Articles | Volume 18, issue 2
https://doi.org/10.5194/essd-18-989-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-18-989-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
OpenLandMap-soildb: global soil information at 30 m spatial resolution for 2000–2022+ based on spatiotemporal Machine Learning and harmonized legacy soil samples and observations
OpenGeoHub Foundation, Doorwerth, the Netherlands
Davide Consoli
OpenGeoHub Foundation, Doorwerth, the Netherlands
Xuemeng Tian
OpenGeoHub Foundation, Doorwerth, the Netherlands
Travis W. Nauman
private consultant: Moab, UT, USA
Madlene Nussbaum
University of Utrecht, Utrecht, the Netherlands
Mustafa Serkan Isik
OpenGeoHub Foundation, Doorwerth, the Netherlands
Leandro Parente
OpenGeoHub Foundation, Doorwerth, the Netherlands
Yu-Feng Ho
OpenGeoHub Foundation, Doorwerth, the Netherlands
Rolf Simoes
OpenGeoHub Foundation, Doorwerth, the Netherlands
Surya Gupta
Department of Environmental Sciences, University of Basel, Basel 4056, Switzerland
Alessandro Samuel-Rosa
Universidade Tecnológica Federal do Paraná, Santa Helena, Paraná, Brazil
Taciara Zborowski Horst
Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil
José L. Safanelli
Woodwell Climate Research Center, Falmouth, MA, USA
Nancy Harris
World Resources Institute, Washington DC, USA
Related authors
Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl
Earth Syst. Sci. Data, 17, 741–772, https://doi.org/10.5194/essd-17-741-2025, https://doi.org/10.5194/essd-17-741-2025, 2025
Short summary
Short summary
Our study introduces a Landsat-based data cube simplifying access to detailed environmental data across Europe from 2000 to 2022, covering vegetation, water, soil, and crops. Our experiments demonstrate its effectiveness in developing environmental models and maps. Tailored feature selection is crucial for its effective use in environmental modeling. It aims to support comprehensive environmental monitoring and analysis, helping researchers and policy-makers in managing environmental resources.
Surya Gupta, Tomislav Hengl, Peter Lehmann, Sara Bonetti, and Dani Or
Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, https://doi.org/10.5194/essd-13-1593-2021, 2021
Xuemeng Tian, Bernhard Ahrens, Leo Rossdeutscher, Lazaro Alonso, and Leandro Parente
EGUsphere, https://doi.org/10.5194/egusphere-2026-229, https://doi.org/10.5194/egusphere-2026-229, 2026
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
We studied how to better estimate and map how much carbon is stored in soils when key measurements are scarce. We built a machine learning model that follows known physical links between soil carbon and soil density, and compared it with pure machine learning methods. Although accuracy was similar, the model informed by soil science gave more realistic and stable results over time and clearer insights into soil behavior, improving interpretability for decision making.
Jimena Medina-Rubio, Madlene Nussbaum, Ton S. van den Bremer, and Erik van Sebille
Ocean Sci., 22, 49–74, https://doi.org/10.5194/os-22-49-2026, https://doi.org/10.5194/os-22-49-2026, 2026
Short summary
Short summary
We study how tides, wind, and waves interact at the ocean surface by tracking ultra-thin drifters released in the southern North Sea for two months. Using model data together with data-driven machine learning models, we determine the relative contribution of each forcing mechanism in driving the drifters' velocity and improve the prediction of their trajectories. We also test the generalisability of this method by applying it to the same drifters in the Tyrrhenian Sea.
Oriol Pomarol Moya, Madlene Nussbaum, Siamak Mehrkanoon, Philip D. A. Kraaijenbrink, Isabelle Gouttevin, Derek Karssenberg, and Walter W. Immerzeel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1845, https://doi.org/10.5194/egusphere-2025-1845, 2025
Short summary
Short summary
Two hybrid Machine Learning (ML) approaches using meteorological data and snowpack simulations from the Crocus snow model were evaluated for daily snow water equivalent (SWE) prediction at ten locations in the Northern Hemisphere, where they improved both Crocus and traditional ML approaches. In particular, a hybrid setup augmenting the measured data with Crocus simulations considerably enhanced prediction on unseen locations, paving the way for better long-term SWE monitoring.
Gerald Dicen, Floriane Guillevic, Surya Gupta, Pierre-Alexis Chaboche, Katrin Meusburger, Pierre Sabatier, Olivier Evrard, and Christine Alewell
Earth Syst. Sci. Data, 17, 1529–1549, https://doi.org/10.5194/essd-17-1529-2025, https://doi.org/10.5194/essd-17-1529-2025, 2025
Short summary
Short summary
Fallout radionuclides (FRNs) such as 137Cs and 239+240Pu are considered to be critical tools in various environmental research. Here, we compiled reference soil data on these FRNs from the literature to build a comprehensive database. Using this database, we determined the distribution and sources of 137Cs and 239+240Pu. We also demonstrated how the database can be used to identify the environmental factors that influence their distribution using a machine learning algorithm.
Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl
Earth Syst. Sci. Data, 17, 741–772, https://doi.org/10.5194/essd-17-741-2025, https://doi.org/10.5194/essd-17-741-2025, 2025
Short summary
Short summary
Our study introduces a Landsat-based data cube simplifying access to detailed environmental data across Europe from 2000 to 2022, covering vegetation, water, soil, and crops. Our experiments demonstrate its effectiveness in developing environmental models and maps. Tailored feature selection is crucial for its effective use in environmental modeling. It aims to support comprehensive environmental monitoring and analysis, helping researchers and policy-makers in managing environmental resources.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Christopher Chagumaira, Joseph G. Chimungu, Patson C. Nalivata, Martin R. Broadley, Madlene Nussbaum, Alice E. Milne, and R. Murray Lark
EGUsphere, https://doi.org/10.5194/egusphere-2022-583, https://doi.org/10.5194/egusphere-2022-583, 2022
Preprint archived
Short summary
Short summary
Our study examines different quantitative methods to predict concentrations of micronutrients in the soil from field samples. However, we emphasize the concerns of stakeholders, who use such information to make decisions, in this case in relation to the study and management of micronutrient deficiency risk in the human population. We propose a framework to think about these concerns then compare common approaches for digital soil mapping within this framework.
Surya Gupta, Tomislav Hengl, Peter Lehmann, Sara Bonetti, and Dani Or
Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, https://doi.org/10.5194/essd-13-1593-2021, 2021
Cited articles
Aroca-Fernandez, J. M., Diez-Pastor, J. F., Latorre-Carmona, P., Elvira, V., Camps-Valls, G., Pascual, R., and Garcia-Osorio, C.: A Collaborative Platform for Soil Organic Carbon Inference Based on Spatiotemporal Remote Sensing Data, arXiv [preprint], https://doi.org/10.48550/ARXIV.2504.13962, 2025. a
Awood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Ewers Lewis, C. J., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., and Lovelock, C. E.: Global patterns in mangrove soil carbon stocks and losses, Nature Climate Change, 7, 523–528, https://doi.org/10.1038/nclimate3326, 2017. a
Batjes, N. H., Calisto, L., and de Sousa, L. M.: Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023), Earth System Science Data, 16, 4735–4765, https://doi.org/10.5194/essd-16-4735-2024, 2024. a, b
Bauer-Marschallinger, B., Sabel, D., and Wagner, W.: Optimisation of global grids for high-resolution remote sensing data, Computers & Geosciences, 72, 84–93, https://doi.org/10.1016/j.cageo.2014.07.005, 2014. a, b
Behrens, T., Schmidt, K., MacMillan, R. A., and Rossel, R. V.: Multiscale contextual spatial modelling with the Gaussian scale space, Geoderma, 310, 128–137, https://doi.org/10.1016/j.geoderma.2017.09.015, 2018. a
Bodnar, C., Bruinsma, W. P., Lucic, A., Stanley, M., Allen, A., Brandstetter, J., Garvan, P., Riechert, M., Weyn, J. A., Dong, H., Gupta, J. K., Thambiratnam, K., Archibald, A. T., Wu, C.-C., Heider, E., Welling, M., Turner, R. E., and Perdikaris, P.: A foundation model for the Earth system, Nature, 641, 1180–1187, https://doi.org/10.1038/s41586-025-09005-y, 2025. a
Börker, J., Hartmann, J., Amann, T., and Romero-Mujalli, G.: Terrestrial sediments of the earth: development of a global unconsolidated sediments map database (GUM), Geochemistry, Geophysics, Geosystems, 19, 997–1024, https://doi.org/10.1002/2017GC007273, 2018. a
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. V., Montanarella, L., and Panagos, P.: An assessment of the global impact of 21st century land use change on soil erosion, Nature Communications, 8, 2013, https://doi.org/10.1038/s41467-017-02142-7, 2017. a, b
Brus, D.: Spatial Sampling with R, Chapman & Hall/CRC The R Series, CRC Press, Boca Raton, ISBN 9781000600056, 2022. a
Chen, S., Arrouays, D., Leatitia Mulder, V., Poggio, L., Minasny, B., Roudier, P., Libohova, Z., Lagacherie, P., Shi, Z., Hannam, J., Meersmans, J., Richer-de-Forges, A. C., and Walter, C.: Digital mapping of GlobalSoilMap soil properties at a broad scale: A review, Geoderma, 409, 115567, https://doi.org/10.1016/j.geoderma.2021.115567, 2022. a, b, c
Chen, Z., Auler, A. S., Bakalowicz, M., Drew, D., Griger, F., Hartmann, J., Jiang, G., Moosdorf, N., Richts, A., Stevanovic, Z., Veni, G., and Goldscheider, N.: The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe, Hydrogeology Journal, 25, 771, https://doi.org/10.1007/s10040-016-1519-3, 2017. a
Chen, Z., Chen, L., Lu, R., Lou, Z., Zhou, F., Jin, Y., Xue, J., Guo, H., Wang, Z., Wang, Y., Liu, F., Song, X., Zhang, G., Su, Y., Ye, S., Shi, Z., and Chen, S.: A national soil organic carbon density dataset (2010-2024) in China, Scientific Data, 12, 1480, https://doi.org/10.1038/s41597-025-05863-3, 2025. a
Consoli, D., Parente, L., Simoes, R., Şahin, M., Tian, X., Witjes, M., Sloat, L., and Hengl, T.: A computational framework for processing time-series of earth observation data based on discrete convolution: global-scale historical Landsat cloud-free aggregates at 30 m spatial resolution. PeerJ, 12, e18585, https://doi.org/10.7717/peerj.18585, 2024. a, b
Consoli, D., Tian, X., Isik, S., Simoes, R., and Hengl, T.: OpenLandMap-soildb: soil organic carbon density (mg/cm3) 2000-2005 0–30 cm below ground, Zenodo [data set], https://doi.org/10.5281/zenodo.15470432, 2025. a, b
Cowie, A. L., Orr, B. J., Castillo Sanchez, V. M., Chasek, P., Crossman, N. D., Erlewein, A., Louwagie, G., Maron, M., Metternicht, G. I., Minelli, S., Tengberg, A. E., Walter, S., and Welton, S.: Land in balance: The scientific conceptual framework for Land Degradation Neutrality, Environmental Science & Policy, 79, 25–35, https://doi.org/10.1016/j.envsci.2017.10.011, 2018. a
Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M., and Bradford, M. A.: Quantifying global soil carbon losses in response to warming, Nature, 540, 104–108, https://doi.org/10.1038/nature20150, 2016. a, b, c
CSIRO: CSIRO National Soil Site Database v10, CSIRO [data set], Canberra, Australia, https://doi.org/10.25919/c4br-0r30, 2024. a, b
Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., van Vliet, J., and Bechtel, B.: A global map of local climate zones to support earth system modelling and urban-scale environmental science, Earth Syst. Sci. Data, 14, 3835–3873, https://doi.org/10.5194/essd-14-3835-2022, 2022. a
Díaz-Guadarrama, S., Varón-Ramírez, V. M., Lizarazo, I., Guevara, M., Angelini, M., Araujo-Carrillo, G. A., Argeñal, J., Armas, D., Balta, R. A., Bolivar, A., Bustamante, N., Dart, R. O., Dell Acqua, M., Encina, A., Figueredo, H., Fontes, F., Gutiérrez-Díaz, J. S., Jiménez, W., Lavado, R. S., Mansilla-Baca, J. F., de Lourdes Mendonça-Santos, M., Moretti, L. M., Muñoz, I. D., Olivera, C., Olmedo, G., Omuto, C., Ortiz, S., Pascale, C., Pfeiffer, M., Ramos, I. A., Ríos, D., Rivera, R., Rodriguez, L. M., Rodríguez, D. M., Rosales, A., Rosales, K., Schulz, G., Sevilla, V., Tenti, L. M., Vargas, R., Vasques, G. M., Yigini, Y., and Rubiano, Y.: Improving the Latin America and Caribbean Soil Information System (SISLAC) database enhances its usability and scalability, Earth System Science Data, 16, 1229–1246, https://doi.org/10.5194/essd-16-1229-2024, 2024. a
Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a decade, Hydrology and Earth System Sciences, 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021. a
Drake, T. W., van Oost, K., Barthel, M., Bauters, M., Hoyt, A. M., Podgorski, D. C., Six, J., Boeckx, P., Trumbore, S. E., Cizungu Ntaboba, L., and Spencer, R. G. M.: Mobilization of aged and biolabile soil carbon by tropical deforestation, Nature geoscience, 12, 541–546, https://doi.org/10.1038/s41561-019-0384-9, 2019. a
ESA: Land Cover CCI Product User Guide Version 2, European Space Agency (ESA) Climate Change Initiative (CCI), https://www.esa-landcover-cci.org/?q=webfm_send/84 (last access: 6 June 2025), 2017. a
Even, R. J., Machmuller, M. B., Lavallee, J. M., Zelikova, T. J., and Cotrufo, M. F.: Large errors in soil carbon measurements attributed to inconsistent sample processing, SOIL, 11, 17–34, https://doi.org/10.5194/soil-11-17-2025, 2025. a, b
FAO: Global Soil Organic Carbon Map – GSOCmap v.1.6: Technical report, Food & Agriculture Org., Rome, Italy, ISBN 9789251358993, https://doi.org/10.4060/cb9015en, 2022. a, b, c
FAO and IIASA: Harmonized World Soil Database version 2.0, FAO, Rome and Laxenburg, https://doi.org/10.4060/cc3823en, 2023. a
Fatoyinbo, L.: Vast peatlands found in the Congo Basin, Nature, 542, 38–39, https://doi.org/10.1038/542038b, 2017. a
Feeney, C., Cosby, B., Robinson, D., Thomas, A., Emmett, B., and Henrys, P.: Multiple soil map comparison highlights challenges for predicting topsoil organic carbon concentration at national scale, Scientific Reports, 12, 1379, https://doi.org/10.1038/s41598-022-05476-5, 2022. a, b
Feng, Z., Jaffer, S., Knezevic, J., Sormunen, S., Young, R., Lisaius, M., Immitzer, M., Ball, J., Atzberger, C., Coomes, D. A., Madhavapeddy, A., Blake, A., and Keshav, S.: TESSERA: Temporal Embeddings of Surface Spectra for Earth Representation and Analysis, arXiv [preprint], https://doi.org/10.48550/arXiv.2506.20380, 2025. a
Fu, P., Clanton, C., Demuth, K. M., Goodman, V., Griffith, L., Khim-Young, M., Maddalena, J., LaMarca, K., Wright, L. A., Schurman, D. W., and Kellner, J. R.: Accurate Quantification of 0–30 cm Soil Organic Carbon in Croplands over the Continental United States Using Machine Learning, Remote Sensing, 16, https://doi.org/10.3390/rs16122217, 2024. a, b
Gallios, G., Tsakiridis, N., and Tziolas, N.: Federated learning applications in soil spectroscopy, Geoderma, 456, 117259, https://doi.org/10.1016/j.geoderma.2025.117259, 2025. a
Gautam, S., Mishra, U., Scown, C. D., Wills, S. A., Adhikari, K., and Drewniak, B. A.: Continental United States may lose 1.8 petagrams of soil organic carbon under climate change by 2100, Global Ecology and Biogeography, 31, 1147–1160, https://doi.org/10.1111/geb.13489, 2022. a
Geng, X., Fraser, W., VandenBygaart, B., Smith, S., Waddell, A., Jiao, Y., and Patterson, G.: Toward digital soil mapping in Canada: Existing soil survey data and related expert knowledge, Digital soil mapping: bridging research, environmental application, and operation, Progress in Soil Science, 325–335, https://doi.org/10.1007/978-90-481-8863-5_26, 2010. a, b
Gottschalk, P., Smith, J. U., Wattenbach, M., Bellarby, J., Stehfest, E., Arnell, N., Osborn, T. J., Jones, C., and Smith, P.: How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios, Biogeosciences, 9, 3151–3171, https://doi.org/10.5194/bg-9-3151-2012, 2012. a
Grundy, M., Rossel, R. V., Searle, R., Wilson, P., Chen, C., and Gregory, L.: Soil and landscape grid of Australia, Soil Research, 53, 835–844, https://doi.org/10.1071/SR15191, 2015. a
Guevara, M., Olmedo, G. F., Stell, E., Yigini, Y., Aguilar Duarte, Y., Arellano Hernández, C., Arévalo, G. E., Arroyo-Cruz, C. E., Bolivar, A., Bunning, S., Bustamante Cañas, N., Cruz-Gaistardo, C. O., Davila, F., Dell Acqua, M., Encina, A., Figueredo Tacona, H., Fontes, F., Hernández Herrera, J. A., Ibelles Navarro, A. R., Loayza, V., Manueles, A. M., Mendoza Jara, F., Olivera, C., Osorio Hermosilla, R., Pereira, G., Prieto, P., Ramos, I. A., Rey Brina, J. C., Rivera, R., Rodríguez-Rodríguez, J., Roopnarine, R., Rosales Ibarra, A., Rosales Riveiro, K. A., Schulz, G. A., Spence, A., Vasques, G. M., Vargas, R. R., and Vargas, R.: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America, SOIL, 4, 173–193, https://doi.org/10.5194/soil-4-173-2018, 2018. a
Gumbricht, T., Roman‐Cuesta, R. M., Verchot, L., Herold, M., Wittmann, F., Householder, E., Herold, N., and Murdiyarso, D.: An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor, Global Change Biology, 23, 3581–3599, https://doi.org/10.1111/gcb.13689, 2017. a, b, c
Guo, L. B. and Gifford, R. M.: Soil carbon stocks and land use change: a meta analysis, Global Change Biology, 8, 345–360, https://doi.org/10.1046/j.1354-1013.2002.00486.x, 2002. a
Gyawali, A. J., Wiseman, M., Ackerson, J. P., Coffman, S., Meissner, K., and Morgan, C. L.: Measuring in situ soil carbon stocks: A study using a novel handheld VisNIR probe, Geoderma, 453, 117152, https://doi.org/10.1016/j.geoderma.2024.117152, 2025. a
Hackländer, J., Parente, L., Ho, Y.-F., Hengl, T., Simoes, R., Consoli, D., Şahin, M., Tian, X., Jung, M., Herold, M., Duveiller, G., Weynants, M., and Wheeler, I.: Land potential assessment and trend-analysis using 2000–2021 FAPAR monthly time-series at 250 m spatial resolution, PeerJ, 12, e16972, https://doi.org/10.7717/peerj.16972, 2024. a, b, c
Harden, J. W., Hugelius, G., Ahlström, A., Blankinship, J. C., Bond-Lamberty, B., Lawrence, C. R., Loisel, J., Malhotra, A., Jackson, R. B., Ogle, S., Phillips, C., Ryals, R., Todd-Brown, K., Vargas, R., Vergara, S. E., Cotrufo, M. F., Keiluweit, M., Heckman, K. A., Crow, S. E., Silver, W. L., DeLonge, M., and Nave, L. E.: Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter, Global Change Biology, 24, e705–e718, https://doi.org/10.1111/gcb.13896, 2018. a, b
Harris, A. and Bardgett, R. D.: Canopy reflectance as a predictor of soil microbial community composition and diversity at a continental scale, New Phytologist, https://doi.org/10.1111/nph.70720, 2025. a
Hastie, T., Tibshirani, R., and Wainwright, M.: Statistical Learning with Sparsity, Chapman and Hall/CRC, https://doi.org/10.1201/b18401, 2015. a
Helfenstein, A., Mulder, V. L., Hack-ten Broeke, M. J. D., van Doorn, M., Teuling, K., Walvoort, D. J. J., and Heuvelink, G. B. M.: BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands, Earth System Science Data, 16, 2941–2970, https://doi.org/10.5194/essd-16-2941-2024, 2024. a, b
Hempel, J., McBratney, A., Arrouays, D., McKenzie, N., and Hartemink, A.: GlobalSoilMap project history, in: GlobalSoilMap:Basis of the global spatial soil information system, 3–8, CRC Press, https://doi.org/10.1201/b16500-3, 2014. a
Hendriks, C., Stoorvogel, J., Lutz, F., and Claessens, L.: When can legacy soil data be used, and when should new data be collected instead?, Geoderma, 348, 181–188, https://doi.org/10.1016/j.geoderma.2019.04.026, 2019. a
Hengl, T.: Global MODIS-based snow cover monthly long-term (2000–2012) at 500 m, and aggregated monthly values (2000–2020) at 1 km, Zenodo [data set], https://doi.org/10.5281/zenodo.6011200, 2021. a
Hengl, T.: Global ensemble peatland, bare rock and bare sand extent at 100 m to 1 km spatial resolution based on multisource data, Zenodo [data set], https://doi.org/10.5281/zenodo.17573774, 2025. a, b
Hengl, T.: Global bare soil, photosynthetic and non-photosynthetic vegetation fraction annual at 500 m resolution, Zenodo [data set], https://doi.org/10.5281/zenodo.12071317, 2024. a
Hengl, T. and Gupta, S.: An Open Compendium of Soil Datasets: Soil Observations and Measurements, Zenodo [code and data set], https://doi.org/10.5281/zenodo.15593990, 2025. a, b, c
Hengl, T. and MacMillan, R.: Predictive Soil Mapping with R, OpenGeoHub foundation, Wageningen, the Netherlands, ISBN 978-0-359-30635-0, https://soilmapper.org (last access: 6 June 2025), 2019. a
Hengl, T. and Nauman, T.: Predicted USDA soil great groups at 250 m (probabilities), Zenodo [data set] https://doi.org/10.5281/zenodo.3528062, 2018. a
Hengl, T. and Parente, L.: MODIS LST monthly daytime and nighttime low (0.05), median (0.50) and high (0.95) temperatures for year 2020 at 1-km, Zenodo [data set], https://doi.org/10.5281/zenodo.4527052, 2021. a
Hengl, T., Nikolić, M., and MacMillan, R.: Mapping efficiency and information content, International Journal of Applied Earth Observation and Geoinformation, 22, 127–138, https://doi.org/10.1016/j.jag.2012.02.005, 2013. a
Hengl, T., Jesus, J. M. d., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on machine learning, PLOS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017. a
Hengl, T., Miller, M. A. E., Križan, J., Shepherd, K. D., Sila, A., Kilibarda, M., Antonijević, O., Glušica, L., Dobermann, A., Haefele, S. M., McGrath, S. P., Acquah, G. E., Collinson, J., Parente, L., Sheykhmousa, M., Saito, K., Johnson, J.-M., Chamberlin, J., Silatsa, F. B. T., Yemefack, M., Wendt, J., MacMillan, R. A., Wheeler, I., and Crouch, J.: African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning, Scientific Reports, 11, 6130, https://doi.org/10.1038/s41598-021-85639-y, 2021. a
Hengl, T., Consoli, D., Tian, X., and Isik, M. S.: openlandmap/soildb: v0.0.2, Zenodo [code], https://doi.org/10.5281/zenodo.15608972, 2025. a
Hengl, T., Consoli, D., Tian, X., Nauman, T. W., Nussbaum, M., Isik, M. S., Parente, L., Ho, Y.-F., Simoes, R., Gupta, S., Samuel-Rosa, A., Zborowski Horst, T., Safanelli, J. L., and Harris, N.: OpenLandMap-soildb, Google Earth Engine asset, login required, https://code.earthengine.google.com/?asset=projects/global-pasture-watch/assets/gsm-30m, last access: 4 February 2026. a
Heuvelink, G. B. M., Angelini, M. E., Poggio, L., Bai, Z., Batjes, N. H., Van Den Bosch, R., Bossio, D., Estella, S., Lehmann, J., Olmedo, G. F., and Sanderman, J.: Machine learning in space and time for modelling soil organic carbon change, European Journal of Soil Science, 72, 1607–1623, https://doi.org/10.1111/ejss.12998, 2021. a
Ho, Y.-F., Grohmann, C. H., Lindsay, J., Reuter, H. I., Parente, L., Witjes, M., and Hengl, T.: GEDTM30: global ensemble digital terrain model at 30 m and derived multiscale terrain variables, PeerJ, 13, e19673, hhttps://doi.org/10.7717/peerj.19673, 2025. a, b, c, d
Hou, D., Jia, X., Wang, L., McGrath, S. P., Zhu, Y.-G., Hu, Q., Zhao, F.-J., Bank, M. S., O’Connor, D., and Nriagu, J.: Global soil pollution by toxic metals threatens agriculture and human health, Science, 388, 316–321, https://doi.org/10.1126/science.adr5214, 2025. a
Hugelius, G., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G., Harden, J. W., Johnson, K., Jorgenson, T., Koven, C. D., Kuhry, P., Michaelson, G., Mishra, U., Palmtag, J., Ping, C.-L., O'Donnell, J., Schirrmeister, L., Schuur, E. A. G., Sheng, Y., Smith, L. C., Strauss, J., and Yu, Z.: A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region, Earth System Science Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, 2013a. a
Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson, D. K.: The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions, Earth System Science Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, 2013b. a, b
Isik, M. S., Parente, L., Consoli, D., Sloat, L., Mesquita, V. V., Ferreira, L. G., Sabbatini, S., Stanimirova, R., Teles, N. M., Robinson, N., Junior, C. C., and Hengl, T.: Light use efficiency (LUE) based bimonthly gross primary productivity (GPP) for global grasslands at 30 m spatial resolution (2000–2022), PeerJ, 13, e19774, https://doi.org/10.7717/peerj.19774, 2025. a, b, c
Iversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B., Freschet, G. T., Kattge, J., Roumet, C., Stover, D. B., Soudzilovskaia, N. A., Valverde‐Barrantes, O. J., van Bodegom, P. M., and Violle, C.: A global Fine-Root Ecology Database to address below-ground challenges in plant ecology, New Phytologist, 215, 15–26, https://doi.org/10.1111/nph.14486, 2017. a
Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Kempen, B., and de Sousa, L.: Global mapping of soil salinity change, Remote Sensing of Environment, 231, 111260, https://doi.org/10.1016/j.rse.2019.111260, 2019. a, b
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., and Piñeiro, G.: The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls, Annual Review of Ecology, Evolution, and Systematics, 48, 419–445, 2017. a
Jenny, H.: Factors of soil formation: a system of quantitative pedology, Courier Corporation, ISBN 0-486-68128-9, 1994. a
Jian, J., Du, X., and Stewart, R. D.: A database for global soil health assessment, Scientific Data, 7, 16, https://doi.org/10.1038/s41597-020-0356-3, 2020. a
Jones, C., McConnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D., and Powlson, D.: Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil, Global Change Biology, 11, 154–166, https://doi.org/10.1111/j.1365-2486.2004.00885.x, 2005. a
Kalopesa, E., Tziolas, N., Tsakiridis, N. L., Safanelli, J. L., Hengl, T., and Sanderman, J.: Large-Scale Soil Organic Carbon Estimation via a Multisource Data Fusion Approach, Remote Sensing, 17, https://doi.org/10.3390/rs17050771, 2025. a
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high resolution for the earth's land surface areas, Scientific Data, 4, 1–20, https://doi.org/10.1038/sdata.2017.122, 2017. a, b
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.: LightGBM: A Highly Efficient Gradient Boosting Decision Tree, in: Advances in Neural Information Processing Systems, edited by: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., Curran Associates, Inc., 30, https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf (last access: 6 June 2025), 2017. a
Keel, S. G., Anken, T., Büchi, L., Chervet, A., Fliessbach, A., Flisch, R., Huguenin-Elie, O., Mäder, P., Mayer, J., Sinaj, S., Sturny, W., Wüst-Galley, C., Zihlmann, U., and Leifeld, J.: Loss of soil organic carbon in Swiss long-term agricultural experiments over a wide range of management practices, Agriculture, Ecosystems & Environment, 286, 106654, https://doi.org/10.1016/j.agee.2019.106654, 2019. a
Klein, I., Gessner, U., Dietz, A. J., and Kuenzer, C.: Global WaterPack – A 250m resolution dataset revealing the daily dynamics of global inland water bodies, Remote Sensing of Environment, 198, 345–362, https://doi.org/10.1016/j.rse.2017.06.045, 2017. a
Kraamwinkel, C. T., Beaulieu, A., Dias, T., and Howison, R. A.: Planetary limits to soil degradation, Communications Earth & Environment, 2, 249, https://doi.org/10.1038/s43247-021-00323-3, 2021. a
Krasilnikov, P., Martí, J.-J. I., Arnold, R., and Shoba, S.: A handbook of soil terminology, correlation and classification, Routledge, London, https://doi.org/10.4324/9781849774352, 2009. a
Leenaars, J., van Oostrum, A., and Gonzalez, M. R.: Africa Soil Profiles Database, Version 1.2, A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset), ISRIC Report, 1, https://www.isric.org/projects/africa-soil-profiles-database-afsp (last access: 6 June 2025), 2014. a, b
Lembrechts, J. J., van den Hoogen, J., Aalto, J., et al.: Global maps of soil temperature, Global Change Biology, 28, 3110–3144, https://doi.org/10.1111/gcb.16060, 2022. a, b
Li, T., Cui, L., Kuhnert, M., McLaren, T. I., Pandey, R., Liu, H., Wang, W., Xu, Z., Xia, A., Dalal, R. C., and Dang, Y. P.: A comprehensive review of soil organic carbon estimates: Integrating remote sensing and machine learning technologies, Journal of Soils and Sediments, 24, 3556–3571, https://doi.org/10.1007/s11368-024-03913-8, 2024. a, b
Liang, Z., Chen, S., Yang, Y., Zhou, Y., and Shi, Z.: High-resolution three-dimensional mapping of soil organic carbon in China: Effects of SoilGrids products on national modeling, Science of The Total Environment, 685, 480–489, https://doi.org/10.1016/j.scitotenv.2019.05.332, 2019. a
Lin, Z., Dai, Y., Mishra, U., Wang, G., Shangguan, W., Zhang, W., and Qin, Z.: On the magnitude and uncertainties of global and regional soil organic carbon: A comparative analysis using multiple estimates, Earth System Science Data Discussions, [preprint], https://doi.org/10.5194/essd-2022-232, 2022. a, b, c
Liu, F., Wu, H., Zhao, Y., Li, D., Yang, J.-L., Song, X., Shi, Z., Zhu, A.-X., and Zhang, G.-L.: Mapping high resolution national soil information grids of China, Science Bulletin, 67, 328–340, https://doi.org/10.1016/j.scib.2021.10.013, 2022. a
Liu, F. T., Ting, K. M., and Zhou, Z.-H.: Isolation forest, in: 2008 eighth ieee international conference on data mining, IEEE, 413–422, https://doi.org/10.1109/ICDM.2008.17, 2008. a, b, c, d
Liu, L., Zhou, W., Guan, K., Peng, B., Xu, S., Tang, J., Zhu, Q., Till, J., Jia, X., Jiang, C., Wang, S., Qin, Z., Kong, H., Grant, R., Mezbahuddin, S., Kumar, V., and Jin, Z.: Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems, Nature Communications, 15, 357, https://doi.org/10.1038/s41467-023-43860-5, 2024. a, b
López-Ballesteros, A., Nielsen, A., Castellanos-Osorio, G., Trolle, D., and Senent-Aparicio, J.: DSOLMap, a novel high-resolution global digital soil property map for the SWAT + model: Development and hydrological evaluation, Catena, 231, 107339, https://doi.org/10.1016/j.catena.2023.107339, 2023. a
Manies, K., Waldrop, M., and Harden, J.: Generalized models to estimate carbon and nitrogen stocks of organic soil horizons in Interior Alaska, Earth System Science Data, 12, 1745–1757, https://doi.org/10.5194/essd-12-1745-2020, 2020. a, b
Maxwell, T. L., Hengl, T., Parente, L. L., Minarik, R., Worthington, T. A., Bunting, P., Smart, L. S., Spalding, M. D., and Landis, E.: Global mangrove soil organic carbon stocks dataset at 30 m resolution for the year 2020 based on spatiotemporal predictive machine learning, Data in Brief, 50, 109621, https://doi.org/10.1016/j.dib.2023.109621, 2023. a, b
Meinshausen, N.: Quantile Regression Forests, Journal of Machine Learning Research, 7, 983–999, http://jmlr.org/papers/v7/meinshausen06a.html (last access: 6 June 2025), 2006. a
Melton, J. R., Chan, E., Millard, K., Fortier, M., Winton, R. S., Martín-López, J. M., Cadillo-Quiroz, H., Kidd, D., and Verchot, L. V.: A map of global peatland extent created using machine learning (Peat-ML), Geoscientific Model Development, 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022, 2022. a
Meyer, H. and Pebesma, E.: Predicting into unknown space? Estimating the area of applicability of spatial prediction models, Methods in Ecology and Evolution, 12, 1620–1633, https://doi.org/10.1111/2041-210X.13650, 2021. a
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O'Rourke, S., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292, 59–86, 2017. a
Minasny, B., Bandai, T., Ghezzehei, T. A., Huang, Y.-C., Ma, Y., McBratney, A. B., Ng, W., Norouzi, S., Padarian, J., Rudiyanto, Sharififar, A., Styc, Q., and Widyastuti, M.: Soil Science-Informed Machine Learning, Geoderma, 452, 117094, https://doi.org/10.1016/j.geoderma.2024.117094, 2024. a, b
Montgomery, D. R.: Soil erosion and agricultural sustainability, Proceedings of the National Academy of Sciences, 104, 13268–13272, https://doi.org/10.1073/pnas.0611508104, 2007. a
National Academies of Sciences, Engineering, and Medicine: Exploring a dynamic soil information system: proceedings of a workshop, The National Academies Press, Washington, DC, https://doi.org/10.17226/26170, 2021. a, b, c
Nauman, T. W., Kienast‐Brown, S., Roecker, S. M., Brungard, C., White, D., Philippe, J., and Thompson, J. A.: Soil landscapes of the United States (SOLUS): Developing predictive soil property maps of the conterminous United States using hybrid training sets, Soil Science Society of America Journal, 88, 2046–2065, https://doi.org/10.1002/saj2.20769, 2024. a, b, c
Naval, M. L. M., Bieluczyk, W., Alvarez, F., Carvalho, L. C. da S., Maracahipes-Santos, L., Oliveira, E. A. de, Silva, K. G. da, Pereira, M. B., Brando, P. M., Marimon Junior, B. H., Camargo, P. B. de, and Feldpausch, T. R.: Impacts of repeated forest fires and agriculture on soil organic matter and health in southern Amazonia, Catena, 254, 108924, https://doi.org/10.1016/j.catena.2025.108924, 2025. a, b
Nenkam, A. M., Wadoux, A. M.-C., Minasny, B., McBratney, A. B., Traore, P. C., Falconnier, G. N., and Whitbread, A. M.: Using homosoils for quantitative extrapolation of soil mapping models, European Journal of Soil Science, 73, e13285, https://doi.org/10.1111/ejss.13285, 2022. a
Ng, W., Minasny, B., McBratney, A., de Caritat, P., and Wilford, J.: Digital soil mapping of lithium in Australia, Earth System Science Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, 2023. a
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., and Fernández‐Ugalde, O.: LUCAS Soil, the largest expandable soil dataset for Europe: a review, European Journal of Soil Science, 69, 140–153, https://doi.org/10.1111/ejss.12499, 2018. a, b
Padarian, J., Minasny, B., McBratney, A., and Smith, P.: Soil carbon sequestration potential in global croplands, PeerJ, 10, e13740, https://doi.org/10.7717/peerj.13740, 2022a. a, b, c
Padarian, J., Stockmann, U., Minasny, B., and McBratney, A.: Monitoring changes in global soil organic carbon stocks from space, Remote Sensing of Environment, 281, 113260, https://doi.org/10.1016/j.rse.2022.113260, 2022b. a, b, c, d
Panagos, P., Montanarella, L., Barbero, M., Schneegans, A., Aguglia, L., and Jones, A.: Soil priorities in the European Union, Geoderma Regional, 29, e00510, https://doi.org/10.1016/j.geodrs.2022.e00510, 2022. a
Parente, L., Simoes, R., and Hengl, T.: Monthly aggregated Water Vapor MODIS MCD19A2 (1 km): Monthly time-series (2021–2022), Zenodo [data set], https://doi.org/10.5281/zenodo.8226291, 2023. a
Paz-Pellat, F. and Velázquez-Rodríguez, A. S.: Base de datos de perfiles de suelos en México, Elementos para Políticas Públicas, 2, 210–235, https://www.elementospolipub.org/ojs/index.php/epp/article/view/16 (last access: 6 June 2025), 2018. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825–2830, https://www.jmlr.org/papers/v12/pedregosa11a.html (last access: 6 June 2025), 2011. a, b, c
Pfeiffer, M., Padarian, J., Osorio, R., Bustamante, N., Olmedo, G. F., Guevara, M., Aburto, F., Albornoz, F., Antilén, M., Araya, E., Arellano, E., Barret, M., Barrera, J., Boeckx, P., Briceño, M., Bunning, S., Cabrol, L., Casanova, M., Cornejo, P., Corradini, F., Curaqueo, G., Doetterl, S., Duran, P., Escudey, M., Espinoza, A., Francke, S., Fuentes, J. P., Fuentes, M., Gajardo, G., García, R., Gallaud, A., Galleguillos, M., Gomez, A., Hidalgo, M., Ivelic-Sáez, J., Mashalaba, L., Matus, F., Meza, F., Mora, M. D. L. L., Mora, J., Muñoz, C., Norambuena, P., Olivera, C., Ovalle, C., Panichini, M., Pauchard, A., Pérez-Quezada, J. F., Radic, S., Ramirez, J., Riveras, N., Ruiz, G., Salazar, O., Salgado, I., Seguel, O., Sepúlveda, M., Sierra, C., Tapia, Y., Tapia, F., Toledo, B., Torrico, J. M., Valle, S., Vargas, R., Wolff, M., and Zagal, E.: CHLSOC: the Chilean Soil Organic Carbon database, a multi-institutional collaborative effort, Earth System Science Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, 2020. a
Poeplau, C., Jacobs, A., Don, A., Vos, C., Schneider, F., Wittnebel, M., Tiemeyer, B., Heidkamp, A., Prietz, R., and Flessa, H.: Stocks of organic carbon in German agricultural soils – Key results of the first comprehensive inventory, Journal of Plant Nutrition and Soil Science, 183, 665–681, https://doi.org/10.1002/jpln.202000113, 2020. a
Polidoro, J. C., Coelho, M. R., Carvalho Filho, A., Lumbreras, J. F., Oliveira, A. P., Vasques, G. M., Macario, C. G. N., Victoria, D. C., Bhering, S. B., Freitas, P. L., Quartaroli, C. F., Mendonça-Santos Brefin, M. L., Venturieri, A., Manzatto, C. V., Pérez, D. V., Shinzato, E., Bolfe, E. L., Curcio, G. R., Jesus, I. R. D., Ribeiro, J. L., Araújo Filho, J. C., Moser, J. M., Stuchi, J. F., Andrade, K. C. S., Anjos, L. H. C., Maranhão, M. R. A., Medeiros, P. S. C., Motta, P. E. F., Nascimento, P. P., Dart, R. O., Coelho, R. M., Dalmolin, R. S. D., and Oliveira, V. A.: National program for surveying and interpreting soils in Brazil (PronaSolos): guidelines for implementation, Documentos (INFOTECA-E), Embrapa Solos, Brazilia, BR, https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1135056 (last access: 6 June 2025), 2021. a
Potapov, P., Hansen, M. C., Kommareddy, I., Kommareddy, A., Turubanova, S., Pickens, A., Adusei, B., Tyukavina, A., and Ying, Q.: Landsat analysis ready data for global land cover and land cover change mapping, Remote Sensing, 12, 426, https://doi.org/10.3390/rs12030426, 2020. a, b, c
Potapov, P., Turubanova, S., Hansen, M. C., Tyukavina, A., Zalles, V., Khan, A., Song, X.-P., Pickens, A., Shen, Q., and Cortez, J.: Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century, Nature Food, 3, 19–28, https://doi.org/10.1038/s43016-021-00429-z, 2022. a, b
Quandt, A., Herrick, J., and Bouvier, I.: LANDPKS: a new mobile tool for sustainable land-use planning and management, in: Proceedings of the 2018 World Bank Conference on Land and Poverty, vol. 22, Washington, DC, USA, https://tenuresecurity.org/wp-content/uploads/2018/04/Session-11-11-Quandt-663_paper.pdf (last access: 6 June 2026), 2018. a
Ramcharan, A., Hengl, T., Nauman, T., Brungard, C., Waltman, S., Wills, S., and Thompson, J.: Soil Property and Class Maps of the Conterminous United States at 100‐Meter Spatial Resolution, Soil Science Society of America Journal, 82, 186–201, https://doi.org/10.2136/sssaj2017.04.0122, 2018. a
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., and Thuiller, W.: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure, Ecography, 40, 913–929, https://doi.org/10.1111/ecog.02881, 2017. a, b
Safanelli, J. L., Sanderman, J., Bloom, D., Todd-Brown, K., Parente, L. L., Hengl, T., Adam, S., Albinet, F., Ben-Dor, E., Boot, C. M., Bridson, J. H., Chabrillat, S., Deiss, L., Demattê, J. A., Scott Demyan, M., Dercon, G., Doetterl, S., van Egmond, F., Ferguson, R., Garrett, L. G., Haddix, M. L., Haefele, S. M., Heiling, M., Hernandez-Allica, J., Huang, J., Jastrow, J. D., Karyotis, K., Machmuller, M. B., Khesuoe, M., Margenot, A., Matamala, R., Miesel, J. R., Mouazen, A. M., Nagel, P., Patel, S., Qaswar, M., Ramakhanna, S., Resch, C., Robertson, J., Roudier, P., Sabetizade, M., Shabtai, I., Sherif, F., Sinha, N., Six, J., Summerauer, L., Thomas, C. L., Toloza, A., Tomczyk-Wójtowicz, B., Tsakiridis, N. L., van Wesemael, B., Woodings, F., Zalidis, G. C., and Żelazny, W. R.: An interlaboratory comparison of mid-infrared spectra acquisition: Instruments and procedures matter, Geoderma, 440, 116724, https://doi.org/10.1016/j.geoderma.2023.116724, 2023. a, b
Safanelli, J. L., Hengl, T., Parente, L. L., Minarik, R., Bloom, D. E., Todd-Brown, K., Gholizadeh, A., Mendes, W. d. S., and Sanderman, J.: Open Soil Spectral Library (OSSL): Building reproducible soil calibration models through open development and community engagement, PloS one, 20, e0296545, https://doi.org/10.1371/journal.pone.0296545, 2025. a, b
Saha, K., Rudra Bhowmick, U., Anil Kumar, K., Karthika, K., Das, P., and Lalitha, M.: Application of remote sensing in terrestrial soil organic carbon determination: a review, in: Remote Sensing of Soils, Elsevier, 277–293, ISBN 9780443187735, https://doi.org/10.1016/B978-0-443-18773-5.00004-1, 2024. a, b
Sasmito, S. D., Taillardat, P., Adinugroho, W. C., Krisnawati, H., Novita, N., Fatoyinbo, L., Friess, D. A., Page, S. E., Lovelock, C. E., Murdiyarso, D., Taylor, D., and Lupascu, M.: Half of land use carbon emissions in Southeast Asia can be mitigated through peat swamp forest and mangrove conservation and restoration, Nature Communications, 16, 740, https://doi.org/10.1038/s41467-025-55892-0, 2025. a
Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global soil carbon: understanding and managing the largest terrestrial carbon pool, Carbon management, 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014. a, b, c
Searchinger, T., James, O., and Dumas, P.: Europe’s Land Future? Opportunities to use Europe's land to fight climate change and improve biodiversity; and why proposed policies could undermine both, Princeton University, Centre for Policy Research, New Jersey, United States, https://scholar.princeton.edu/tsearchi/publications/europes-land-future (last access: 6 June 2026), 2022. a
Shamrikova, E., Kondratenok, B., Tumanova, E., Vanchikova, E., Lapteva, E., Zonova, T., Lu-Lyan-Min, E., Davydova, A., Libohova, Z., and Suvannang, N.: Transferability between soil organic matter measurement methods for database harmonization, Geoderma, 412, 115547, https://doi.org/10.1016/j.geoderma.2021.115547, 2022. a, b
Shangguan, W., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D., Ye, A., Yuan, H., Zhang, Q., Chen, D., Chen, M., Chu, J., Dou, Y., Guo, J., Li, H., Li, J., Liang, L., Liang, X., Liu, H., Liu, S., Miao, C., and Zhang, Y.: A China data set of soil properties for land surface modeling, Journal of Advances in Modeling Earth Systems, 5, 212–224, https://doi.org/10.1002/jame.20026, 2013. a
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.: Mapping the global depth to bedrock for land surface modeling, Journal of Advances in Modeling Earth Systems, 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017. a
Shaw, C., Hilger, A., Filiatrault, M., and Kurz, W.: A Canadian upland forest soil profile and carbon stocks database, Ecology, 99, 989–989, https://doi.org/10.1002/ecy.2159, 2018. a, b
Smith, P., Soussana, J., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., Van Egmond, F., McNeill, S., Kuhnert, M., Arias‐Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro‐Fuentes, J., Sanz‐Cobena, A., and Klumpp, K.: How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal, Global Change Biology, 26, 219–241, https://doi.org/10.1111/gcb.14815, 2020. a
Soil Survey Staff: Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 6.0, U.S. Department of Agriculture, Natural Resources Conservation Service., https://www.nrcs.usda.gov/resources/guides-and-instructions/kssl-guidance (last access: 6 June 2025), 2022. a
Stanimirova, R., Tarrio, K., Turlej, K., McAvoy, K., Stonebrook, S., Hu, K.-T., Arévalo, P., Bullock, E. L., Zhang, Y., Woodcock, C. E., Olofsson, P., Zhu, Z., Barber, C. P., Souza, C. M., Chen, S., Wang, J. A., Mensah, F., Calderón-Loor, M., Hadjikakou, M., Bryan, B. A., Graesser, J., Beyene, D. L., Mutasha, B., Siame, S., Siampale, A., and Friedl, M. A.: A global land cover training dataset from 1984 to 2020, Scientific Data, 10, 879, https://doi.org/10.1038/s41597-023-02798-5, 2023a. a
Stanimirova, R., Tarrio, K., Turlej, K., McAvoy, K., Stonebrook, S., Hu, K.-T., Arévalo, P., Bullock, E. L., Zhang, Y., Woodcock, C. E., Olofsson, P., Zhu, Z., Barber, C. P., Souza, C., Chen, S., Wang, J. A., Mensah, F., Calderón-Loor, M., Hadjikakou, M., Bryan, B. A., Graesser, J., Beyene, D. L., Mutasha, B., Siame, S., Siampale, A., and Friedl, M. A.: A Global Land Cover Training Dataset from 1984 to 2020, Version 1.0, Radiant MLHub [data set], https://doi.org/10.34911/rdnt.x4xfh3, 2023b. a
Steinwand, D.: Mapping raster imagery to the Interrupted Goode Homolosine projection, International Journal of Remote Sensing, 15, 3463–3471, https://doi.org/10.1080/01431169408954340, 1994. a
Stockmann, U., Padarian, J., McBratney, A., Minasny, B., De Brogniez, D., Montanarella, L., Hong, S. Y., Rawlins, B. G., and Field, D. J.: Global soil organic carbon assessment, Global Food Security, 6, 9–16, https://doi.org/10.1016/j.gfs.2015.07.001, 2015. a
Stumpf, F., Keller, A., Schmidt, K., Mayr, A., Gubler, A., and Schaepman, M.: Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems, Agriculture, Ecosystems & Environment, 258, 129–142, https://doi.org/10.1016/j.agee.2018.02.012, 2018. a
Tian, X., Consoli, D., Witjes, M., Schneider, F., Parente, L., Şahin, M., Ho, Y.-F., Minařík, R., and Hengl, T.: Time series of Landsat-based bimonthly and annual spectral indices for continental Europe for 2000–2022, Earth Syst. Sci. Data, 17, 741–772, https://doi.org/10.5194/essd-17-741-2025, 2025a. a, b
Tian, X., de Bruin, S., Simoes, R., Isik, M. S., Minarik, R., Ho, Y.-F., Şahin, M., Herold, M., Consoli, D., and Hengl, T.: Spatiotemporal prediction of soil organic carbon density in Europe (2000–2022) using earth observation and machine learning, PeerJ, 13, e19605, https://doi.org/10.7717/peerj.19605, 2025b. a, b, c, d, e, f
Tifafi, M., Guenet, B., and Hatté, C.: Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France, Global Biogeochemical Cycles, 32, 42–56, https://doi.org/10.1002/2017GB005678, 2018. a
Turubanova, S., Potapov, P., Hansen, M. C., Li, X., Tyukavina, A., Pickens, A. H., Hernandez-Serna, A., Arranz, A. P., Guerra-Hernandez, J., Senf, C., Häme, T., Valbuena, R., Eklundh, L., Brovkina, O., Navrátilová, B., Novotný, J., Harris, N., and Stolle, F.: Tree canopy extent and height change in Europe, 2001–2021, quantified using Landsat data archive, Remote Sensing of Environment, 298, 113797, https://doi.org/10.1016/j.rse.2023.113797, 2023. a, b
Ugbemuna Ugbaje, S., Karunaratne, S., Bishop, T., Gregory, L., Searle, R., Coelli, K., and Farrell, M.: Space-time mapping of soil organic carbon stock and its local drivers: Potential for use in carbon accounting, Geoderma, 441, 116771, https://doi.org/10.1016/j.geoderma.2023.116771, 2024. a
United States Department of Agriculture and National Cooperative Soil Survey: National Cooperative Soil Survey Lab Data Mart (Lab Data), https://ncsslabdatamart.sc.egov.usda.gov/querypage.aspx (last access: 6 June 2026), 2023. a
Van Gestel, N., Shi, Z., Van Groenigen, K. J., Osenberg, C. W., Andresen, L. C., Dukes, J. S., Hovenden, M. J., Luo, Y., Michelsen, A., Pendall, E., Reich, P. B., Schuur, E. A. G., and Hungate, B. A.: Predicting soil carbon loss with warming, Nature, 554, E4–E5, https://doi.org/10.1038/nature25745, 2018. a
Van Tricht, K., Degerickx, J., Gilliams, S., Zanaga, D., Battude, M., Grosu, A., Brombacher, J., Lesiv, M., Bayas, J. C. L., Karanam, S., Fritz, S., Becker-Reshef, I., Franch, B., Mollà-Bononad, B., Boogaard, H., Pratihast, A. K., Koetz, B., and Szantoi, Z.: WorldCereal: a dynamic open-source system for global-scale, seasonal, and reproducible crop and irrigation mapping, Earth Syst. Sci. Data, 15, 5491–5515, https://doi.org/10.5194/essd-15-5491-2023, 2023. a, b
van Wesemael, B., Abdelbaki, A., Ben-Dor, E., Chabrillat, S., d’Angelo, P., Demattê, J. A., Genova, G., Gholizadeh, A., Heiden, U., Karlshoefer, P., Milewski, R., Poggio, L., Sabetizade, M., Sanz, A., Schwind, P., Tsakiridis, N., Tziolas, N., Yagüe, J., and Žížala, D.: A European soil organic carbon monitoring system leveraging Sentinel 2 imagery and the LUCAS soil data base, Geoderma, 452, 117113, https://doi.org/10.1016/j.geoderma.2024.117113, 2024. a, b, c, d
Venter, Z. S., Hawkins, H.-J., Cramer, M. D., and Mills, A. J.: Mapping soil organic carbon stocks and trends with satellite-driven high resolution maps over South Africa, Science of the Total Environment, 771, 145384, https://doi.org/10.1016/j.scitotenv.2021.145384, 2021. a
Wadoux, A. M.-C., Minasny, B., and McBratney, A. B.: Machine learning for digital soil mapping: Applications, challenges and suggested solutions, Earth-Science Reviews, 210, 103359, https://doi.org/10.1016/j.earscirev.2020.103359, 2020. a
Wagner, J., Martin, V., Speetjens, N. J., A'Campo, W., Durstewitz, L., Lodi, R., Fritz, M., Tanski, G., Vonk, J. E., Richter, A., Bartsch, A., Lantuit, H., and Hugelius, G.: High resolution mapping shows differences in soil carbon and nitrogen stocks in areas of varying landscape history in Canadian lowland tundra, Geoderma, 438, 116652, https://doi.org/10.1016/j.geoderma.2023.116652, 2023. a
Widyastuti, M. T., Minasny, B., Padarian, J., Maggi, F., Aitkenhead, M., Beucher, A., Connolly, J., Fiantis, D., Kidd, D., Ma, Y., Macfarlane, F., Robb, C., Rudiyanto, Setiawan, B. I., and Taufik, M.: PEATGRIDS: Mapping thickness and carbon stock of global peatlands via digital soil mapping, Earth System Science Data Discussions [preprint], https://doi.org/10.5194/essd-2024-333, 2024. a
Wieder, W. R., Pierson, D., Earl, S., Lajtha, K., Baer, S. G., Ballantyne, F., Berhe, A. A., Billings, S. A., Brigham, L. M., Chacon, S. S., Fraterrigo, J., Frey, S. D., Georgiou, K., de Graaff, M.-A., Grandy, A. S., Hartman, M. D., Hobbie, S. E., Johnson, C., Kaye, J., Kyker-Snowman, E., Litvak, M. E., Mack, M. C., Malhotra, A., Moore, J. A. M., Nadelhoffer, K., Rasmussen, C., Silver, W. L., Sulman, B. N., Walker, X., and Weintraub, S.: SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0, Earth System Science Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, 2021. a, b
Wills, S., Seybold, C., Chiaretti, J., Sequeira, C., and West, L.: Quantifying tacit knowledge about soil organic carbon stocks using soil taxa and official soil series descriptions, Soil Science Society of America Journal, 77, 1711–1723, https://doi.org/10.2136/sssaj2012.0168, 2013. a
Wills, S., Loecke, T., Sequeira, C., Teachman, G., Grunwald, S., and West, L. T.: Overview of the U.S. Rapid Carbon Assessment Project: Sampling Design, Initial Summary and Uncertainty Estimates, in: Soil Carbon. Progress in Soil Science, edited by: Hartemink, A. and McSweeney, K., Springer International Publishing, 95–104, https://doi.org/10.1007/978-3-319-04084-4_10, 2014. a
Xu, J., Morris, P. J., Liu, J., and Holden, J.: PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis, Catena, 160, 134–140, https://doi.org/10.1016/j.catena.2017.09.010, 2018. a, b
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A high-resolution global hydrography map based on latest topography dataset, Water Resources Research, 55, 5053–5073, https://doi.org/10.1029/2019WR024873, 2019. a
Yigini, Y. and Panagos, P.: Assessment of soil organic carbon stocks under future climate and land cover changes in Europe, Science of The Total Environment, 557–558, 838–850, https://doi.org/10.1016/j.scitotenv.2016.03.085, 2016. a
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth System Science Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021. a, b
Short summary
We used satellite data and thousands of soil samples to create detailed global maps showing how soil changes over time. These maps reveal important patterns in soil health, such as a significant global loss of soil carbon in the past 25 years. Our results help track land degradation and support better land restoration efforts. This work provides a new global tool for understanding and protecting soil, a key resource for food, water, and climate.
We used satellite data and thousands of soil samples to create detailed global maps showing how...
Altmetrics
Final-revised paper
Preprint