshian,
S., Stephens, G. L., Tapley, B. D., and Wilson, W. S.: Thriving on Our
Changing Planet: A Decadal Strategy for Earth Observation from Space,
National Academies Press, Washington, DC, https://doi.org/10.17226/24938, 2018.
Allende-Alba, G., Montenbruck, O., Jäggi, A., Arnold, D., and Zangerl,
F.: Reduced-dynamic and kinematic baseline determination for the Swarm
mission, GPS Solutions, 21, 1275–1284,
https://doi.org/10.1007/s10291-017-0611-z, 2017.
Barkstrom, B. R. and Smith, G. L.: The Earth Radiation Budget Experiment:
Science and implementation, Rev. Geophys., 24, 379–390,
https://doi.org/10.1029/RG024i002p00379, 1986.
Bettadpur, S.: UTCSR Level-2 Processing Standards Document For Level-2
Product Release 0006, Tech. rep., Center for Space Research, Austin, USA,
available at: https://podaac-tools.jpl.nasa.gov/drive/files/allData/grace/docs/TN-11_C20_SLR.txt (last access: 5 June 2020), 2018.
Beutler, G., Jäggi, A., Mervart, L., and Meyer, U.: The celestial
mechanics approach: theoretical foundations, J. Geodesy, 84, 605–624, https://doi.org/10.1007/s00190-010-0401-7, 2010.
Bezdek, A.: Calibration of accelerometers aboard GRACE satellites by
comparison with POD-based nongravitational acceler- ations, J.
Geodynam., 50, 410–423, https://doi.org/10.1016/j.jog.2010.05.001, 2010.
Bezdek, A., Klokocník, J., Kostelecký, J., Floberghagen, R., and
Gruber, C.: Simulation of free fall and resonances in the GOCE mission,
J. Geodynam., 48, 47–53,
https://doi.org/10.1016/j.jog.2009.01.007, 2009.
Bezdek, A., Sebera, J., Klokocník, J., and Kostelecký, J.: Gravity
field models from kinematic orbits of CHAMP, GRACE and GOCE satellites,
Adv. Space Res., 53, 412–429,
https://doi.org/10.1016/j.asr.2013.11.031, 2014.
Bezdek, A., Sebera, J., Teixeira da Encarnação, J., and
Klokocník, J.: Time-variable gravity fields derived from GPS tracking
of Swarm, Geophys. J. Int., 205, 1665–1669,
https://doi.org/10.1093/gji/ggw094, 2016.
Bezdek, A., Sebera, J., and Klokocník, J.: Validation of Swarm
accelerometer data by modelled nongravitational forces, Adv. Space
Res., 59, 2512–2521, https://doi.org/10.1016/j.asr.2017.02.037, 2017.
Bezdek, A., Arnold, D., Doornbos, E., Jäggi, A., Mao, X., Zehentner, N.,
Teixeira da Encarnacao, J., and Visser, P. N. A. M.: TN-02: Swarm Data
Pre-Processing, Kinematic Baselines And Accelerometer Data, Tech. rep.,
https://doi.org/10.13140/RG.2.2.19891.99361, 2018a.
Bezdek, A., Sebera, J., and Klokocník, J.: Calibration of Swarm
accelerometer data by GPS positioning and linear temperature correction,
Adv. Space Res., 62, 317–325,
https://doi.org/10.1016/j.asr.2018.04.041, 2018b.
Biancale, R. and Bode, A.: Mean annual and seasonal atmospheric tide models
based on 3-hourly and 6-hourly ECMWF surface pressure data, Tech. rep.,
Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany,
https://doi.org/10.2312/GFZ.b103-06011, 2006.
Bowman, B., Tobiska, W. K., Marcos, F., Huang, C., Lin, C., and Burke, W.: A
New Empirical Thermospheric Density Model JB2008 Using New Solar and
Geomagnetic Indices, in: AIAA/AAS Astrodynamics Specialist Conference and
Exhibit, August, American Institute of Aeronautics and Astronautics, Reston,
Virigina, https://doi.org/10.2514/6.2008-6438, 2008.
Carrere, L., Lyard, F., Cancet, M., and Guillot, A.: FES 2014, a new tidal
model on the global ocean with enhanced accuracy in shallow seas and in the
Arctic region, in: EGU General Assembly, Vienna, Austria, 2015.
Cheng, M. and Ries, J.: The unexpected signal in GRACE estimates of C20,
J. Geodesy, 91, 897–914,
https://doi.org/10.1007/s00190-016-0995-5, 2017.
Cheng, M. and Ries, J.: GRACE Technical Note 11: Monthly estimates of C20
from 5 satellites based on GRACE RL06 models, available at: ftp://podaac-ftp.jpl.nasa.gov/allData/grace/docs/TN-11_C20_SLR.txt (last access: 5 June 2020), 2018.
Cheng, M., Ries, J. C., and Tapley, B. D.: Variations of the Earth's figure
axis from satellite laser ranging and GRACE, J. Geophys.
Res.-Sol. Ea., 116, 1–14, https://doi.org/10.1029/2010JB000850, 2011.
Dach, R., Lutz, S., Walser, P., and Fridez, P.: Bernese GNSS Software
Version 5.2, Bern Open Publishing, Bern,
https://doi.org/10.7892/boris.72297, 2015.
Dach, R., Schaer, S., Arnold, D., Prange, L., Sidorov, D., Susnik, A.,
Villiger, A., and Jäggi, A.: CODE final product series for the IGS,
https://doi.org/10.7892/boris.75876.2, 2017.
Dahle, C., Arnold, D., and Jäggi, A.: Impact of tracking loop settings
of the Swarm GPS receiver on gravity field recovery, Adv. Space
Res., 59, 2843–2854, https://doi.org/10.1016/j.asr.2017.03.003, 2017.
Ditmar, P., Klees, R., and Liu, X.: Frequency-dependent data weighting in
global gravity field modeling from satellite data contaminated by
non-stationary noise, J. Geodesy, 81, 81–96,
https://doi.org/10.1007/s00190-006-0074-4, 2006.
Ditmar, P., Bezdek, A., Liu, X., and Zhao, Q.: On a Feasibility of Modeling
Temporal Gravity Field Variations from Orbits of Non-dedicated Satellites,
in: Observing our Changing Earth, edited by: Sideris, M., vol. 133, in:International Association of Geodesy Symposia, 307–313, Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-540-85426-5_36, 2008.
Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle,
C., Esselborn, S., König, R., and Flechtner, F.: A new highresolution
model of non-tidal atmosphere and ocean mass variability for de-aliasing of
satellite gravity observations: AOD1B RL06, Geophys. J.
Int., 211, 263–269, https://doi.org/10.1093/gji/ggx302, 2017.
Doornbos, E.: Thermospheric Density and Wind Determination from Satellite
Dynamics, Springer Theses, Springer
Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-25129-0, 2012.
Doornbos, E., Bruinsma, S. L., Fritsche, B., Koppenwallner, G., Visser, P.,
Van Den IJssel, J., and Teixeira da Encarnação, J.: GOCE+ Theme 3:
Air density and wind retrieval using GOCE data final report, Tech. rep., TU
Delft, Delft, the Netherlands, 2014.
Doornbos, E., Siemes, C., Teixeira da Encarnação, J., Perestý,
R., Grunwaldt, L., Kraus, J., Holmdahl Olsen, P. E., van den IJssel, J.,
Flury, J., and Apelbaum, G.: Processing of Swarm Accelerometer Data into
Thermospheric Neutral Densities, in: AGU Fall Meeting, Abstract SA31D-2371, 2015.
Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G.,
Skinner, W., Hays, P., Niciejewski, R. J., Larsen, M., She, C. Y.,
Meriwether, J. W., Hernandez, G., Jarvis, M. J., Sipler, D. P., Tepley, C.
A., O'Brien, M. S., Bowman, J. R., Wu, Q., Murayama, Y.,
Kawamura, S., Reid, I. M., and Vincent, R. A.: An empirical model of the
Earth's horizontal wind fields: HWM07, J. Geophys. Res.-Space, 113, 1–18, https://doi.org/10.1029/2008JA013668, 2008.
Emmert, J. T., Drob, D. P., Shepherd, G. G., Hernandez, G., Jarvis, M. J.,
Meriwether, J. W., Niciejewski, R. J., Sipler, D. P., and Tepley, C. A.:
DWM07 global empirical model of upper thermospheric storm-induced
disturbance winds, J. Geophys. Res.-Space, 113, A11319,
https://doi.org/10.1029/2008JA013541, 2008.
Encarnacao, J., Visser, P., Jaeggi, A., Bezdek, A., Mayer-Gürr, T.,
Shum, C., Arnold, D., Doornbos, E., Elmer, M., Guo, J., van den IJssel, J.,
Iorfida, E., Klokocnik, J., Krauss, S., Mao, X., Meyer, U., Sebera, J.,
Zhang, C., and Zhang, Y.: Multi-approach Gravity Field Models from Swarm GPS
data, https://doi.org/10.5880/ICGEM.2019.006, 2019.
Flechtner, F.: GRACE AOD1B RL04 Quality Assurance,
available at: http://op.gfz-potsdam.de/grace/results/grav/g007_aod1b_rl04.html (last access: 5 June 2020), 2011.
Flechtner, F., Neumayer, K.-H., Dahle, C., Dobslaw, H., Fagiolini, E.,
Raimondo, J.-C., and Güntner, A.: What Can be Expected from the GRACE-FO
Laser Ranging Interferometer for Earth Science Applications?, Surv.
Geophys., 37, 453–470, https://doi.org/10.1007/s10712-015-9338-y, 2016.
Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S., and Kuchynka,
P.: The Planetary and Lunar Ephemerides DE430 and DE431, Interplanet. Netw.
Prog. Rep, 42, available at: https://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf (last access: 5 June 2020), 2014.
Friis-Christensen, E., Lühr, H., Knudsen, D., and Haagmans, R.: Swarm –
An Earth Observation Mission investigating Geospace, Adv. Space
Res., 41, 210–216, https://doi.org/10.1016/j.asr.2006.10.008,
2008.
Fritsche, B., Ivanov, M., Kashkovsky, A., Koppenwallner, G., Kudryavtsev,
A., Voskoboinikov, U., and Zhukova, G.: Radiation pressure forces on complex
spacecraft, Tech. rep., European Space Agency,
https://doi.org/10.5880/ICGEM.2019.006, 1998.
Guo, J. Y., Shang, K., Jekeli, C., and Shum, C. K.: On the energy integral
formulation of gravitational potential differences from
satelliteto-satellite tracking, Celest. Mech. Dyn. Astr.,
121, 415–429, https://doi.org/10.1007/s10569-015-9610-y, 2015.
Guo, X. and Zhao, Q.: A New Approach to Earth's Gravity Field Modeling Using
GPS-Derived Kinematic Orbits and Baselines, Remote Sens., 11, 1728,
https://doi.org/10.3390/rs11141728, 2019.
Haagmans, R.: Swarm – The Earth's Magnetic Field and Environment Explorers,
vol. 1279, ESA Publications Division, Noordwijk, The Netherlands, sp-1279, available at: http://esamultimedia.esa.int/docs/SP_1279_6_Swarm.pdf (last access: 5 June 2020), 2004.
Jäggi, A., Hugentobler, U., and Beutler, G.: Pseudo-Stochastic Orbit
Modeling Techniques for Low-Earth Orbiters, J. Geodesy, 80, 47–60,
https://doi.org/10.1007/s00190-006-0029-9, 2006.
Jäggi, A., Hugentobler, U., Bock, H., and Beutler, G.: Precise orbit
determination for GRACE using undifferenced or doubly differenced GPS data,
Adv. Space Res., 39, 1612–1619,
https://doi.org/10.1016/j.asr.2007.03.012, 2007.
Jäggi, A., Beutler, G., Prange, L., Dach, R., and Mervart, L.:
Assessment of GPS-only Observables for Gravity Field Recovery from GRACE,
International Association of Geodesy Symposia, 133, 113–123,
https://doi.org/10.1007/978-3-540-85426-5_14, 2009.
Jäggi, A., Meyer, U., Beutler, G., Prange, L., Dach, R., and Mervart,
L.: AIUB-GRACE03S, available at: http://icgem.gfz-potsdam.de/ (last access: 5 June 2020), 2011.
Jäggi, A., Montenbruck, O., Moon, Y., Wermuth, M., König, R.,
Michalak, G., Bock, H., and Bodenmann, D.: Inter-agency comparison of
TanDEM-X baseline solutions, Adv. Space Res., 50, 260–271,
https://doi.org/10.1016/j.asr.2012.03.027, 2012.
Jäggi, A., Dahle, C., Arnold, D., Bock, H., Meyer, U., Beutler, G., and
van den IJssel, J.: Swarm kinematic orbits and gravity fields from 18 months
of GPS data, Adv. Space Res., 57, 218–233,
https://doi.org/10.1016/j.asr.2015.10.035, 2016.
Jäggi, A., Weigelt, M., Flechtner, F., Güntner, A., Mayer-Gürr,
T., Martinis, S., Bruinsma, S., Flury, J., Bourgogne, S., Steffen, H.,
Meyer,
U., Jean, Y., Sušnik, A., Grahsl, A., Arnold, D., Cann-Guthauser, K.,
Dach, R., Li, Z., Chen, Q., van Dam, T., Gruber, C., Poropat,
L., Gouweleeuw, B., Kvas, A., Klinger, B., Lemoine, J.-M., Biancale, R.,
Zwenzner, H., Bandikova, T., and Shabanloui, A.: European
Gravity Service for Improved Emergency Management (EGSIEM) – from concept to
implementation, Geophys. J. Int., 218, 1572–1590,
https://doi.org/10.1093/gji/ggz238, 2019.
Jäggi, A., Meyer, U., Lasser, M., Jenny, B., Lopez, T., Flechtner, F.,
Dahle, C., Förste, C., Mayer-Gürr, T., Kvas, A., Lemoine, J.-M.,
Bourgogne, S., Weigelt, M., and Groh, A.: International Combination Service
for Time-variable Gravity Fields (COST-G) – Start of operational phase and
future perspectives, in: IAG Symposia Series,
https://doi.org/10.1007/1345_2020_109, in press, 2020.
Jean, Y., Meyer, U., and Jäggi, A.: Combination of GRACE monthly gravity
field solutions from different processing strategies, J. Geodesy,
92, 1313–1328, https://doi.org/10.1007/s00190-018-1123-5, 2018.
Jekeli, C.: The determination of gravitational potential differences from
satellite-to-satellite tracking, Celest. Mech. Dyn. Astr., 75, 85–101, https://doi.org/10.1023/A:1008313405488, 1999.
Kermarrec, G., Ren, L., and Schön, S.: On filtering ionospheric effects
in GPS observations using the Matérn covariance family and its impact on
orbit determination of Swarm satellites, GPS Solutions, 22, 66,
https://doi.org/10.1007/s10291-018-0733-y, 2018.
Klinger, B. and Mayer-Gürr, T.: The role of accelerometer data
calibration within GRACE gravity field recovery: Results from ITSGGrace2016,
Adv. Space Res., 58, 1597–1609,
https://doi.org/10.1016/j.asr.2016.08.007, 2016.
Klinger, B., Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., and
Zehentner, N.: The new ITSG-Grace2016 release, in: EGU General Assembly,
Research Gate, Vienna, Austria, https://doi.org/10.13140/RG.2.1.1856.7280,
2016.
Knocke, P., Ries, J., and Tapley, B.: Earth radiation pressure effects on
satellites, in: Astrodynamics Conference, American Institute of Aeronautics
and Astronautics, Reston, Virigina, https://doi.org/10.2514/6.1988-4292, 1988.
Kroes, R.: Precise Relative Positioning of Formation Flying Spacecraft using
GPS, PhD thesis, Delft University of Technology, available at: http://resolver.tudelft.nl/uuid:1a68ee94-3d55-44b9-9d8b-25fa44e96922, 2006.
Lieske, J. H., Lederle, T., Fricke, W., and Morando, B.: Expression for the
precession quantities based upon the IAU (1976) system of astronomical
constants, Astron. Astrophys., 58, 1–16, 1977.
Loomis, B. D., Rachlin, K. E., and Luthcke, S. B.: Improved Earth Oblateness
Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise,
Geophys. Res. Lett., 46, 6910–6917,
https://doi.org/10.1029/2019GL082929, 2019.
Lück, C., Kusche, J., Rietbroek, R., and Löcher, A.: Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits, Solid Earth, 9, 323–339, https://doi.org/10.5194/se-9-323-2018, 2018.
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415,
https://doi.org/10.1007/s10236-006-0086-x, 2006.
Mao, X., Visser, P. N., and van den IJssel, J.: Impact of GPS antenna phase
center and code residual variation maps on orbit and baseline determination
of GRACE, Adv. Space Res., 59, 2987–3002,
https://doi.org/10.1016/j.asr.2017.03.019, 2017.
Mao, X., Visser, P., and van den IJssel, J.: The impact of GPS receiver
modifications and ionospheric activity on Swarm baseline determination, Acta
Astronaut., 146, 399–408,
https://doi.org/10.1016/j.actaastro.2018.03.009, 2018.
Mayer-Gürr, T.: Gravitationsfeldbestimmung aus der Analyse kurzer
Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE, Phd
thesis, Rheinischen Friedrich-Wilhelms Universität Bonn,
available at: https://www.researchgate.net/publication/253819808_ITG-Grace2010_the_new_GRACE_gravity_field_release_computed_in_Bonn(last access: 5 June 2020), 2006.
Mayer-Gürr, T.: The Combined Satellite Gravity Field Model GOCO05s, in:
EGU General Assembly, EGU2015-12364, Vienna, Austria, 2015.
Mayer-Gürr, T., Kurtenbach, E., Eicker, A., Mayer-Gürr, T.,
Kurtenbach, E., and Eicker, A.: ITG-Grace2010: the new GRACE gravity field
release computed in Bonn, in: EGU General Assembly, EGU2010-2446, Vienna,
Austria, available at: http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010 (last access: 5 June 2020),
2010.
Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., Klinger, B., and
Zehentner, N.: ITSG-Grace2016 – Monthly and Daily Gravity Field Solutions
from GRACE, https://doi.org/10.5880/icgem.2016.007, 2016.
Meyer, U., Jean, Y., Kvas, A., Dahle, C., Lemoine, J. M., and Jäggi, A.:
Combination of GRACE monthly gravity fields on the normal equation level,
J. Geodesy, 93, 1645–1658, https://doi.org/10.1007/s00190-019-01274-6, 2019a.
Meyer, U., Sosnica, K., Arnold, D., Dahle, C., Thaller, D., Dach, R.,
Jäggi, A., Meyer, U., Sosnica, K., Arnold, D., Dahle, C., Thaller, D.,
Dach, R., and Jäggi, A.: SLR, GRACE and Swarm Gravity Field
Determination and Combination, Remote Sens., 11, 956,
https://doi.org/10.3390/rs11080956,
2019b.
Meyer, U.: Combination of monthly Swarm gravity fields applying variance component estimation, in preparation, 2020.
Montenbruck, O. and Gill, E.: Satellite Orbits, Springer-Verlag Berlin And
Heidelberg Gmbh, Berlin, Heidelberg, 1st edn.,
https://doi.org/10.1007/978-3-642-58351-3, 2000.
Olsen, N., Friis-Christensen, E., Floberghagen, R., Alken, P., Beggan, C. D., Chulliat, A., Doornbos, E., da Encarnação, J. T., Hamilton, B., Hulot, G., van den IJssel, J., Kuvshinov, A., Lesur, V., Lühr, H., Macmillan, S., Maus, S., Noja, M., Olsen, P. E. H., Park, J., Plank, G., Püthe, C., Rauberg, J., Ritter, P., Rother, M., Sabaka, T. J., Schachtschneider, R., Sirol, O., Stolle, C., Thébault, E., Thomson, A. W. P., Tøffner-Clausen, L., Velímský, J., Vigneron, P., and Visser, P. N.: The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products, Earth, Planets Space, 65, 1189–1200, https://doi.org/10.5047/eps.2013.07.001, 2013.
Petit, G. G. and Luzum, B.: IERS Conventions (2010),
available at: http://www.iers.org/TN36/ (last access: 5 June 2020), 2010.
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00
empirical model of the atmosphere: Statistical comparisons and scientific
issues, J. Geophys. Res.-Space, 107, 1468, https://doi.org/10.1029/2002JA009430, 2002.
Ray, R. D. and Luthcke, S. B.: Tide model errors and GRACE gravimetry:
towards a more realistic assessment, Geophys. J. Int., 167,
1055–1059, https://doi.org/10.1111/j.1365-246X.2006.03229.x, 2006.
Reigber, C.: Gravity field recovery from satellite tracking data, in: Theory
of Satellite Geodesy and Gravity Field Determination, edited by: Sansò,
F. and Rummel, R., vol. 25 in: Lecture Notes in Earth Sciences, Springer, Berlin, Heidelberg, 197–234,
https://doi.org/10.1007/BFb0010546, 1989.
Ries, J., Bettadpur, S., Eanes, R., Kang, Z., Ko, U., McCullough, C., Nagel,
P., Pie, N., Poole, S., Richter, T., Save, H., and Tapley, B.: The Combined
Gravity Model GGM05C, Tech. Rep. CSR-TM-16-01, Center for Space Research,
University of Texas at Austin, Austin,
https://doi.org/10.26153/tsw/1461, 2016.
Ries, J. C., Bettadpur, S., Poole, S., and Richter, T.: Mean Background Gravity Fields for GRACE processing, GRACE Science Team Meeting, Austin, USA, 8–10 August 2010, available at: http://download.csr.utexas.edu/pub/grace/Proceedings/Presentations_GSTM2011.pdf (last access: 5 June 2020), 2011.
Rodriguez-Solano, C. J., Hugentobler, U., Steigenberger, P., and Lutz, S.:
Impact of Earth radiation pressure on GPS position estimates, J.
Geodesy, 86, 309–317, https://doi.org/10.1007/s00190-011-0517-4, 2012.
Savcenko, R. and Bosch, W.: EOT11a – Empirical ocean tide model from
multi-mission satellite altimetry, Tech. rep., Deutsches Geodätisches
Forschungsinstitut, München, Germany, available at:
https://epic.awi.de/36001/1/DGFI_Report_89.pdf (last access: 5 June 2020), 2012.
Schreiter, L., Arnold, D., Sterken, V., and Jäggi, A.: Mitigation of ionospheric signatures in Swarm GPS gravity field estimation using weighting strategies, Ann. Geophys., 37, 111–127, https://doi.org/10.5194/angeo-37-111-2019, 2019.
Seidelmann, P. K.: 1980 IAU Theory of Nutation: The final report of the IAU
Working Group on Nutation, Celestial Mech., 27, 79–106,
https://doi.org/10.1007/BF01228952, 1982.
Sentman, L. H.: Free molecule flow theory and its application to the
determination of aerodynamic forces, LMSC-448514, available at: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0265409 (last access: 5 June 2020),
1961.
Shang, K., Guo, J., Shum, C., Dai, C., and Luo, J.: GRACE time-variable
gravity field recovery using an improved energy balance approach,
Geophys. J. Int., 203, 1773–1786,
https://doi.org/10.1093/gji/ggv392, 2015.
Siemes, C.: Swarm satellite thermo-optical properties and external geometry,
Tech. rep., European Space Agency, available at: https://earth.esa.int/documents/10174/2563139/Swarm_thermo-optical_properties_and_external_geometry.pdf (last access: 5 June 2020), 2019.
Siemes, C., Teixeira da Encarnação, J., Doornbos, E., van den
IJssel, J., Kraus, J., Pereštý, R., Grunwaldt, L., Apelbaum, G.,
Flury, J., and Holmdahl Olsen, P. E.: Swarm accelerometer data processing
from raw accelerations to thermospheric neutral densities,
Earth Planets Space, 68, 92, https://doi.org/10.1186/s40623-016-0474-5,
2016.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity
recovery and climate experiment: Mission overview and early results,
Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004.
Teixeira da Encarnação, J. and Visser, P.: TN-03: Swarm models
validation, Tech. rep., TU Delft,
https://doi.org/10.13140/RG.2.2.33313.76640, 2019.
Teixeira da Encarnação, J., Arnold, D., Bezdek, A., Dahle, C.,
Doornbos, E., van den IJssel, J., Jäggi, A., Mayer-Gürr, T., Sebera,
J., Visser, P., and Zehentner, N.: Gravity field models derived from Swarm
GPS data, Earth Planets Space, 68, 127,
https://doi.org/10.1186/s40623016-0499-9, 2016.
Teunissen, P. J. G.: The least-squares ambiguity decorrelation adjustment: a
method for fast GPS integer ambiguity estimation, J. Geodesy, 70,
65–82, https://doi.org/10.1007/BF00863419, 1995.
van Barneveld, P. W. L.: Orbit determination of satellite formations, Phd
thesis, Delft University of Technology, https://doi.org/10.4233/uuid:c5ac8599-fca2-40eb-adc6-bbfeeec38fa, 2012.
van den IJssel, J., Encarnação, J., Doornbos, E., and Visser, P.:
Precise science orbits for the Swarm satellite constellation, Adv.
Space Res., 56, 1042–1055, https://doi.org/10.1016/j.asr.2015.06.002, 2015.
van den IJssel, J., Forte, B., and Montenbruck, O.: Impact of Swarm GPS
receiver updates on POD performance, Earth Planets Space, 68, 85,
https://doi.org/10.1186/s40623-016-0459-4,
2016.
van Helleputte, T.: GPS High Precision Orbit Determination Software Tools: User Manual (No. FDS-SUM-3110)., Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen,
available at: https://issfd.org/ISSFD_2007/7-3.pdf (last access: 5 June 2020), 2004.
Visser, P. N. A. M., Sneeuw, N., and Gerlach, C.: Energy integral method for
gravity field determination from satellite orbit coordinates, J.
Geodesy, 77, 207–216, https://doi.org/10.1007/s00190-003-0315-8, 2003.
Wahr, J., Nerem, R. S., and Bettadpur, S. V.: The pole tide and its effect
on GRACE time-variable gravity measurements: Implications for estimates of
surface mass variations, J. Geophys. Res.-Sol. Ea., 120,
4597–4615, https://doi.org/10.1002/2015JB011986, 2015.
Wermuth, M., Montenbruck, O., and Helleputte, T. V.: GPS high precision
orbit determination software tools (GHOST), in: 4th International Conference
on Astrodynamics Tools and Techniques, ESA WPP-308, Madrid, 2010.
Zehentner, N.: Kinematic orbit positioning applying the raw observation
approach to observe time variable gravity, Doctoral dissertation, Graz
University of Technology, https://doi.org/10.13140/RG.2.2.33916.33927,
2016.
Zehentner, N. and Mayer-Gürr, T.: New Approach to Estimate Time Variable
Gravity Fields from High-Low Satellite Tracking Data, in: International
Association of Geodesy Symposia,
Venice, Italy, Springer, Cham, 141, 111–116, https://doi.org/10.1007/978-3-31910837-7_14, 2014.
Zehentner, N. and Mayer-Gürr, T.: Precise orbit determination based on
raw GPS measurements, J. Geodesy, 90, 275–286,
https://doi.org/10.1007/s00190-015-0872-7, 2016.
Zeng, Y., Guo, J., Shang, K., Shum, C., and Yu, J.: On the formulation of
gravitational potential difference between the GRACE satellites based on
energy integral in Earth fixed frame, Geophys. J. Int.,
202, 1792–1804, https://doi.org/10.1093/gji/ggv248, 2015.
Short summary
Although not the primary mission of the Swarm three-satellite constellation, the sensors on these satellites are accurate enough to measure the melting and accumulation of Earth’s ice reservoirs, precipitation cycles, floods, and droughts, amongst others. Swarm sees these changes well compared to the dedicated GRACE satellites at spatial scales of roughly 1500 km. Swarm confirms most GRACE observations, such as the large ice melting in Greenland and the wet and dry seasons in the Amazon.
Although not the primary mission of the Swarm three-satellite constellation, the sensors on...
Altmetrics
Final-revised paper
Preprint