Articles | Volume 11, issue 4
https://doi.org/10.5194/essd-11-1567-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-11-1567-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Co-located contemporaneous mapping of morphological, hydrological, chemical, and biological conditions in a 5th-order mountain stream network, Oregon, USA
O'Neill School of Public and Environmental Affairs, Indiana
University, Bloomington, Indiana, USA
Jay P. Zarnetske
Department of Earth and Environmental Sciences, Michigan State
University, East Lansing, Michigan, USA
Viktor Baranov
LMU Munich Biocenter, Department of Biology II, Großhaderner Str.
2, 82152 Planegg-Martinsried, Germany
Phillip J. Blaen
School of Geography, Earth & Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Birmingham Institute of Forest Research (BIFoR), University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Yorkshire Water, Halifax Road, Bradford, BD6 2SZ, UK
Nicolai Brekenfeld
School of Geography, Earth & Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Rosalie Chu
Environmental Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, WA, USA
Romain Derelle
Environmental Genomics Group, School of Biosciences, University
of Birmingham, Birmingham B15 2TT, UK
Jennifer Drummond
School of Geography, Earth & Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Integrative Freshwater Ecology Group, Centre for Advanced Studies of
Blanes (CEAB-CSIC), Blanes, Spain
Jan H. Fleckenstein
Dept. of Hydrogeology, Helmholtz Center for Environmental Research – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
Bayreuth Center of Ecology and Environmental Research, University of
Bayreuth, 95440 Bayreuth, Germany
Vanessa Garayburu-Caruso
Earth and Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, USA
Emily Graham
Earth and Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, USA
David Hannah
School of Geography, Earth & Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Ciaran J. Harman
Department of Environmental Health and Engineering, Johns Hopkins
University, Baltimore, Maryland, USA
Skuyler Herzog
O'Neill School of Public and Environmental Affairs, Indiana
University, Bloomington, Indiana, USA
Jase Hixson
O'Neill School of Public and Environmental Affairs, Indiana
University, Bloomington, Indiana, USA
Julia L. A. Knapp
Department of Environmental Systems Science, ETH Zürich,
Zurich, Switzerland
Center for Applied Geoscience, University of Tübingen,
Tübingen, Germany
Stefan Krause
School of Geography, Earth & Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Marie J. Kurz
Dept. of Hydrogeology, Helmholtz Center for Environmental Research – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
The Academy of Natural Sciences of Drexel University,
Philadelphia, Pennsylvania, USA
Jörg Lewandowski
Leibniz-Institute of Freshwater Ecology and Inland Fisheries,
Department Ecohydrology, Müggelseedamm 310, 12587 Berlin, Germany
Humboldt University Berlin, Geography Department, Rudower Chaussee
16, 12489 Berlin, Germany
Angang Li
Department of Civil and Environmental Engineering, Northwestern
University, Evanston, Illinois, USA
Eugènia Martí
Integrative Freshwater Ecology Group, Centre for Advanced Studies of
Blanes (CEAB-CSIC), Blanes, Spain
Melinda Miller
O'Neill School of Public and Environmental Affairs, Indiana
University, Bloomington, Indiana, USA
Alexander M. Milner
School of Geography, Earth & Environmental Sciences, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Kerry Neil
O'Neill School of Public and Environmental Affairs, Indiana
University, Bloomington, Indiana, USA
Luisa Orsini
Environmental Genomics Group, School of Biosciences, University
of Birmingham, Birmingham B15 2TT, UK
Aaron I. Packman
Department of Civil and Environmental Engineering, Northwestern
University, Evanston, Illinois, USA
Stephen Plont
Department of Earth and Environmental Sciences, Michigan State
University, East Lansing, Michigan, USA
Department of Biological Sciences, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia, USA
Lupita Renteria
Pacific Northwest National Laboratory, Richland, WA, USA
Kevin Roche
Department of Civil & Environmental Engineering & Earth
Sciences, University of Notre Dame, Notre Dame, IN, USA
Todd Royer
O'Neill School of Public and Environmental Affairs, Indiana
University, Bloomington, Indiana, USA
Noah M. Schmadel
O'Neill School of Public and Environmental Affairs, Indiana
University, Bloomington, Indiana, USA
Earth System Processes Division, U.S. Geological Survey, Reston,
Virginia, USA
Catalina Segura
Forest Engineering, Resources, and Management, Oregon State
University Corvallis, OR, USA
James Stegen
Earth and Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, USA
Jason Toyoda
Environmental Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, WA, USA
Jacqueline Hager
Pacific Northwest National Laboratory, Richland, WA, USA
Nathan I. Wisnoski
Department of Biology, Indiana University, Bloomington, Indiana, USA
Steven M. Wondzell
USDA Forest Service, Pacific Northwest Research Station, Corvallis,
Oregon, USA
Related authors
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Anna B. Turetcaia, Nicole G. Dix, Hannah Ramage, Matthew C. Ferner, and Emily B. Graham
EGUsphere, https://doi.org/10.31223/X50Q3S, https://doi.org/10.31223/X50Q3S, 2024
Short summary
Short summary
We investigate what physicochemical and urbanization factors are involved in estuarine resistance to precipitation events across scales and salinity gradient. We found that urban estuaries are more resistant to precipitation events. We also found that while water temperature, water column depth, turbidity, nitrogen, and chlorophyll-a are related to estuarine resistance on continental-scale, these trends interacted with estuarine salinity and differed on local-scale.
Julia L. A. Knapp, Wouter R. Berghuijs, Marius G. Floriancic, and James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-371, https://doi.org/10.5194/hess-2024-371, 2024
Preprint under review for HESS
Short summary
Short summary
This study explores how streams react to rain and how water travels through the landscape to reach them, two processes rarely studied together. Using detailed data from two temperate areas, it shows that streams respond to rain much faster than rainwater travels to them. Wetter conditions lead to stronger runoff by releasing older stored water, while heavy rainfall moves newer rainwater to streams faster. These findings offer new insights into how water moves through the environment.
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2761, https://doi.org/10.5194/egusphere-2024-2761, 2024
Short summary
Short summary
Groundwater is a crucial resource at risk by droughts. To understand drought effects on groundwater in Germany, we grouped 6626 wells into six regional and two nationwide head patterns. Weather explained half of the head variations with varied response times. Shallow groundwater responds fast and is more vulnerable to short droughts (few months). Dampened deep heads buffer short droughts but suffer from long droughts and recoveries. Two nationwide trend patterns were linked to human water use.
Edwin Saavedra Cifuentes, Alex Furman, Ravid Rosenzweig, and Aaron I. Packman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-251, https://doi.org/10.5194/hess-2024-251, 2024
Preprint under review for HESS
Short summary
Short summary
Our research addresses the operational challenge of SAT systems that clog with biomass. A model to optimize their operation is proposed and considers the dynamic interactions between microbial activity, water flow, and soil clogging. Simulations showed the duration of wet and dry periods that enhance water infiltration. A link between the biomass spatial distribution and the wet and dry cycles was discovered. These findings can provide practical insights for real-world SAT systems.
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1742, https://doi.org/10.5194/egusphere-2024-1742, 2024
Short summary
Short summary
Extreme rainfall comprises a major hydro-hazard for New Zealand, and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographic setting.
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024, https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary
Short summary
Meandering rivers are an integral part of many landscapes around the world. Here we used a new modeling approach to look at how the slope of riverbanks influences water flow and solute transport from a meandering river channel through its bank and into/out of the connected groundwater compartment (aquifer). We found that the bank slope can be a significant factor to be considered, especially when bank slope angles are small, and riverbank and aquifer conditions only allow for slow water flow.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2024-863, https://doi.org/10.5194/egusphere-2024-863, 2024
Short summary
Short summary
Glaciers in the tropics are poorly-observed, making it difficult to predict how they will retreat in the future. Most computer models neglect important processes that control tropical glacier retreat. We combine two existing models to remedy this limitation. Our model replicates observed changes in glacier retreat and shows us where our process understanding limits the accuracy of predictions and which processes are less important than we previously thought, helping to direct future research.
James Stegen, Amy Burgin, Michelle Busch, Joshua Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian Deines, Julia Guimond, Peter Regier, Kenton Rod, Edward Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon Sweetman, Jianqiu Zheng, Daniel Allen, Elizabeth Herndon, Beth Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad Patel
EGUsphere, https://doi.org/10.5194/egusphere-2024-98, https://doi.org/10.5194/egusphere-2024-98, 2024
Short summary
Short summary
The loss and gain of surface water (variable inundation) is a common process across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495, https://doi.org/10.5194/gmd-17-477-2024, https://doi.org/10.5194/gmd-17-477-2024, 2024
Short summary
Short summary
Over the last 10 years, scientists have developed StorAge Selection: a new way of modeling how material is transported through complex systems. Here, we present some new, easy-to-use, flexible, and very accurate code for implementing this method. We show that, in cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other codes to the right answer in an important way: it conserves mass.
Stephanie G. Fulton, Morgan Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Samantha Grieger, Robert Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin McCann, Sophia A. McKever, Allison Myers-Pigg, Opal C. Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3038, https://doi.org/10.5194/egusphere-2023-3038, 2024
Preprint archived
Short summary
Short summary
This research examines oxygen use in rivers, which is central to the carbon cycle and water quality. The study focused on an environmentally diverse river basin in the western United States and found that oxygen use in river water was very slow and influenced by factors like water temperature and concentrations of nutrients and carbon in the water. Results suggest that in the study system, most of the oxygen use occurs via mechanisms directly or indirectly associated with riverbed sediments.
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023, https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Short summary
We analyzed the uncertainty of the water transit time distribution (TTD) arising from model input (interpolated tracer data) and structure (StorAge Selection, SAS, functions). We found that uncertainty was mainly associated with temporal interpolation, choice of SAS function, nonspatial interpolation, and low-flow conditions. It is important to characterize the specific uncertainty sources and their combined effects on TTD, as this has relevant implications for both water quantity and quality.
Susan Elizabeth Quick, Giulio Curioni, Nicholas J. Harper, Stefan Krause, and Angus Rob MacKenzie
EGUsphere, https://doi.org/10.5194/egusphere-2023-1522, https://doi.org/10.5194/egusphere-2023-1522, 2023
Short summary
Short summary
To study the effects of rising carbon dioxide levels on water usage of old growth temperate oak forest, we monitored trees in an open-air elevated CO2 experiment for five years. We found no significant changes in water usage for ~34 % increase in atmospheric CO2. Stresses under this experiment may take longer to show their effect. Tree water usage depends on tree size, i.e. stem size and the canopy area, across all treatments. Experimental infrastructure changed the water demand of the trees.
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
Jonas Leon Schaper, Olaf A. Cirpka, Joerg Lewandowski, and Christiane Zarfl
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-141, https://doi.org/10.5194/hess-2023-141, 2023
Manuscript not accepted for further review
Short summary
Short summary
In this study, we present a model approach to quantify river water to riverbed sediment travel times as a continuous function of time using natural electrical conductivity fluctuations as a tracer. We show that apparent water travel times from surface waters through riverbed sediments can be highly dynamic, which may be caused by actual variations of porewater velocity following diurnal variations of head gradients or by a shift of the spatial arrangement of flow paths and their lengths.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
José L. J. Ledesma, Anna Lupon, Eugènia Martí, and Susana Bernal
Hydrol. Earth Syst. Sci., 26, 4209–4232, https://doi.org/10.5194/hess-26-4209-2022, https://doi.org/10.5194/hess-26-4209-2022, 2022
Short summary
Short summary
We studied a small stream located in a Mediterranean forest. Our goal was to understand how stream flow and the presence of riparian forests, which grow in flat banks near the stream, influence the availability of food for aquatic microorganisms. High flows were associated with higher amounts of food because rainfall episodes transfer it from the surrounding sources, particularly riparian forests, to the stream. Understanding how ecosystems work is essential to better manage natural resources.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Esther Xu Fei and Ciaran Joseph Harman
Hydrol. Earth Syst. Sci., 26, 1977–1991, https://doi.org/10.5194/hess-26-1977-2022, https://doi.org/10.5194/hess-26-1977-2022, 2022
Short summary
Short summary
Water in streams is a mixture of water from many sources. It is sometimes possible to identify the chemical fingerprint of each source and track the time-varying contribution of that source to the total flow rate. But what if you do not know the chemical fingerprint of each source? Can you simultaneously identify the sources (called end-members), and separate the water into contributions from each, using only samples of water from the stream? Here we suggest a method for doing just that.
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022, https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
Short summary
In near-stream aquifers, mixing between stream water and ambient groundwater can lead to dilution and the removal of substances that can be harmful to the water ecosystem at high concentrations. We used a numerical model to track the spatiotemporal evolution of different water sources and their mixing around a stream, which are rather difficult in the field. Results show that mixing mainly develops as narrow spots, varying In time and space, and is affected by magnitudes of discharge events.
Arial J. Shogren, Jay P. Zarnetske, Benjamin W. Abbott, Samuel Bratsman, Brian Brown, Michael P. Carey, Randy Fulweber, Heather E. Greaves, Emma Haines, Frances Iannucci, Joshua C. Koch, Alexander Medvedeff, Jonathan A. O'Donnell, Leika Patch, Brett A. Poulin, Tanner J. Williamson, and William B. Bowden
Earth Syst. Sci. Data, 14, 95–116, https://doi.org/10.5194/essd-14-95-2022, https://doi.org/10.5194/essd-14-95-2022, 2022
Short summary
Short summary
Rapidly sampling multiple points in an entire river network provides a high-resolution snapshot in time that can reveal where nutrients and carbon are being taken up and released. Here, we describe two such datasets of river network chemistry in six Arctic watersheds in northern Alaska. We describe how these repeated snapshots can be used as an indicator of ecosystem response to climate change and to improve predictions of future release of carbon, nutrient, and other solutes.
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021, https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Short summary
Increased nitrate concentrations in surface waters can compromise river ecosystem health. As riverine nitrate uptake is hard to measure, we explore how low-frequency nitrate concentration and discharge observations (that are widely available) can help to identify (in)efficient uptake in river networks. We find that channel geometry and water velocity rather than the biological uptake capacity dominate the nitrate-discharge pattern at the outlet. The former can be used to predict uptake.
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Liwen Wu, Jesus D. Gomez-Velez, Stefan Krause, Anders Wörman, Tanu Singh, Gunnar Nützmann, and Jörg Lewandowski
Hydrol. Earth Syst. Sci., 25, 1905–1921, https://doi.org/10.5194/hess-25-1905-2021, https://doi.org/10.5194/hess-25-1905-2021, 2021
Short summary
Short summary
With a physically based model that couples flow and heat transport in hyporheic zones, the present study provides the first insights into the dynamics of hyporheic responses to the impacts of daily groundwater withdrawal and river temperature fluctuations, allowing for a better understanding of transient hyporheic exchange processes and hence an improved pumping operational scheme.
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020, https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
Short summary
Automated water samplers are often used to collect precipitation and streamwater samples for subsequent isotope analysis, but the isotopic signal of these samples may be altered due to evaporative fractionation occurring during the storage inside the autosamplers in the field. In this article we present and evaluate a cost-efficient modification to the Teledyne ISCO automated water sampler that prevents isotopic enrichment through evaporative fractionation of the water samples.
James W. Kirchner and Julia L. A. Knapp
Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020, https://doi.org/10.5194/hess-24-5539-2020, 2020
Short summary
Short summary
Ensemble hydrograph separation is a powerful new tool for measuring the age distribution of streamwater. However, the calculations are complex and may be difficult for researchers to implement on their own. Here we present scripts that perform these calculations in either MATLAB or R so that researchers do not need to write their own codes. We explain how these scripts work and how to use them. We demonstrate several potential applications using a synthetic catchment data set.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Angel Monsalve, Catalina Segura, Nicole Hucke, and Scott Katz
Earth Surf. Dynam., 8, 825–839, https://doi.org/10.5194/esurf-8-825-2020, https://doi.org/10.5194/esurf-8-825-2020, 2020
Short summary
Short summary
Part of the inaccuracies when estimating bed load transport in
gravel-bed rivers is because we are not considering the wide distributions of shear stress in these systems. We modified a subsurface-based bed load transport equation to include these distributions. By doing so, our approach accurately predicts bed load transport rates when the pavement layer is still present, while the original one predicts zero transport. For high flows, our method had similar performance to the original equation.
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Bentje Brauns, Daniela Cuba, John P. Bloomfield, David M. Hannah, Christopher Jackson, Ben P. Marchant, Benedikt Heudorfer, Anne F. Van Loon, Hélène Bessière, Bo Thunholm, and Gerhard Schubert
Proc. IAHS, 383, 297–305, https://doi.org/10.5194/piahs-383-297-2020, https://doi.org/10.5194/piahs-383-297-2020, 2020
Short summary
Short summary
In Europe, ca. 65% of drinking water is groundwater. Its replenishment depends on rainfall, but droughts may cause groundwater levels to fall below normal. These
groundwater droughtscan limit supply, making it crucial to understand their regional connection. The Groundwater Drought Initiative (GDI) assesses spatial patterns in historic—recent groundwater droughts across Europe for the first time. Using an example dataset, we describe the background to the GDI and its methodological approach.
Yilin Fang, Xingyuan Chen, Jesus Gomez Velez, Xuesong Zhang, Zhuoran Duan, Glenn E. Hammond, Amy E. Goldman, Vanessa A. Garayburu-Caruso, and Emily B. Graham
Geosci. Model Dev., 13, 3553–3569, https://doi.org/10.5194/gmd-13-3553-2020, https://doi.org/10.5194/gmd-13-3553-2020, 2020
Short summary
Short summary
Surface water quality along river corridors can be improved by the area of the stream bed and stream bank in which stream water mixes with shallow groundwater or hyporheic zones (HZs). These zones are ubiquitous and dominated by microorganisms that can process the dissolved nutrients exchanged at this interface of these zones. The modulation of surface water quality can be simulated by connecting the channel water and HZs through hyporheic exchanges using multirate mass transfer representation.
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020, https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Short summary
With the help of a 3-D computer model we examined how long the water of different rain events stays inside small catchments before it is discharged and how the nature of this discharge is controlled by different catchment and climate properties. We found that one can only predict the discharge dynamics when taking into account a combination of catchment and climate properties (i.e., there was not one single most important predictor). Our results can help to manage water pollution events.
Julia L. A. Knapp, Jana von Freyberg, Bjørn Studer, Leonie Kiewiet, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020, https://doi.org/10.5194/hess-24-2561-2020, 2020
Short summary
Short summary
Changes of stream water chemistry in response to discharge changes provide important insights into the storage and release of water from the catchment. Here we investigate the variability in concentration–discharge relationships among different solutes and hydrologic events and relate it to catchment conditions and dominant water sources.
Stephanie C. Pennington, Nate G. McDowell, J. Patrick Megonigal, James C. Stegen, and Ben Bond-Lamberty
Biogeosciences, 17, 771–780, https://doi.org/10.5194/bg-17-771-2020, https://doi.org/10.5194/bg-17-771-2020, 2020
Short summary
Short summary
Soil respiration (Rs) is the flow of CO2 from the soil surface to the atmosphere and is one of the largest carbon fluxes on land. This study examined the effect of local basal area (tree area) on Rs in a coastal forest in eastern Maryland, USA. Rs measurements were taken as well as distance from soil collar, diameter, and species of each tree within a 15 m radius. We found that trees within 5 m of our sampling points had a positive effect on how sensitive soil respiration was to temperature.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Julia L. A. Knapp, Colin Neal, Alessandro Schlumpf, Margaret Neal, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 4367–4388, https://doi.org/10.5194/hess-23-4367-2019, https://doi.org/10.5194/hess-23-4367-2019, 2019
Short summary
Short summary
We describe, present, and make publicly available two extensive data sets of stable water isotopes in streamwater and precipitation at Plynlimon, Wales, consisting of measurements at 7-hourly intervals for 17 months and at weekly intervals for 4.25 years. We use these data to calculate new water fractions and transit time distributions for different discharge rates and seasons, thus quantifying the contribution of recent precipitation to streamflow under different conditions.
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019, https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Short summary
Coastal terrestrial–aquatic interfaces represent dynamic yet poorly understood zones of biogeochemical cycles. We evaluated associations between the soil salinity gradient, molecular-level soil-C chemistry, and microbial community assembly processes in a coastal watershed on the Olympic Peninsula in Washington, USA. Results revealed salinity-driven gradients in molecular-level C chemistry, with little evidence of an association between C chemistry and microbial community assembly processes.
Russell T. Bair, Catalina Segura, and Christopher M. Lorion
Earth Surf. Dynam., 7, 841–857, https://doi.org/10.5194/esurf-7-841-2019, https://doi.org/10.5194/esurf-7-841-2019, 2019
Short summary
Short summary
Large wood (LW) pieces are often part of fish habitat restoration projects. We investigated reach-scale changes after the addition of LW that are relevant to juvenile coho salmon. A survivable habitat for juvenile coho was characterized in terms of critical swim speed and bed stability. Model predictions showed that survivable habitat increased by 86–128 % in terms of flow velocity and bed stability. Our findings are applicable to stream restoration efforts throughout the Pacific Northwest.
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Short summary
This study shows quantitative and temporal offsets between nitrogen input and riverine output, using time series of three nested catchments in central Germany. The riverine concentrations show lagged reactions to the input, but at the same time exhibit strong inter-annual changes in the relationship between riverine discharge and concentration. The study found a strong retention of nitrogen that is dominantly assigned to a hydrological N legacy, which will affect future stream concentrations.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, Guðfinna Aðalgeirsdóttir, and Andrew R. Black
Hydrol. Earth Syst. Sci., 23, 1833–1865, https://doi.org/10.5194/hess-23-1833-2019, https://doi.org/10.5194/hess-23-1833-2019, 2019
Short summary
Short summary
We project 21st century change and uncertainty in 25 river flow regime metrics (signatures) for a deglaciating river basin. The results show that glacier-fed river flow magnitude, timing and variability are sensitive to climate change and that projection uncertainty stems from incomplete understanding of future climate and glacier-hydrology processes. These findings indicate how impact studies can be better designed to provide more robust projections of river flow regime in glaciated basins.
Chiara Magliozzi, Robert C. Grabowski, Aaron I. Packman, and Stefan Krause
Hydrol. Earth Syst. Sci., 22, 6163–6185, https://doi.org/10.5194/hess-22-6163-2018, https://doi.org/10.5194/hess-22-6163-2018, 2018
Short summary
Short summary
The hyporheic zone is the area below riverbeds where surfacewater and groundwater mix. Hyporheic flow is linked to river processes and functions, but research to date has not sufficiently addressed how factors operating at different scales in time and space drive hyporheic flow variations at reach and larger scales. This review presents the scale-specific processes and interactions that control hyporheic flow, and a case study showing how valley factors affect its expression at the reach scale.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, and Guðfinna Aðalgeirsdóttir
The Cryosphere, 12, 2175–2210, https://doi.org/10.5194/tc-12-2175-2018, https://doi.org/10.5194/tc-12-2175-2018, 2018
Short summary
Short summary
We apply a framework to compare and objectively accept or reject competing melt and run-off process models. We found no acceptable models. Furthermore, increasing model complexity does not guarantee better predictions. The results highlight model selection uncertainty and the need for rigorous frameworks to identify deficiencies in competing models. The application of this approach in the future will help to better quantify model prediction uncertainty and develop improved process models.
Eddie W. Banks, Margaret A. Shanafield, Saskia Noorduijn, James McCallum, Jörg Lewandowski, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1917–1929, https://doi.org/10.5194/hess-22-1917-2018, https://doi.org/10.5194/hess-22-1917-2018, 2018
Short summary
Short summary
This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude below the water–sediment interface. Breakthrough curves from each of the sensors were analyzed using a heat transport equation. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes.
Susana Bernal, Anna Lupon, Núria Catalán, Sara Castelar, and Eugènia Martí
Hydrol. Earth Syst. Sci., 22, 1897–1910, https://doi.org/10.5194/hess-22-1897-2018, https://doi.org/10.5194/hess-22-1897-2018, 2018
Qian Zhang, Ciaran J. Harman, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 1175–1192, https://doi.org/10.5194/hess-22-1175-2018, https://doi.org/10.5194/hess-22-1175-2018, 2018
Short summary
Short summary
River water-quality time series often exhibit fractal scaling, which here refers to autocorrelation that decays as a power law over some range of scales. This paper provides a comprehensive overview of the various approaches for quantifying fractal scaling in irregularly sampled data and provides new understanding and quantification of the methods’ performances. More generally, the findings and approaches may be broadly applicable to irregularly sampled data in other scientific disciplines.
Ryan D. Cook, Ying-Hsuan Lin, Zhuoyu Peng, Eric Boone, Rosalie K. Chu, James E. Dukett, Matthew J. Gunsch, Wuliang Zhang, Nikola Tolic, Alexander Laskin, and Kerri A. Pratt
Atmos. Chem. Phys., 17, 15167–15180, https://doi.org/10.5194/acp-17-15167-2017, https://doi.org/10.5194/acp-17-15167-2017, 2017
Short summary
Short summary
Reactions occur within water in both atmospheric particles and cloud droplets, yet little is known about the organic compounds in cloud water. In this work, cloud water samples were collected at Whiteface Mountain, New York, and analyzed using ultra-high-resolution mass spectrometry to investigate the molecular composition of the dissolved organic compounds. The results focus on changes in cloud water composition with air mass origin – influences of forest, urban, and wildfire emissions.
Rémi Dupas, Andreas Musolff, James W. Jawitz, P. Suresh C. Rao, Christoph G. Jäger, Jan H. Fleckenstein, Michael Rode, and Dietrich Borchardt
Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, https://doi.org/10.5194/bg-14-4391-2017, 2017
Short summary
Short summary
Carbon and nutrient export regimes were analyzed from archetypal headwater catchments to
downstream reaches. In headwater catchments, land use and lithology determine
land-to-stream C, N and P transfer processes. The crucial role of riparian
zones in C, N and P coupling was investigated. In downstream reaches,
point-source contributions and in-stream processes alter C, N and P export
regimes.
James C. Stegen, Carolyn G. Anderson, Ben Bond-Lamberty, Alex R. Crump, Xingyuan Chen, and Nancy Hess
Biogeosciences, 14, 4341–4354, https://doi.org/10.5194/bg-14-4341-2017, https://doi.org/10.5194/bg-14-4341-2017, 2017
Short summary
Short summary
CO2 loss from soil to the atmosphere (
soil respiration) is a key ecosystem function, especially in systems with permafrost. We find that soil respiration shows a non-linear threshold at permafrost depths > 140 cm and that the number of large trees governs soil respiration. This suggests that remote sensing could be used to estimate spatial variation in soil respiration and (with knowledge of key thresholds) empirically constrain models that predict ecosystem responses to permafrost thaw.
Faye L. Jackson, Robert J. Fryer, David M. Hannah, and Iain A. Malcolm
Hydrol. Earth Syst. Sci., 21, 4727–4745, https://doi.org/10.5194/hess-21-4727-2017, https://doi.org/10.5194/hess-21-4727-2017, 2017
Short summary
Short summary
River temperature (Tw) is important to fish populations, but one cannot monitor everywhere. Thus, models are used to predict Tw, sometimes in rivers with no data. To date, the accuracy of these predictions has not been determined. We found that models including landscape predictors (e.g. altitude, tree cover) could describe spatial patterns in Tw in other rivers better than those including air temperature. Such findings are critical for developing Tw models that have management application.
Amy E. Goldman, Emily B. Graham, Alex R. Crump, David W. Kennedy, Elvira B. Romero, Carolyn G. Anderson, Karl L. Dana, Charles T. Resch, Jim K. Fredrickson, and James C. Stegen
Biogeosciences, 14, 4229–4241, https://doi.org/10.5194/bg-14-4229-2017, https://doi.org/10.5194/bg-14-4229-2017, 2017
Short summary
Short summary
The history of river inundation influences shoreline sediment biogeochemical cycling and microbial dynamics. Sediment exhibited a binary respiration response to rewetting, in which respiration from less recently saturated sediment was suppressed relative to more recently saturated sediment, likely due to inhibition of fungal metabolic activity. River shorelines should likely be integrated as a distinct environment into hydrobiogeochemical models to predict watershed biogeochemical function.
Feng Mao, Julian Clark, Timothy Karpouzoglou, Art Dewulf, Wouter Buytaert, and David Hannah
Hydrol. Earth Syst. Sci., 21, 3655–3670, https://doi.org/10.5194/hess-21-3655-2017, https://doi.org/10.5194/hess-21-3655-2017, 2017
Short summary
Short summary
The paper aims to propose a conceptual framework that supports nuanced understanding and analytical assessment of resilience in socio-hydrological contexts. We identify three framings of resilience for different human–water couplings, which have distinct application fields and are used for different water management challenges. To assess and improve socio-hydrological resilience in each type, we introduce a
resilience canvasas a heuristic tool to design bespoke management strategies.
Cédric L. R. Laizé, Cristian Bruna Meredith, Michael J. Dunbar, and David M. Hannah
Hydrol. Earth Syst. Sci., 21, 3231–3247, https://doi.org/10.5194/hess-21-3231-2017, https://doi.org/10.5194/hess-21-3231-2017, 2017
Short summary
Short summary
Stream temperature controls many river processes, making it vital to know how climate affects it. Climate and stream temperatures at 35 British sites and associated basin properties were used to model climate–water temperature associations and to assess how they are influenced by basins. Associations vary with season and water temperature range. Basin permeability, size, and elevation have the main influence; smaller upland or impermeable basins are the most sensitive to climate.
Chiara Magliozzi, Robert Grabowski, Aaron I. Packman, and Stefan Krause
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-683, https://doi.org/10.5194/hess-2016-683, 2017
Manuscript not accepted for further review
Short summary
Short summary
A critical review of recent literature details how drivers operating at catchment, valley and reach scales are responsible of variations in space and time in the hyporheic exchange. It is based on cross-disciplinary understanding of environmental topics from published reviews and field studies placed within a hierarchical framework. The outcomes will benefit hyporheic research and catchment managers by providing an integrated approach of the drivers of hyporheic exchange in space and time.
Sally Rangecroft, Anne F. Van Loon, Héctor Maureira, Koen Verbist, and David M. Hannah
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2016-57, https://doi.org/10.5194/esd-2016-57, 2016
Preprint withdrawn
Short summary
Short summary
This paper on anthropogenic droughts looks at the interactions of human activity and "natural" processes. Using a case study of the introduction of a reservoir in a Chilean river basin and a new methodology, we established the most effective way forward for quantifying human activities on hydrological drought: the "threshold level" method with an "undisturbed" time period as the threshold. This will increase our understanding on how human activities are impacting the hydrological system.
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
Giovanny M. Mosquera, Catalina Segura, Kellie B. Vaché, David Windhorst, Lutz Breuer, and Patricio Crespo
Hydrol. Earth Syst. Sci., 20, 2987–3004, https://doi.org/10.5194/hess-20-2987-2016, https://doi.org/10.5194/hess-20-2987-2016, 2016
Short summary
Short summary
This study focuses on the investigation of baseflow mean transit times (MTTs) in a high-elevation tropical ecosystem (páramo) using stable water isotopes. Results showed short MTTs (< 9 months) and topographic controls on their spatial variability. We conclude that (1) the hydrology of the ecosystem is dominated by shallow subsurface flow and (2) the interplay between the high storage capacity of the páramo soils and the catchments' slopes provides the ecosystem with high regulation capacity.
W. He, C. Beyer, J. H. Fleckenstein, E. Jang, O. Kolditz, D. Naumov, and T. Kalbacher
Geosci. Model Dev., 8, 3333–3348, https://doi.org/10.5194/gmd-8-3333-2015, https://doi.org/10.5194/gmd-8-3333-2015, 2015
Short summary
Short summary
This technical paper presents a new tool to simulate reactive transport processes in subsurface systems and which couples the open-source software packages OpenGeoSys and IPhreeqc. A flexible parallelization scheme was developed and implemented to enable an optimized allocation of computer resources. The performance tests of the coupling interface and parallelization scheme illustrate the promising efficiency of this generally valid approach to simulate reactive transport problems.
I. Giuntoli, J.-P. Vidal, C. Prudhomme, and D. M. Hannah
Earth Syst. Dynam., 6, 267–285, https://doi.org/10.5194/esd-6-267-2015, https://doi.org/10.5194/esd-6-267-2015, 2015
Short summary
Short summary
We assessed future changes in high and low flows globally using runoff projections from global hydrological models (GHMs) driven by global climate models (GCMs) under the RCP8.5 scenario. Further, we quantified the relative size of uncertainty from GHMs and from GCMs using ANOVA. We show that GCMs are the major contributors to uncertainty overall, but GHMs increase their contribution for low flows and can equal or outweigh GCM uncertainty in snow-dominated areas for both high and low flows.
G. Garner, I. A. Malcolm, J. P. Sadler, and D. M. Hannah
Hydrol. Earth Syst. Sci., 18, 5361–5376, https://doi.org/10.5194/hess-18-5361-2014, https://doi.org/10.5194/hess-18-5361-2014, 2014
Short summary
Short summary
This study demonstrates the processes by which instantaneous longitudinal water temperature gradients may be generated in a stream reach that transitions from moorland to semi-natural forest in the absence of substantial groundwater inflows. Water did not cool as it flowed downstream. Instead, temperature gradients were generated by a combination of reduced rates of heating in the forested reach and advection of cooler (overnight and early morning) water from the upstream moorland catchment.
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
C. Harman and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 417–433, https://doi.org/10.5194/hess-18-417-2014, https://doi.org/10.5194/hess-18-417-2014, 2014
S. E. Thompson, M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 5013–5039, https://doi.org/10.5194/hess-17-5013-2013, https://doi.org/10.5194/hess-17-5013-2013, 2013
B. J. Kopp, J. H. Fleckenstein, N. T. Roulet, E. Humphreys, J. Talbot, and C. Blodau
Hydrol. Earth Syst. Sci., 17, 3485–3498, https://doi.org/10.5194/hess-17-3485-2013, https://doi.org/10.5194/hess-17-3485-2013, 2013
S. Strohmeier, K.-H. Knorr, M. Reichert, S. Frei, J. H. Fleckenstein, S. Peiffer, and E. Matzner
Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013, https://doi.org/10.5194/bg-10-905-2013, 2013
Related subject area
Hydrology
CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany
Observational partitioning of water and CO2 fluxes at National Ecological Observatory Network (NEON) sites: a 5-year dataset of soil and plant components for spatial and temporal analysis
CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
HANZE v2.1: an improved database of flood impacts in Europe from 1870 to 2020
A Copernicus-based evapotranspiration dataset at 100 m spatial resolution over four Mediterranean basins
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps
CAMELS-INDIA: hydrometeorological time series and catchment attributes for 472 catchments in Peninsular India
Satellite-based near-real-time global daily terrestrial evapotranspiration estimates
Multivariate characterisation of a blackberry–alder agroforestry system in South Africa: hydrological, pedological, dendrological and meteorological measurements
SHIFT: a spatial-heterogeneity improvement in DEM-based mapping of global geomorphic floodplains
First comprehensive stable isotope dataset of diverse water units in a permafrost-dominated catchment on the Qinghai–Tibet Plateau
Lena River biogeochemistry captured by a 4.5-year high-frequency sampling program
LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland
High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020
Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
A hydrogeomorphic dataset for characterizing catchment hydrological behavior across the Tibetan Plateau
A synthesis of Global Streamflow Characteristics, Hydrometeorology, and Catchment Attributes (GSHA) for large sample river-centric studies
FOCA: a new quality-controlled database of floods and catchment descriptors in Italy
Dams in the Mekong: a comprehensive database, spatiotemporal distribution, and hydropower potentials
A global dataset of the shape of drainage systems
An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
HERA: a high-resolution pan-European hydrological reanalysis (1950–2020)
BCUB - A large sample ungauged basin attribute dataset for British Columbia, Canada
Flood simulation with the RiverCure approach: the open dataset of the 2016 Águeda flood event
GloLakes: water storage dynamics for 27 000 lakes globally from 1984 to present derived from satellite altimetry and optical imaging
AltiMaP: altimetry mapping procedure for hydrography data
CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
The use of GRDC gauging stations for calibrating large-scale hydrological models
A long-term dataset of simulated epilimnion and hypolimnion temperatures in 401 French lakes (1959–2020)
GTWS-MLrec: global terrestrial water storage reconstruction by machine learning from 1940 to present
A global 5 km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
A gridded dataset of consumptive water footprints, evaporation, transpiration, and associated benchmarks related to crop production in China during 2000–2018
Hydro-PE: gridded datasets of historical and future Penman–Monteith potential evaporation for the United Kingdom
A global streamflow indices time series dataset for large-sample hydrological analyses on streamflow regime (until 2022)
Soil water retention and hydraulic conductivity measured in a wide saturation range
A high-frequency, long-term data set of hydrology and sediment yield: the alpine badland catchments of Draix-Bléone Observatory
Geospatial dataset for hydrologic analyses in India (GHI): a quality-controlled dataset on river gauges, catchment boundaries and hydrometeorological time series
Lake-TopoCat: a global lake drainage topology and catchment database
Three years of soil moisture observations by a dense cosmic-ray neutron sensing cluster at an agricultural research site in north-east Germany
A long-term monthly surface water storage dataset for the Congo basin from 1992 to 2015
A global database of historic glacier lake outburst floods
Past and future discharge and stream temperature at high spatial resolution in a large European basin (Loire basin, France)
Res-CN (Reservoir dataset in China): hydrometeorological time series and landscape attributes across 3254 Chinese reservoirs
An ensemble of 48 physically perturbed model estimates of the 1∕8° terrestrial water budget over the conterminous United States, 1980–2015
The UKSCAPE-G2G river flow and soil moisture datasets: Grid-to-Grid model estimates for the UK for historical and potential future climates
The enhanced future Flows and Groundwater dataset: development and evaluation of nationally consistent hydrological projections based on UKCP18
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Einara Zahn and Elie Bou-Zeid
Earth Syst. Sci. Data, 16, 5603–5624, https://doi.org/10.5194/essd-16-5603-2024, https://doi.org/10.5194/essd-16-5603-2024, 2024
Short summary
Short summary
Quantifying water and CO2 exchanges through transpiration, evaporation, net photosynthesis, and soil respiration is essential for understanding how ecosystems function. We implemented five methods to estimate these fluxes over a 5-year period across 47 sites. This is the first dataset representing such large spatial and temporal coverage of soil and plant exchanges, and it has many potential applications, such as examining the response of ecosystems to weather extremes and climate change.
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024, https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
Short summary
This study presented new annual maps of irrigated cropland in China from 2000 to 2020 (CIrrMap250). These maps were developed by integrating remote sensing data, irrigation statistics and surveys, and an irrigation suitability map. CIrrMap250 achieved high accuracy and outperformed currently available products. The new irrigation maps revealed a clear expansion of China’s irrigation area, with the majority (61%) occurring in the water-unsustainable regions facing severe to extreme water stress.
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data, 16, 5145–5170, https://doi.org/10.5194/essd-16-5145-2024, https://doi.org/10.5194/essd-16-5145-2024, 2024
Short summary
Short summary
Knowledge about past natural disasters can help adaptation to their future occurrences. Here, we present a dataset of 2521 riverine, pluvial, coastal, and compound floods that have occurred in 42 European countries between 1870 and 2020. The dataset contains available information on the inundated area, fatalities, persons affected, or economic loss and was obtained by extensive data collection from more than 800 sources ranging from news reports through government databases to scientific papers.
Paulina Bartkowiak, Bartolomeo Ventura, Alexander Jacob, and Mariapina Castelli
Earth Syst. Sci. Data, 16, 4709–4734, https://doi.org/10.5194/essd-16-4709-2024, https://doi.org/10.5194/essd-16-4709-2024, 2024
Short summary
Short summary
This paper presents the Two-Source Energy Balance evapotranspiration (ET) product driven by Copernicus Sentinel-2 and Sentinel-3 imagery together with ERA5 climate reanalysis data. Daily ET maps are available at 100 m spatial resolution for the period 2017–2021 across four Mediterranean basins: Ebro (Spain), Hérault (France), Medjerda (Tunisia), and Po (Italy). The product is highly beneficial for supporting vegetation monitoring and sustainable water management at the river basin scale.
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024, https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
Short summary
Nitrogen (N) and phosphorus (P) contamination of water bodies is a long-term issue due to the long history of N and P inputs to the environment and their persistence. Here, we introduce a long-term and high-resolution dataset of N and P inputs from wastewater (point sources) for Germany, combining data from different sources and conceptual understanding. We also account for uncertainties in modelling choices, thus facilitating robust long-term and large-scale water quality studies.
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-374, https://doi.org/10.5194/essd-2024-374, 2024
Preprint under review for ESSD
Short summary
Short summary
In this study, we present a dataset for the Dischma catchment in eastern Switzerland, which represents a typical high-alpine watershed in the European Alps. Accurate monitoring and reliable forecasting of snow and water resources in such basins are crucial for a wide range of applications. Our dataset is valuable for improving physics-based snow, land-surface, and hydrological models, with potential applications in similar high-alpine catchments.
Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner
Earth Syst. Sci. Data, 16, 4311–4323, https://doi.org/10.5194/essd-16-4311-2024, https://doi.org/10.5194/essd-16-4311-2024, 2024
Short summary
Short summary
Global water resource monitoring is crucial due to climate change and population growth. This study presents a hand-labeled dataset of 100 PlanetScope images for surface water detection, spanning diverse biomes. We use this dataset to evaluate two state-of-the-art mapping methods. Results highlight performance variations across biomes, emphasizing the need for diverse, independent validation datasets to enhance the accuracy and reliability of satellite-based surface water monitoring techniques.
Nikunj K. Mangukiya, Kanneganti Bhargav Kumar, Pankaj Dey, Shailza Sharma, Vijaykumar Bejagam, Pradeep P. Mujumdar, and Ashutosh Sharma
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-379, https://doi.org/10.5194/essd-2024-379, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We introduce CAMELS-INDIA (Catchment Attributes and MEteorology for Large-sample Studies – India), which provides daily hydrometeorological time series and static catchment attributes representing location, topography, climate, hydrological signatures, land-use, land cover, soil, geology, and anthropogenic influences for 472 catchments in peninsular India, to foster large-sample hydrological studies in India and promote the inclusion of Indian catchments in global hydrological research.
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024, https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Short summary
Timely global terrestrial evapotranspiration (ET) data are crucial for water resource management and drought forecasting. This study introduces the VISEA algorithm, which integrates satellite data and shortwave radiation to provide daily 0.05° gridded near-real-time ET estimates. By employing a vegetation index–temperature method, this algorithm can estimate ET without requiring additional data. Evaluation results demonstrate VISEA's comparable accuracy with accelerated data availability.
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024, https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
Short summary
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a sustainable land use option which protects natural resources and biodiversity. Introducing trees into agricultural systems can positively affect water resources, soil characteristics, biomass and microclimate. We studied an AFS in South Africa in a multidisciplinary approach to assess the different influences and present the resulting dataset consisting of water, soil, tree and meteorological variables.
Kaihao Zheng, Peirong Lin, and Ziyun Yin
Earth Syst. Sci. Data, 16, 3873–3891, https://doi.org/10.5194/essd-16-3873-2024, https://doi.org/10.5194/essd-16-3873-2024, 2024
Short summary
Short summary
We develop a globally applicable thresholding scheme for DEM-based floodplain delineation to improve the representation of spatial heterogeneity. It involves a stepwise approach to estimate the basin-level floodplain hydraulic geometry parameters that best respect the scaling law while approximating the global hydrodynamic flood maps. A ~90 m resolution global floodplain map, the Spatial Heterogeneity Improved Floodplain by Terrain analysis (SHIFT), is delineated with demonstrated superiority.
Yuzhong Yang, Qingbai Wu, Xiaoyan Guo, Lu Zhou, Helin Yao, Dandan Zhang, Zhongqiong Zhang, Ji Chen, and Guojun Liu
Earth Syst. Sci. Data, 16, 3755–3770, https://doi.org/10.5194/essd-16-3755-2024, https://doi.org/10.5194/essd-16-3755-2024, 2024
Short summary
Short summary
We present the temporal data of stable isotopes in different waterbodies in the Beiluhe Basin in the hinterland of the Qinghai–Tibet Plateau (QTP) produced between 2017 and 2022. In this article, the first detailed stable isotope data of 359 ground ice samples are presented. This first data set provides a new basis for understanding the hydrological effects of permafrost degradation on the QTP.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-290, https://doi.org/10.5194/essd-2024-290, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We want to understand changes to the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological time series, including observed streamflow and basin characteristics, for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets and additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Chengcheng Hou, Yan Li, Shan Sang, Xu Zhao, Yanxu Liu, Yinglu Liu, and Fang Zhao
Earth Syst. Sci. Data, 16, 2449–2464, https://doi.org/10.5194/essd-16-2449-2024, https://doi.org/10.5194/essd-16-2449-2024, 2024
Short summary
Short summary
To fill the gap in the gridded industrial water withdrawal (IWW) data in China, we developed the China Industrial Water Withdrawal (CIWW) dataset, which provides monthly IWWs from 1965 to 2020 at a spatial resolution of 0.1°/0.25° and auxiliary data including subsectoral IWW and industrial output value in 2008. This dataset can help understand the human water use dynamics and support studies in hydrology, geography, sustainability sciences, and water resource management and allocation in China.
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024, https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Short summary
Nature-based solutions (NBSs), such as green roofs, have appeared as relevant solutions to mitigate urban heat islands. The evapotranspiration (ET) process allows NBSs to cool the air. To improve our knowledge about ET assessment, this paper presents some experimental measurement campaigns carried out during three consecutive summers. Data are available for three different (large, small, and point-based) spatial scales.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Ziyun Yin, Peirong Lin, Ryan Riggs, George H. Allen, Xiangyong Lei, Ziyan Zheng, and Siyu Cai
Earth Syst. Sci. Data, 16, 1559–1587, https://doi.org/10.5194/essd-16-1559-2024, https://doi.org/10.5194/essd-16-1559-2024, 2024
Short summary
Short summary
Large-sample hydrology (LSH) datasets have been the backbone of hydrological model parameter estimation and data-driven machine learning models for hydrological processes. This study complements existing LSH studies by creating a dataset with improved sample coverage, uncertainty estimates, and dynamic descriptions of human activities, which are all crucial to hydrological understanding and modeling.
Pierluigi Claps, Giulia Evangelista, Daniele Ganora, Paola Mazzoglio, and Irene Monforte
Earth Syst. Sci. Data, 16, 1503–1522, https://doi.org/10.5194/essd-16-1503-2024, https://doi.org/10.5194/essd-16-1503-2024, 2024
Short summary
Short summary
FOCA (Italian FlOod and Catchment Atlas) is the first systematic collection of data on Italian river catchments. It comprises geomorphological, soil, land cover, NDVI, climatological and extreme rainfall catchment attributes. FOCA also contains 631 peak and daily discharge time series covering the 1911–2016 period. Using this first nationwide data collection, a wide range of applications, in particular flood studies, can be undertaken within the Italian territory.
Wei Jing Ang, Edward Park, Yadu Pokhrel, Dung Duc Tran, and Ho Huu Loc
Earth Syst. Sci. Data, 16, 1209–1228, https://doi.org/10.5194/essd-16-1209-2024, https://doi.org/10.5194/essd-16-1209-2024, 2024
Short summary
Short summary
Dams have burgeoned in the Mekong, but information on dams is scattered and inconsistent. Up-to-date evaluation of dams is unavailable, and basin-wide hydropower potential has yet to be systematically assessed. We present a comprehensive database of 1055 dams, a spatiotemporal analysis of the dams, and a total hydropower potential of 1 334 683 MW. Considering projected dam development and hydropower potential, the vulnerability and the need for better dam management may be highest in Laos.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Jingyu Lin, Peng Wang, Jinzhu Wang, Youping Zhou, Xudong Zhou, Pan Yang, Hao Zhang, Yanpeng Cai, and Zhifeng Yang
Earth Syst. Sci. Data, 16, 1137–1149, https://doi.org/10.5194/essd-16-1137-2024, https://doi.org/10.5194/essd-16-1137-2024, 2024
Short summary
Short summary
Our paper provides a repository comprising over 330 000 observations encompassing daily, weekly, and monthly records of surface water quality spanning the period 1980–2022. It included 18 distinct indicators, meticulously gathered at 2384 monitoring sites, ranging from inland locations to coastal and oceanic areas. This dataset will be very useful for researchers and decision-makers in the fields of hydrology, ecological studies, climate change, policy development, and oceanography.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, and Luc Feyen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-41, https://doi.org/10.5194/essd-2024-41, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This article presents a reanalysis of Europe's rivers streamflow for the period 1950–2020, using a state-of-the-art hydrological simulation framework. The dataset, called HERA (Hydrological European ReAnalysis), uses detailed information about the landscape, climate, and human activities to estimate river flow. HERA can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources, flood and drought risks.
Daniel Kovacek and Steven Weijs
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-508, https://doi.org/10.5194/essd-2023-508, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We made a dataset for British Columbia describing the terrain, soil, land cover, and climate of over 1 million watersheds. The attributes are often used in hydrology because they are related to the water cycle. The data is meant to be used for water resources problems that can benefit from lots of basins and their attributes. The data and instructions needed to build the dataset from scratch are freely available. The permanent home for the data is https://doi.org/10.5683/SP3/JNKZVT.
Ana M. Ricardo, Rui M. L. Ferreira, Alberto Rodrigues da Silva, Jacinto Estima, Jorge Marques, Ivo Gamito, and Alexandre Serra
Earth Syst. Sci. Data, 16, 375–385, https://doi.org/10.5194/essd-16-375-2024, https://doi.org/10.5194/essd-16-375-2024, 2024
Short summary
Short summary
Floods are among the most common natural disasters responsible for severe damages and human losses. Agueda.2016Flood, a synthesis of locally sensed data and numerically produced data, allows complete characterization of the flood event that occurred in February 2016 in the Portuguese Águeda River. The dataset was managed through the RiverCure Portal, a collaborative web platform connected to a validated shallow-water model.
Jiawei Hou, Albert I. J. M. Van Dijk, Luigi J. Renzullo, and Pablo R. Larraondo
Earth Syst. Sci. Data, 16, 201–218, https://doi.org/10.5194/essd-16-201-2024, https://doi.org/10.5194/essd-16-201-2024, 2024
Short summary
Short summary
The GloLakes dataset provides historical and near-real-time time series of relative (i.e. storage change) and absolute (i.e. total stored volume) storage for more than 27 000 lakes worldwide using multiple sources of satellite data, including laser and radar altimetry and optical remote sensing. These data can help us understand the influence of climate variability and anthropogenic activities on water availability and system ecology over the last 4 decades.
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024, https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Short summary
As satellite technology advances, there is an incredible amount of remotely sensed data for observing terrestrial water. Satellite altimetry observations of water heights can be utilized to calibrate and validate large-scale hydrodynamic models. However, because large-scale models are discontinuous, comparing satellite altimetry to predicted water surface elevation is difficult. We developed a satellite altimetry mapping procedure for high-resolution river network data.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Peter Burek and Mikhail Smilovic
Earth Syst. Sci. Data, 15, 5617–5629, https://doi.org/10.5194/essd-15-5617-2023, https://doi.org/10.5194/essd-15-5617-2023, 2023
Short summary
Short summary
We address an annoying problem every grid-based hydrological model must solve to compare simulated and observed river discharge. First, station locations do not fit the high-resolution river network. We update the database with stations based on a new high-resolution network. Second, station locations do not work with a coarser grid-based network. We use a new basin shape similarity concept for station locations on a coarser grid, reducing the error of assigning stations to the wrong basin.
Najwa Sharaf, Jordi Prats, Nathalie Reynaud, Thierry Tormos, Rosalie Bruel, Tiphaine Peroux, and Pierre-Alain Danis
Earth Syst. Sci. Data, 15, 5631–5650, https://doi.org/10.5194/essd-15-5631-2023, https://doi.org/10.5194/essd-15-5631-2023, 2023
Short summary
Short summary
We present a regional long-term (1959–2020) dataset (LakeTSim) of daily epilimnion and hypolimnion water temperature simulations in 401 French lakes. Overall, less uncertainty is associated with the epilimnion compared to the hypolimnion. LakeTSim is valuable for providing new insights into lake water temperature for assessing the impact of climate change, which is often hindered by the lack of observations, and for decision-making by stakeholders.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023, https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Short summary
Based on various existing datasets, we comprehensively considered spatiotemporal differences in land surfaces and CO2 effects on plant stomatal resistance to parameterize the Shuttleworth–Wallace model, and we generated a global 5 km ensemble mean monthly potential evapotranspiration (PET) dataset (including potential transpiration PT and soil evaporation PE) during 1982–2015. The new dataset may be used by academic communities and various agencies to conduct various studies.
Wei Wang, La Zhuo, Xiangxiang Ji, Zhiwei Yue, Zhibin Li, Meng Li, Huimin Zhang, Rong Gao, Chenjian Yan, Ping Zhang, and Pute Wu
Earth Syst. Sci. Data, 15, 4803–4827, https://doi.org/10.5194/essd-15-4803-2023, https://doi.org/10.5194/essd-15-4803-2023, 2023
Short summary
Short summary
The consumptive water footprint of crop production (WFCP) measures blue and green evapotranspiration of either irrigated or rainfed crops in time and space. A gridded monthly WFCP dataset for China is established. There are four improvements from existing datasets: (i) distinguishing water supply modes and irrigation techniques, (ii) distinguishing evaporation and transpiration, (iii) consisting of both total and unit WFCP, and (iv) providing benchmarks for unit WFCP by climatic zones.
Emma L. Robinson, Matthew J. Brown, Alison L. Kay, Rosanna A. Lane, Rhian Chapman, Victoria A. Bell, and Eleanor M. Blyth
Earth Syst. Sci. Data, 15, 4433–4461, https://doi.org/10.5194/essd-15-4433-2023, https://doi.org/10.5194/essd-15-4433-2023, 2023
Short summary
Short summary
This work presents two new Penman–Monteith potential evaporation datasets for the UK, calculated with the same methodology applied to historical climate data (Hydro-PE HadUK-Grid) and an ensemble of future climate projections (Hydro-PE UKCP18 RCM). Both include an optional correction for evaporation of rain that lands on the surface of vegetation. The historical data are consistent with existing PE datasets, and the future projections include effects of rising atmospheric CO2 on vegetation.
Xinyu Chen, Liguang Jiang, Yuning Luo, and Junguo Liu
Earth Syst. Sci. Data, 15, 4463–4479, https://doi.org/10.5194/essd-15-4463-2023, https://doi.org/10.5194/essd-15-4463-2023, 2023
Short summary
Short summary
River flow is experiencing changes under the impacts of climate change and human activities. For example, flood events are occurring more often and are more destructive in many places worldwide. To deal with such issues, hydrologists endeavor to understand the features of extreme events as well as other hydrological changes. One key approach is analyzing flow characteristics, represented by hydrological indices. Building such a comprehensive global large-sample dataset is essential.
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023, https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
Sebastien Klotz, Caroline Le Bouteiller, Nicolle Mathys, Firmin Fontaine, Xavier Ravanat, Jean-Emmanuel Olivier, Frédéric Liébault, Hugo Jantzi, Patrick Coulmeau, Didier Richard, Jean-Pierre Cambon, and Maurice Meunier
Earth Syst. Sci. Data, 15, 4371–4388, https://doi.org/10.5194/essd-15-4371-2023, https://doi.org/10.5194/essd-15-4371-2023, 2023
Short summary
Short summary
Mountain badlands are places of intense erosion. They deliver large amounts of sediment to river systems, with consequences for hydropower sustainability, habitat quality and biodiversity, and flood hazard and river management. Draix-Bleone Observatory was created in 1983 to understand and quantify sediment delivery from such badland areas. Our paper describes how water and sediment fluxes have been monitored for almost 40 years in the small mountain catchments of this observatory.
Gopi Goteti
Earth Syst. Sci. Data, 15, 4389–4415, https://doi.org/10.5194/essd-15-4389-2023, https://doi.org/10.5194/essd-15-4389-2023, 2023
Short summary
Short summary
Data on river gauging stations, river basin boundaries and river flow paths are critical for hydrological analyses, but existing data for India's river basins have limited availability and reliability. This work fills the gap by building a new dataset. Data for 645 stations in 15 basins of India were compiled and checked against global data sources; data were supplemented with additional information where needed. This dataset will serve as a reliable building block in hydrological analyses.
Md Safat Sikder, Jida Wang, George H. Allen, Yongwei Sheng, Dai Yamazaki, Chunqiao Song, Meng Ding, Jean-François Crétaux, and Tamlin M. Pavelsky
Earth Syst. Sci. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023, https://doi.org/10.5194/essd-15-3483-2023, 2023
Short summary
Short summary
We introduce Lake-TopoCat to reveal detailed lake hydrography information. It contains the location of lake outlets, the boundary of lake catchments, and a wide suite of attributes that depict detailed lake drainage relationships. It was constructed using lake boundaries from a global lake dataset, with the help of high-resolution hydrography data. This database may facilitate a variety of applications including water quality, agriculture and fisheries, and integrated lake–river modeling.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Benjamin M. Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Frederic Frappart, Stephane Calmant, Omid Elmi, Ayan Santos Fleischmann, Melanie Becker, Mohammad J. Tourian, Rômulo A. Jucá Oliveira, and Sly Wongchuig
Earth Syst. Sci. Data, 15, 2957–2982, https://doi.org/10.5194/essd-15-2957-2023, https://doi.org/10.5194/essd-15-2957-2023, 2023
Short summary
Short summary
The surface water storage (SWS) in the Congo River basin (CB) remains unknown. In this study, the multi-satellite and hypsometric curve approaches are used to estimate SWS in the CB over 1992–2015. The results provide monthly SWS characterized by strong variability with an annual mean amplitude of ~101 ± 23 km3. The evaluation of SWS against independent datasets performed well. This SWS dataset contributes to the better understanding of the Congo basin’s surface hydrology using remote sensing.
Natalie Lützow, Georg Veh, and Oliver Korup
Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023, https://doi.org/10.5194/essd-15-2983-2023, 2023
Short summary
Short summary
Glacier lake outburst floods (GLOFs) are a prominent natural hazard, and climate change may change their magnitude, frequency, and impacts. A global, literature-based GLOF inventory is introduced, entailing 3151 reported GLOFs. The reporting density varies temporally and regionally, with most cases occurring in NW North America. Since 1900, the number of yearly documented GLOFs has increased 6-fold. However, many GLOFs have incomplete records, and we call for a systematic reporting protocol.
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Youjiang Shen, Karina Nielsen, Menaka Revel, Dedi Liu, and Dai Yamazaki
Earth Syst. Sci. Data, 15, 2781–2808, https://doi.org/10.5194/essd-15-2781-2023, https://doi.org/10.5194/essd-15-2781-2023, 2023
Short summary
Short summary
Res-CN fills a gap in a comprehensive and extensive dataset of reservoir-catchment characteristics for 3254 Chinese reservoirs with 512 catchment-level attributes and significantly enhanced spatial and temporal coverage (e.g., 67 % increase in water level and 225 % in storage anomaly) of time series of reservoir water level (data available for 20 % of 3254 reservoirs), water area (99 %), storage anomaly (92 %), and evaporation (98 %), supporting a wide range of applications and disciplines.
Hui Zheng, Wenli Fei, Zong-Liang Yang, Jiangfeng Wei, Long Zhao, Lingcheng Li, and Shu Wang
Earth Syst. Sci. Data, 15, 2755–2780, https://doi.org/10.5194/essd-15-2755-2023, https://doi.org/10.5194/essd-15-2755-2023, 2023
Short summary
Short summary
An ensemble of evapotranspiration, runoff, and water storage is estimated here using the Noah-MP land surface model by perturbing model parameterization schemes. The data could be beneficial for monitoring and understanding the variability of water resources. Model developers could also gain insights by intercomparing the ensemble members.
Alison L. Kay, Victoria A. Bell, Helen N. Davies, Rosanna A. Lane, and Alison C. Rudd
Earth Syst. Sci. Data, 15, 2533–2546, https://doi.org/10.5194/essd-15-2533-2023, https://doi.org/10.5194/essd-15-2533-2023, 2023
Short summary
Short summary
Climate change will affect the water cycle, including river flows and soil moisture. We have used both observational data (1980–2011) and the latest UK climate projections (1980–2080) to drive a national-scale grid-based hydrological model. The data, covering Great Britain and Northern Ireland, suggest potential future decreases in summer flows, low flows, and summer/autumn soil moisture, and possible future increases in winter and high flows. Society must plan how to adapt to such impacts.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Cited articles
Abbott, B. W., Gruau, G., Zarnetske, J. P., Moatar, F., Barbe, L., Thomas,
Z., Fovet, O., Kolbe, T., Gu, S., Pierson-Wickmann, A. C., Davy, P., and
Pinay, G.: Unexpected spatial stability of water chemistry in headwater
stream networks, Ecol. Lett., 21, 296–308, https://doi.org/10.1111/ele.12897, 2018.
Anderson, J. K., Wondzell, S. M., Gooseff, M. N., and Haggerty, R.: Patterns
in stream longitudinal profiles and implications for hyporheic exchange flow
at the H. J. Andrews Experimental Forest, Oregon, USA, Hydrol. Process.,
19, 2931–2949, 2005.
Andersen, T.: in: Chironomidae of the Holarctic Region: Keys and Diagnoses: Larvae, edited by: Andersen, T., Cranston, P. S., and Epler, J. H., Scandinavian Society of Entomologym, 2013.
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., and Regnier, P.: Quantifying the degradation of organic matter in marine sediments: A review and synthesis, Earth-Sci. Rev., 123, 53–86, https://doi.org/10.1016/j.earscirev.2013.02.008, 2013.
Belanger, C., Desrosiers, B., and Lee, K.: Microbial extracellular enzyme
activity in marine sediments: extreme pH to terminate reaction and sample
storage, Aquat. Microb. Ecol., 13, 187–196, 1997.
Bernhardt, E. S., Blaszczak, J. R., Ficken, C. D., Fork, M. L., Kaiser, K.
E., and Seybold, E. C.: Control Points in Ecosystems: Moving Beyond the Hot
Spot Hot Moment Concept, Ecosystems, 20, 665–682,
https://doi.org/10.1007/s10021-016-0103-y, 2017.
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi,
L., and Worman, A.: Hyporheic flow and transport processes: Mechanisms,
models, and biogeochemical implications, Rev. Geophys., 52, 603–679,
https://doi.org/10.1002/2012RG000417, 2014.
Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., and Valett, H.
M.: The functional significance of the hyporheic zone in streams and rivers,
Annu. Rev. Ecol. Syst., 29, 59–81, 1998.
Boye, K., Noël, V., Tfaily, M. M., Bone, S. E., Williams, K. H., Bargar,
J. R., and Fendorf, S.: Thermodynamically controlled preservation of organic
carbon in floodplains, Nat. Geosci., 10, 415–419, https://doi.org/10.1038/ngeo2940,
2017.
Brunke, M. and Gonser, T.: The ecological significance of exchange processes
between rivers and groundwater, Freshw. Biol., 37, 1–33, 1997.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N.,
Gilbert, J. A., Smith, G., and Knight, R.: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms, ISME J., 6, 1621–1624, https://doi.org/10.1038/ismej.2012.8, 2012.
Coble, P. G.: Characterization of marine and terrestrial DOM in seawater
using excitation-emission matrix spectroscopy, Mar. Chem., 51, 325–346,
https://doi.org/10.1016/0304-4203(95)00062-3, 1996.
Corson-Rikert, H. A., Wondzell, S. M., Haggerty, R., and Santelmann, M. V:
Carbon dynamics in the hyporheic zone of a headwater mountain streamin the
Cascade Mountains, Oregon, Water Resour. Res., 52, 7556–7576,
https://doi.org/10.1029/2008WR006912.M, 2016.
Cory, R. M. and Kaplan, L. A.: Biological lability of streamwater
fluorescent dissolved organic matter, Limnol. Oceanogr., 57, 1347–1360,
https://doi.org/10.4319/lo.2012.57.5.1347, 2012.
Cory, R. M. and McKnight, D. M.: Fluorescence spectroscopy reveals
ubiquitous presence of oxidized and reduced quinones in dissolved organic
matter, Environ. Sci. Technol., 39, 8142–8149, https://doi.org/10.1021/es0506962,
2005.
Cory, R. M., Miller, M. P., McKnight, D. M., Guerard, J. J., and Miller, P.
L.: Effect of instrument-specific response on the analysis of fulvic acid
fluorescence spectra, Limnol. Oceanogr.-Meth., 8, 67–78,
https://doi.org/10.4319/lom.2010.8.67, 2010.
Crevecoeur, S., Vincent, W. F., Comte, J., and Lovejoy, C.: Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems, Front. Microbiol., 6, 192, https://doi.org/10.3389/fmicb.2015.00192, 2015.
Crossman, J., Bradley, C., Milner, A., and Pinay, G.: Influence Of
Environmental Instability Of Groundwater-Fed Streams On Hyporheic Fauna, On
A Glacial Floodplain, Denali National Park, ALASKA, River Res. Appl., 29,
548–559, https://doi.org/10.1002/rra.1619, 2012.
Deligne, N. I., Mckay, D., Conrey, R. M., Grant, G. E., Johnson, E. R.,
O'Connor, J., and Sweeney, K.: Field-trip guide to mafic volcanism of the
Cascade Range in Central Oregon – A volcanic, tectonic, hydrologic, and
geomorphic journey, Sci. Investig. Rep., 110, https://doi.org/10.3133/sir20175022H,
2017.
Dent, C. L. and Grimm, N. B.: Spatial heterogeneity of stream water nutrient
concentrations over successional time, Ecology, 80, 2283–2298,
https://doi.org/10.1890/0012-9658(1999)080[2283:SHOSWN]2.0.CO;2, 1999.
Dittmar, T., Koch, B., Hertkorn, N., and Kattner, G.: A simple and efficient
method for the solid-phase extraction of dissolved organic matter (SPE-DOM)
from seawater, Limnol. Oceanogr.-Meth., 6, 230–235,
https://doi.org/10.4319/lom.2008.6.230, 2008.
Dupas, R., Minaudo, C., and Abbott, B. W.: Stability of spatial patterns in
water chemistry across temperate ecoregions, Environ. Res. Lett., 14,
074015, https://doi.org/10.1088/1748-9326/ab24f4, 2019.
Dyrness, C. T.: Hydrologic properties of soils on three small watersheds in
the western Cascades of Oregon, USDA For. SERV RES NOTE PNW-111,
17 pp., 1969.
Graham, E. B., Tfaily, M. M., Crump, A. R., Goldman, A. E., Bramer, L. M.,
Arntzen, E., Romero, E., Resch, C. T., Kennedy, D. W., and Stegen, J. C.:
Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound
Organic Carbon Via Biochemical and Thermodynamic Processes, J. Geophys. Res.-Biogeo., 122, 3188–3205, https://doi.org/10.1002/2017JG003967, 2017.
Hale, R. L. and Godsey, S. E.: Dynamic stream network intermittence explains
emergent dissolved organic carbon chemostasis in headwaters, Hydrol.
Process., 33, 1926–1936, https://doi.org/10.1002/hyp.13455, 2019.
Harvey, J. W. and Gooseff, M. N.: River corridor science: Hydrologic
exchange and ecological consequences from bedforms to basins, Water Resour.
Res., 51, 6893–6922, https://doi.org/10.1002/2015WR017617, 2015.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieher, D. J., and
Mopper, K.: Absorption spectral slopes and slope ratios as indicators of
molecular weight, source, and photobleaching of chromophoric dissolved
organic matter, Limnol. Oceanogr., 53, 955–969,
https://doi.org/10.1186/s12913-017-2639-8, 2008.
Hvorslev, M. J.: Time lag and soil permeability in ground-water observations.
Bulletin No. 36, Waterways Exper. Sta., Corps of Engineers, U.S. Army,
Vicksburg, Mississippi, 50 pp., 1951.
Isaak, D. J., Peterson, E. E., Ver Hoef, J. M., Wenger, S. J., Falke, J. A.,
Torgersen, C. E., Sowder, C., Steel, E. A., Fortin, M.-J., Jordan, C. E.,
Ruesch, A. S., Som, N., and Monestiez, P.: Applications of spatial
statistical network models to stream data, WIREs Water,
1, 277–294, https://doi.org/10.1002/wat2.1023, 2014.
Jefferson, A., Grant, G. E., and Lewis, S. L.: A River Runs Underneath It:
Geological Control of Spring and Channel Systems and Management
Implications, Cascade Range, Oregon, in: Advancing the Fundamental Sciences
Proceedings of the Forest Service: Proceedings of the Forest Service
National Earth Sciences Conference, 1, 18–22, 2004.
Johnson, S. L.: Factors influencing stream temperatures in small streams:
substrate effects and a shading experiment, Can. J. Fish. Aquat. Sci.,
61, 913–923, 2004.
Kaufmann, P. R., Herlihy, A. T., Mitch, M. E., Messer, J. J., and Overton, W.
S.: Stream chemistry in the eastern United States: 1. Synoptic survey
design, acid-base status, and regional patterns, Water Resour. Res., 27,
611–627, https://doi.org/10.1029/90WR02767, 1991.
Kim, S., Kramer, R. W., and Hatcher, P. G.: Graphical Method for Analysis of
Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the
Van Krevelen Diagram, Anal. Chem., 75, 5336–5344,
https://doi.org/10.1021/ac034415p, 2003.
Krause, S., Hannah, D. M., Fleckenstein, J. H., Heppell, C. M., Kaeser, D.
H., Pickup, R., Pinay, G., Robertson, A. L., and Wood, P. J.:
Inter-disciplinary perspectives on processes in the hyporheic zone,
Ecohydrology, 4, 481–499, 2011.
Krause, S., Lewandowski, J., Grimm, N. B., Hannah, D. M., Pinay, G.,
McDonald, K., Martí, E., Argerich, A., Pfister, L., Klaus, J., Battin,
T., Larned, S. T., Schelker, J., Fleckenstein, J., Schmidt, C., Rivett, M.
O., Watts, G., Sabater, F., Sorolla, A., and Turk, V.: Ecohydrological
interfaces as hot spots of ecosystem processes, Water Resour. Res., 53,
6359–6376, https://doi.org/10.1002/2016WR019516, 2017.
Kujawinski, E. B. and Behn, M. D.: Automated analysis of electrospray
ionization fourier transform ion cyclotron resonance mass spectra of natural
organic matter, Anal. Chem., 78, 4363–4373, https://doi.org/10.1021/ac0600306,
2006.
Langton, P. H.: A key to pupal exuaviae of West Palaearctic
Chironomidae, Langton, 1991.
La Rowe, D. E. and Van Cappellen, P.: Degradation of natural organic matter: A thermodynamic analysis, Geochim. Cosmochim. Acta, 75, 2030–2042, https://doi.org/10.1016/j.gca.2011.01.020, 2011.
Lee-Cullin, J. A., Zarnetske, J. P., Ruhala, S. S., and Plont, S.: Toward
measuring biogeochemistry within the stream-groundwater interface at the
network scale: An initial assessment of two spatial sampling strategies,
Limnol. Oceanogr.-Meth., 16, 722–733, https://doi.org/10.1002/lom3.10277, 2018.
Likens, G. E. and Buso, D. C.: Variation in streamwater chemistry throughout
the Hubbard Brook Valley, Biogeochemistry, 78, 1–30,
https://doi.org/10.1007/s10533-005-2024-2, 2006.
Lowe, W. H., Likens, G. E., and Power, M. E.: Linking Scales in Stream
Ecology, Bioscience, 56, 591–597,
https://doi.org/10.1641/0006-3568(2006)56[591:LSISE]2.0.CO;2, 2006.
Malicky, H.: Atlas der europäischen Köcherfliegen, vol. 24,
Dr. W. Junk Publishing Company, 1983.
Mason, S. J. K., McGlynn, B. L., and Poole, G. C.: Hydrologic response to
channel reconfiguration on Silver Bow Creek, Montana, J. Hydrol., 438–439,
125–136, 2012.
McDonnell, J. J., Sivapalan, M., Vache, K., Dunn, S., Grant, G. E.,
Haggerty, R., Hinz, C., Hooper, R. P., Kirchner, J., and Roderick, M. L.:
Moving beyond heterogeneity and process complexity: A new vision for
watershed hydrology, Water Resour. Res., 43, W07301, https://doi.org/10.1029/2006WR005467, 2007.
McGuire, K. J., Torgersen, C. E., Likens, G. E., Buso, D. C., Lowe, W. H.,
and Bailey, S. W.: Network analysis reveals multiscale controls on
streamwater chemistry, P. Natl. Acad. Sci. USA, 111, 7030–7035,
https://doi.org/10.1073/pnas.1404820111, 2014.
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T.,
and Andersen, D. T.: Spectrofluorometric characterization of dissolved
organic matter for indication of precursor organic material and aromaticity,
Limnol. Oceanogr., 46, 38–48, https://doi.org/10.4319/lo.2001.46.1.0038, 2001.
Merritt, R. W. and Cummins, K. W. (Eds.): An introduction to the aquatic
insects of North America, Kendall Hunt Publishing, 1996.
Minor, E. C., Steinbring, C. J., Longnecker, K., and Kujawinski, E. B.:
Characterization of dissolved organic matter in Lake Superior and its
watershed using ultrahigh resolution mass spectrometry, Org. Geochem., 43,
1–11, https://doi.org/10.1016/j.orggeochem.2011.11.007, 2012.
Nickolas, L. B., Segura, C., and Brooks, J. R.: The influence of lithology on
surface water sources, Hydrol. Process., 31, 1913–1925,
https://doi.org/10.1002/hyp.11156, 2017.
Payn, R. A., Gooseff, M. N., McGlynn, B. L., Bencala, K. E., and Wondzell, S.
M.: Channel water balance and exchange with subsurface flow along a mountain
headwater stream in Montana, United States, Water Resour. Res., 45, W11427, https://doi.org/10.1029/2008WR007644, 2009.
Schwanghart, W. and Kuhn, N. J.: TopoToolbox: A set of Matlab functions for
topographic analysis, Environ. Model. Softw., 25, 770–781,
https://doi.org/10.1016/j.envsoft.2009.12.002, 2010.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Seibert, J. and McGlynn, B. L.: A new triangular multiple flow direction
algorithm for computing upslope areas from gridded digital elevation models,
Water Resour. Res., 43, 1–8, https://doi.org/10.1029/2006WR005128, 2007.
Sinsabaugh, R. L., Findlay, S., Franchini, P., and Fischer, D.: Enzymatic
analysis of riverine bacterioplankton production, Limnol. Oceanogr., 42,
29–38, https://doi.org/10.4319/lo.1997.42.1.0029, 1997.
Spencer, R. G. M., Aiken, G. R., Butler, K. D., Dornblaser, M. M., Striegl,
R. G., and Hernes, P. J.: Utilizing chromophoric dissolved organic matter
measurements to derive export and reactivity of dissolved organic carbon
exported to the Arctic Ocean: A case study of the Yukon River, Alaska,
Geophys. Res. Lett., 36, L06401, https://doi.org/10.1029/2008GL036831, 2009.
Spies, T.: LiDAR Data (August 2008) for the Andrews Experimental Forest and
Willamette National Forest Study Areas, HJA Data Identifier GI010, Long-term
Ecol. Res., For. Sci. Data Bank, Corvalliss, Oreg. (Database), available at: http://andlter.forestry.oregonstate.edu/data/abstract.aspx?dbcode=GI010 (last access: 17 July 2018), 2016.
Stedmon, C. A. and Bro, R.: Characterizing dissolved organic matter
fluorescence with parallel factor analysis: A tutorial, Limnol. Oceanogr.-Meth., 6, 572–579, https://doi.org/10.4319/lom.2008.6.572, 2008.
Stegen, J. C., Johnson, T., Fredrickson, J. K., Wilkins, M. J., Konopka, A.
E., Nelson, W. C., Arntzen, E. V., Chrisler, W. B., Chu, R. K., Fansler, S.
J., Graham, E. B., Kennedy, D. W., Resch, C. T., Tfaily, M., and Zachara, J.:
Influences of organic carbon speciation on hyporheic corridor
biogeochemistry and microbial ecology, Nat. Commun., 9, 1034,
https://doi.org/10.1038/s41467-018-03572-7, 2018.
Swanson, F. J. and James, M. E.: Geology and geomorphology of the H.J.
Andrews Experimental Forest, western Cascades, Oregon, Portland, OR, 1975.
Swanson, F. J. and Jones, J. A.: Geomorphology and hydrology of the HJ
Andrews experimental forest, Blue River, Oregon, F. Guid. to Geol. Process.
Cascadia, 36, 289–314, 2002.
Temnerud, J. and Bishop, K.: Spatial variation of streamwater chemistry in
two Swedish boreal catchments: Implications for environmental assessment,
Environ. Sci. Technol., 39, 1463–1469, https://doi.org/10.1021/es040045q, 2005.
Tfaily, M. M., Chu, R. K., Tolić, N., Roscioli, K. M., Anderton, C. R.,
Paša-Tolić, L., Robinson, E. W., and Hess, N. J.: Advanced solvent
based methods for molecular characterization of soil organic matter by
high-resolution mass spectrometry, Anal. Chem., 87, 5206–5215,
https://doi.org/10.1021/acs.analchem.5b00116, 2015.
Tfaily, M. M., Chu, R. K., Toyoda, J., Tolić, N., Robinson, E. W.,
Paša-Tolić, L., and Hess, N. J.: Sequential extraction protocol for
organic matter from soils and sediments using high resolution mass
spectrometry, Anal. Chim. Acta, 972, 54–61, https://doi.org/10.1016/j.aca.2017.03.031,
2017.
Tonina, D. and Buffington, J. M.: Hyporheic exchange in mountain rivers I:
mechanics and environmental effects, Geogr. Compass, 3, 1063–1086,
https://doi.org/10.1111/j.1749-8198.2009.00226.x, 2009.
Wallace, J. B., Hutchens Jr., J. J., and Grubaugh, J. W.: Transport and storage of FPOM, in: Methods in Stream
Ecolgoy, edited by: Hauer, F. R. and Lamberti, G. A., 2nd edn., Elsevier, New York, 249–271 2006.
Ward, A. S.: The evolution and state of interdisciplinary hyporheic
research, WIREs Water, 3, 83–103,
https://doi.org/10.1002/wat2.1120, 2015.
Ward, A. S.: ESSD 2019 – Data Collection, HydroShare, https://doi.org/10.4211/hs.f4484e0703f743c696c2e1f209abb842, 2019.
Ward, A. S. and Packman, A. I.: Advancing our predictive understanding of
river corridor exchange, WIREs Water, 6, e1327, 17 pp., https://doi.org/10.1002/wat2.1327 2019.
Ward, A. S., Gooseff, M. N., Voltz, T. J., Fitzgerald, M., Singha, K., and
Zarnetske, J. P.: How does rapidly changing discharge during storm events
affect transient storage and channel water balance in a headwater mountain
stream?, Water Resour. Res., 49, 5473–5486, https://doi.org/10.1002/wrcr.20434,
2013a.
Ward, A. S., Payn, R. A., Gooseff, M. N., McGlynn, B. L., Bencala, K. E.,
Kelleher, C. A., Wondzell, S. M., and Wagener, T.: Variations in surface
water-ground water interactions along a headwater mountain stream:
Comparisons between transient storage and water balance analyses, Water
Resour. Res., 49, 3359–3374, https://doi.org/10.1002/wrcr.20148, 2013b.
Ward, A. S., Schmadel, N. M., and Wondzell, S. M.: Simulation of dynamic
expansion, contraction, and connectivity in a mountain stream network, Adv.
Water Resour., 114, 64–82, https://doi.org/10.1016/j.advwatres.2018.01.018, 2018.
Ward, A. S., Wondzell, S. M., Schmadel, N. M., Herzog, S., Zarnetske, J. P., Baranov, V., Blaen, P. J., Brekenfeld, N., Chu, R., Derelle, R., Drummond, J., Fleckenstein, J., Garayburu-Caruso, V., Graham, E., Hannah, D., Harman, C., Hixson, J., Knapp, J. L. A., Krause, S., Kurz, M. J., Lewandowski, J., Li, A., Marti, E., Miller, M., Milner, A. M., Neil, K., Orsini, L., Packman, A. I., Plont, S., Renteria, L., Roche, K., Royer, T., Segura, C., Stegen, J., Toyoda, J., Wells, J., and Wisnoski, N. I.: Spatial and temporal variation in river corridor exchange across a 5th order mountain stream network, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-108, in review, 2019.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K.: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environ. Sci. Technol., 37, 4702–4708, https://doi.org/10.1021/es030360x, 2003.
Wolock, D. M., Fan, J., and Lawrence, G. B.: Effects of basin size on
low-flow stream chemistry and subsurface contact time in the Neversink River
watershed, New York, Hydrol. Process., 11, 1273–1286,
https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1273::AID-HYP557>3.0.CO;2-S, 1997.
Zimmer, M. A., Bailey, S. W., Mcguire, K. J., and Bullen, T. D.: Fine scale
variations of surface water chemistry in an ephemeral to perennial drainage
network, Hydrol. Process., 27, 3438–3451, https://doi.org/10.1002/hyp.9449, 2013.
Short summary
Studies of river corridor exchange commonly focus on characterization of the physical, chemical, or biological system. As a result, complimentary systems and context are often lacking, which may limit interpretation. Here, we present a characterization of all three systems at 62 sites in a 5th-order river basin, including samples of surface water, hyporheic water, and sediment. These data will allow assessment of interacting processes in the river corridor.
Studies of river corridor exchange commonly focus on characterization of the physical, chemical,...
Altmetrics
Final-revised paper
Preprint