Articles | Volume 9, issue 2
Earth Syst. Sci. Data, 9, 639–656, 2017
https://doi.org/10.5194/essd-9-639-2017
Earth Syst. Sci. Data, 9, 639–656, 2017
https://doi.org/10.5194/essd-9-639-2017
Review article
31 Aug 2017
Review article | 31 Aug 2017

Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning Sources, version 2017

Owen A. Sherwood et al.

Related authors

Methane flux estimates from continuous atmospheric measurements and surface-water observations in the northern Labrador Sea and Baffin Bay
Judith Vogt, David Risk, Kumiko Azetsu-Scott, Evan N. Edinger, and Owen A. Sherwood
EGUsphere, https://doi.org/10.5194/egusphere-2022-545,https://doi.org/10.5194/egusphere-2022-545, 2022
Short summary
Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021,https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary

Related subject area

Atmospheric chemistry and physics
A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
Melisa Diaz Resquin, Pablo Lichtig, Diego Alessandrello, Marcelo De Oto, Darío Gómez, Cristina Rössler, Paula Castesana, and Laura Dawidowski
Earth Syst. Sci. Data, 15, 189–209, https://doi.org/10.5194/essd-15-189-2023,https://doi.org/10.5194/essd-15-189-2023, 2023
Short summary
Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023,https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
World Wide Lightning Location Network (WWLLN) Global Lightning Climatology (WGLC) and time series, 2022 update
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 14, 5665–5670, https://doi.org/10.5194/essd-14-5665-2022,https://doi.org/10.5194/essd-14-5665-2022, 2022
Short summary
Long-term ash dispersal dataset of the Sakurajima Taisho eruption for ashfall disaster countermeasure
Haris Rahadianto, Hirokazu Tatano, Masato Iguchi, Hiroshi L. Tanaka, Tetsuya Takemi, and Sudip Roy
Earth Syst. Sci. Data, 14, 5309–5332, https://doi.org/10.5194/essd-14-5309-2022,https://doi.org/10.5194/essd-14-5309-2022, 2022
Short summary
Full-coverage 250 m monthly aerosol optical depth dataset (2000–2019) amended with environmental covariates by an ensemble machine learning model over arid and semi-arid areas, NW China
Xiangyue Chen, Hongchao Zuo, Zipeng Zhang, Xiaoyi Cao, Jikai Duan, Chuanmei Zhu, Zhe Zhang, and Jingzhe Wang
Earth Syst. Sci. Data, 14, 5233–5252, https://doi.org/10.5194/essd-14-5233-2022,https://doi.org/10.5194/essd-14-5233-2022, 2022
Short summary

Cited articles

Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.: Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res.-Atmos., 118, 7350–7369, https://doi.org/10.1002/jgrd.50480, 2013.
Bernard, B. B.: Light hydrocarbons in recent marine sediments: PhD thesis, Texas A&M University, College Station, Texas, USA, 144 pp. 1978.
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.: Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data, Science, 327, 322–325, https://doi.org/10.1126/science.1175176, 2010.
Download
Short summary
Multiple natural and anthropogenic emissions sources contribute to the global atmospheric methane budget. Methane emissions are constrained, in part, by inverse (top-down) models that incorporate data on the concentration and stable carbon and hydrogen isotopic ratios of methane from different sources. To aid in these modeling efforts, we present a geochemical database comprising over 10 000 discrete samples from fossil and non-fossil fuel sources of methane.