
Earth Syst. Sci. Data, 18, 989–1036, 2026
https://doi.org/10.5194/essd-18-989-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.

OpenLandMap-soildb: global soil information at 30 m
spatial resolution for 2000–2022+ based on

spatiotemporal Machine Learning and
harmonized legacy soil samples

and observations
Tomislav Hengl1, Davide Consoli1, Xuemeng Tian1, Travis W. Nauman2, Madlene Nussbaum3,

Mustafa Serkan Isik1, Leandro Parente1, Yu-Feng Ho1, Rolf Simoes1, Surya Gupta4,
Alessandro Samuel-Rosa5, Taciara Zborowski Horst6, José L. Safanelli7, and Nancy Harris8

1OpenGeoHub Foundation, Doorwerth, the Netherlands
2private consultant: Moab, UT, USA

3University of Utrecht, Utrecht, the Netherlands
4Department of Environmental Sciences, University of Basel, Basel 4056, Switzerland

5Universidade Tecnológica Federal do Paraná, Santa Helena, Paraná, Brazil
6Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, Brazil

7Woodwell Climate Research Center, Falmouth, MA, USA
8World Resources Institute, Washington DC, USA

Correspondence: Tomislav Hengl (tom.hengl@opengeohub.org)

Received: 6 June 2025 – Discussion started: 24 June 2025
Revised: 27 November 2025 – Accepted: 31 December 2025 – Published: 6 February 2026

Abstract. There is increasing interest in global dynamic soil information with changes in soil properties mapped
over time and at high spatial resolution. Thanks to long-term, multi-temporal, and fine- and medium-resolution
satellite missions such as Landsat, MODIS, Copernicus Sentinel and similar, it is possible to produce globally
consistent predictions of key soil variables that match other 10–30 m spatial resolution global data sets. This pa-
per describes data preparation, modeling, and production of OpenLandMap-soildb: global dynamic predictions
of soil organic carbon content, soil organic carbon density, bulk density, soil pH in H2O, soil texture fractions
(clay, sand and silt) and USDA subgroup soil types (USDA soil taxonomy subgroups) at 30 m spatial resolu-
tion based on spatiotemporal Machine Learning (Quantile Regression Random Forest with output predictions
showing the mean plus the 68 % probability lower and upper prediction intervals). To train the models, a large
compilation of soil samples imported from legacy soil projects was used: 216 000 soil samples with soil carbon
density (kg m−3), 408 000 soil samples with soil carbon content (g kg−1), 272 000 soil samples with soil pH in
H2O, 363 000 soil samples with clay, silt and sand content (%) and 134 000 samples with bulk density oven dry
(t m−3). Soil carbon and soil pH were mapped with 5-year time-intervals; soil texture fractions, bulk density,
and soil types were mapped for recent years only. The cross-validation results indicate Root Mean Square Error
(RMSE) of 17.7 (kg m−3; 0.486 in log-scale) and Concordance Correlation Coefficient (CCC) of 0.88 for SOC
density, RMSE of 51.3 (g kg−1; 0.574 in log-scale) and CCC of 0.87 for SOC content, RMSE of 0.15 (t m−3)
and CCC of 0.92 for bulk density of fine-earth, RMSE of 0.51 and CCC of 0.91 for soil pH, RMSE of 8.4 % and
CCC of 0.87 for soil clay content, and RMSE of 12.6 % and CCC of 0.84 for soil sand content respectively. The
most important variables for predicting soil organic carbon density (kg m−3) were: soil depth, Landsat-based
uncalibrated Gross Primary Productivity (GPP), Normalized Difference Vegetation Index (NDVI) and CHELSA
bioclimatic indices. The global distribution of soil pH can be primarily explained by the CHELSA Aridity In-
dex (long-term), annual precipitation, and salinity grade. The global stocks for 2020–2022+ period for 0–30 cm
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depth interval are estimated at 461 Pg (Peta grams); the results further indicate that, in the last 25 years, the world
has lost at least 11 Pg of SOC in the top soil. Suggestions are made on how to set up global permanent moni-
toring stations to accurately track land degradation and enable land restoration projects. The training data set is
available at https://doi.org/10.5281/zenodo.4748499 (Hengl and Gupta, 2025), while the resulting data products
can be accessed at https://doi.org/10.5281/zenodo.15470431 (Consoli et al., 2025) and https://world.soils.app
(OpenGeoHub Foundation, 2026). Both datasets are released under a CC-BY license.

1 Introduction

Soils symbolize fertility and are the foundation of our civ-
ilization; one of the most undervalued natural resources.
Changing that perspective is a mission worth dedicating a
career. Common modern threats to soil health include the
loss of organic matter, the loss of biodiversity, soil pollution,
soil salinization, and soil erosion. There is an increasing fo-
cus on soils due to their importance for ecosystem services:
from growing crops to filtering water and providing build-
ing material (Smith et al., 2020). Soils are also one of the
potential carbon pools that could significantly help decrease
greenhouse gas (GHG) emissions in the atmosphere. Unsus-
tainable land use and population pressure are the main drivers
of soil degradation (Montgomery, 2007; Borrelli et al., 2017;
Kraamwinkel et al., 2021). We are at a crossroads in his-
tory in our attempt to preserve soil resources before we com-
pletely lose them.

It is, in fact, a striking paradox that, on the one hand, soils
are one of the most promising solutions to mitigate green-
house gas emissions, while, on the other hand, 60 %–70 %
of soils are currently unhealthy (Panagos et al., 2022). In
the last 150 years, half of the topsoil on the planet has been
degraded due to erosion, compaction, desertification, acidi-
fication, and loss of organic carbon and primary nutrients;
mostly due to changes in global land use and climate. Hou
et al. (2025) estimate that 14 %–17 % of all croplands are
polluted with toxic metals exceeding agricultural thresholds.
Moreover, soil erosion could increase up to 60 % in the next
30 years (Borrelli et al., 2017). For instance, the Continen-
tal United States alone may lose 1.8 Pg (petagrams) of soil
organic carbon under climate change (Gautam et al., 2022).
Padarian et al. (2022a) estimates that agricultural land could
lose approximately 14 % of the carbon sequestration poten-
tial of soil by 2040 due to climate change. Meanwhile, some
recent estimates by Sasmito et al. (2025) indicate that half of
the land use carbon emissions in Southeast Asia can be mit-
igated through the peat swamp forest and mangrove conser-
vation and restoration. Padarian et al. (2022a) estimates that
the additional SOC storage potential in the topsoil of global
croplands is between 29 and 65 Pg C.

The ability to measure and evaluate progress towards
maintaining or restoring healthy soils will be critical to
the success of improved land management promoted by
stakeholders and policy makers. Today, every land manager

should have easy access to verified GHG emissions and re-
moval data at the parcel level, and carbon farming must sup-
port the achievement of the proposed net removal targets, for
example, 310 Mt CO2eq in the land sector in the EU until
2030 (Searchinger et al., 2022). However, the production of
reliable estimates of global SOC stocks and SOC carbon se-
questration has proven complex (Scharlemann et al., 2014;
Minasny et al., 2017). The uncertainty in the estimates of the
total organic carbon stocks in the soil of our planet for the 0–
1 m depth interval is large (Scharlemann et al., 2014; Tifafi
et al., 2018; Feeney et al., 2022; Lin et al., 2022), leading to
problems of the general credibility of these maps.

Direct measurement of soil properties from space is cum-
bersome (van Wesemael et al., 2024; Broeg et al., 2024; Li
et al., 2024). Soils are often hidden below the surface under
dense vegetation, and most EO systems do not penetrate the
soil. Saha et al. (2024) reviewed the direct use of EO prod-
ucts and systems to monitor SOC from space and concluded
that direct SOC detection is limited due to the low signal-to-
noise ratio and low spectral resolution: most predictive map-
ping models have a limited R2 between 0.3 and 0.7. Even
bare surface spectra can be used to represent only the first few
centimeters of topsoil, while, on the other hand, many studies
often ignore soil management practices such as crop rotation,
conservation tillage practices, fertilization level, plow depth,
addition of manure to soil, and similar (Saha et al., 2024).

The uncertainty about how much organic carbon is in
the soil and how much could potentially be sequestered ap-
pears to be high, especially for northern latitudes, tropi-
cal peatlands/wetlands and semi-arid areas (Crowther et al.,
2016; Lin et al., 2022). The most up-to-date point data from
Canada and the Russian Federation now indicate that large
pools of soil organic matter in tundra and taiga-like biomes
have probably been underestimated in previous global maps
(Shaw et al., 2018; Wagner et al., 2023). Global warming
and rising temperatures are likely to perpetuate the release of
soil carbon in high-latitude areas dominated by permafrost
(Crowther et al., 2016; Van Gestel et al., 2018). Therefore,
accurate estimates of the carbon budget beyond 60° north, in-
cluding the distribution of peatland soils (covering only 2 %–
3 % of the total area, but probably representing 40 %–50 % of
the total World’s stocks), are increasingly important. In trop-
ical areas, Xu et al. (2018) and Gumbricht et al. (2017) have
estimated that the extent of peatlands is somewhat larger than
expected (currently estimated to be 2.8 % of the total land
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mask), and there appear to still be many unmapped bogs of
peat and organic material, especially in Latin America (Gum-
bricht et al., 2017), Africa (Fatoyinbo, 2017) and mangrove
forests (Atwood et al., 2017). Deforestation and degradation
of tropical forests appear to also perpetuate the loss of SOC
(Drake et al., 2019).

Some of the most recent global maps of SOC at 1 km and
250 m are provided by FAO (2022) and Poggio et al. (2021).
At the continental level, Yigini and Panagos (2016) produced
detailed SOC maps for Europe; Liang et al. (2019) for China;
Hengl et al. (2021) for Africa; Guevara et al. (2018) for
South America; Grundy et al. (2015) for Australia; Ramcha-
ran et al. (2018); Nauman et al. (2024) and Fu et al. (2024)
for the United States. Beyond mapping the general spatial
distribution of SOC, there is also an increasing interest in
mapping changes in soil properties over time, with a special
focus on soil carbon, soil nitrogen, pH, and other soil nu-
trients that are more dynamic and prone to changes in land
management (National Academies of Sciences, Engineering,
and Medicine, 2021; Broeg et al., 2024; Li et al., 2024). Al-
though soils change gradually, often on a scale of a few hun-
dred years, locally there can be drastic effects, especially as
a result of land degradation or sudden change of land use. In
general, current systems in place to monitor soil properties
(physical, chemical, and biological characteristics) together
with soil loss and soil degradation measures do not provide
sufficient information to accurately quantify changes in soil
resources over time (National Academies of Sciences, Engi-
neering, and Medicine, 2021; Broeg et al., 2024).

The three most common groups of soil properties of in-
terest for dynamic mapping are: soil organic carbon stocks,
soil nutrients (Chen et al., 2022), and soil hydrological prop-
erties such as available soil water (López-Ballesteros et al.,
2023) and soil moisture content. Guo and Gifford (2002);
Stockmann et al. (2015) and Stumpf et al. (2018) focused on
modeling changes in SOC primarily as an effect of changes
in land use (human management) and/or land cover over
decades. The second most important soil-forming or control-
ling factor for predicting SOC changes (at large scales) is:
climate. Jones et al. (2005) and Gottschalk et al. (2012), for
example, provide estimates of changes in SOC due to climate
change, with a special focus on predicting potential SOC
losses in the future. Padarian et al. (2022b) proposed a two-
step semi-mechanistic framework to model SOC over time:
first, the baseline of the SOC stock is estimated using pre-
dictive mapping (in this case the baseline is the year 2001),
and second, the SOC values are then propagated year by year
over time by incorporating changes in land cover. Padarian
et al. (2022a) uses a similar data set to estimate the SOC se-
questration potential for agricultural land. Heuvelink et al.
(2021) mapped the SOC dynamics of Argentina at 250 m
spatial resolution using a time series of NDVI images for
1982–2017 and Random Forest. Their results indicate that,
in fact, bio-climatic variables are somewhat more important
than NDVI images for modeling SOC. Ugbemuna Ugbaje

et al. (2024) developed spacetime predictions of SOC stocks
for Australia at a 90 m spatial resolution that covers 1990 and
2018. Venter et al. (2021) produced three decades of predic-
tions of the top-soil stocks for South Africa at 30 m spatial
resolution; based on the time-series of predictions, the au-
thors also provide estimates of soil carbon change in kg m−2

(for 0–30 cm depth interval). van Wesemael et al. (2024)
produced triannual predictions (2018–2020, 2019–2021 and
2020–2022) of top-soil SOC (in %) for the European Union,
using a combination of spectral models for croplands (bare
surface soil spectra) and the digital soil mapping approach
for forests and grasslands.

Currently, the most referenced global soil data set with
prediction intervals per pixel is SoilGrids V2.0 available
at 250 m spatial resolution (Poggio et al., 2021). In addi-
tion, the FAO has recently updated the Harmonized World
Soil Database (HWSDV), produced at 1 km spatial resolution
(FAO and IIASA, 2023) and is also maintaining the Global
Soil Partnership’s GSOCmap (FAO, 2022). In practice, all
three (SoilGrids V2.0, GSOCmap and HWSDB) are lagging
behind in spatial resolution with comparable global vegeta-
tion data sets, now usually focusing at 30 m or even 10 m,
e.g., representing land cover dynamics (Potapov et al., 2020),
crop classification (Van Tricht et al., 2023), forest canopy pa-
rameters (Turubanova et al., 2023), and similar. In addition,
updating global soil maps for shorter periods, such as 1–2
times a year, has never materialized. Global Open Earth Ob-
servation (EO) missions such as USA’s Landsat and ESA’s
Copernicus Sentinel remain under-utilized for global predic-
tive soil mapping. This is probably due to the following three
main reasons:

1. EO data cubes are large in size and require significant
data processing infrastructures and strong knowledge
of remote sensing, especially to remove clouds, snow
cover, preprocess Sentinel-1 images so they can be used
for predictive soil mapping;

2. Multi-spectral images with 7–10 bands are highly suited
for monitoring vegetation dynamics (vegetation indices,
Leaf Area Index) but often do not correlate directly
with soil properties; relationship between management
practices (soil applications, harvesting), vegetation phe-
nology and soil properties is complex, non-linear and
works on larger temporal scales, e.g. > 10 year inter-
vals;

3. Given the complexities listed above, the costs of pro-
ducing soil property predictions are often of an order of
magnitude higher than for land cover mapping or simi-
lar.

In this paper, we describe a fully documented open frame-
work for producing predictions of primary dynamic soil
properties at 30 m spatial resolution for the period 2000–
2022+ (5-year composites), in addition to the spatial distri-
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bution of soil types. We focus on the following four research
questions:

– R1: Do Landsat 30 m resolution images help improve
the accuracy of predictions? If so, which Landsat-
derived biophysical indices are the key for soil map-
ping?

– R2: How well do predictions from global models com-
pare to observed values at locations not used in the map
calibration/training, i.e., what is the expected prediction
error at unvisited locations?

– R3: What are the key drivers that lead to changes in
SOC? How, for example, does conversion of tropical
forests to croplands and pasturelands impact SOC and
pH on a scale of 20, 30 years?

– R4: What are the world’s remaining hotspots of SOC
stocks?

To enable using EO data cubes for predictive soil mapping,
we use a complete long-term time-series of bimonthly and
annual biophysical indices derived from the Landsat ARD
V2 data set (Potapov et al., 2020), which was almost 1.4 PB
in size. We first present in detail all the data preparation,
modeling, and prediction steps and how accuracy was as-
sessed using robust procedures. In the results section, we
report results of standardization, accuracy assessment, and
change-analysis. We also provide visual evidence of patterns
in the predictions and zoom in on the potential drivers of
change in soil properties. The data and code used to produce
the results and instructions on how to access the data are
publicly available through https://github.com/openlandmap/
soildb (last access: 6 June 2025).

2 Materials and methods

In the following sections, we explain in detail how the point
(training) data were prepared, how the covariate layers were
selected and prepared for analysis, how and why we inserted
pseudo-observations, and why we have made some design
choices. In addition, we explain how we conducted cross-
validation and how the prediction intervals were derived (per
pixel). We run extensive tests to check predictive perfor-
mance and then report results in both original and trans-
formed spaces, which is especially important for log-normal
and composite variables.

2.1 Spatiotemporal Machine Learning

We developed a fully automated global soil mapping frame-
work based on a large stack of covariate layers represent-
ing standard soil-forming and controlling factors (relief, cli-
mate, parent material, living ecosystem, and human impact)
(Jenny, 1994) and an optimized machine learning pipeline
as implemented in the scikit-map library for Python. The

general soil mapping framework is illustrated in Fig. 1 and
has been used to predict continuous dynamic soil variables
and static soil properties, i.e., soil types and physical soil
properties. We refer to the mapping framework as the “EO-
SoilMapper” because the most important covariate data are
the Earth Observation (EO) time series of images. We are
able to produce predictions at 30 m and for a period of almost
25 years, mainly because we use the complete and cloud-
free Landsat Archive previously prepared by Consoli et al.
(2024), and the global digital terrain model (DTM) and its
multiscale variables produced by Ho et al. (2025).

Spatio-temporal Machine Learning (ML) implies (Hack-
länder et al., 2024; Tian et al., 2025b):

1. Spatio-temporal overlay: observations & measurements
(O&M, such as observations of soil types, diagnos-
tic horizons, laboratory measurements of soil pH, soil
carbon content) are overlaid with covariate layers by
matching both the geographic location and the start/end
time period. In this paper, we only match O&Ms by year
of sampling/field-work with covariate layers, although
some soil properties, such as soil moisture, would also
require refined temporal identification.

2. Strictly defined time-period of interest: covariate layers
need to match the distribution of O&M’s in the time
domain, i.e., there needs to be enough training points
spread across the period of interest (in this case 2000–
2022+).

3. Spatio-temporal cross-validation: for accuracy assess-
ment, we report both spatial blocking cross-validation
and leave-one-year-out (LOYO) cross-validation to pre-
vent producing over-optimistic validation results for
densely sampled/clustered points, due to e.g. strong spa-
tial auto-correlation.

4. Predictions in spacetime using spacetime blocks: pre-
dictions are strictly spatio-temporal, i.e., they are con-
nected with certain begin/end time periods. We refer
to the spacetime prediction reference as “spacetime
blocks”.

2.2 Domain of interest: global land mask

We generate predictions for the global land mask at 30 m res-
olution within the 2000–2022+ period (with years 2023 and
2024 under production). To derive a consistent land mask,
we used GDTM30 (global DTM at 30 m) (Ho et al., 2025)
and time-series of land cover maps 2000–2022 (Zhang et al.,
2021). We derived a long-term land mask based on a land-
conservative assessment of the ocean mask for 2000–2022+,
so that some pixels are potentially covered with water in
more recent years.

We mask out the world’s deserts and permanent ice to
avoid predicting values or soil types for areas that are
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Figure 1. The general processing diagram of EO-SoilMapper with eight (8) key steps. This is a circlular and modular system with four main
components developed independently: (1) standardized soil samples, (2) covariate layers, (3) the computing engine, and (4) back-end/front-
end infrastructure for serving seamless data. ARD = Analysis-Ready Data, OLC = Open Location Code, DOI = Digital Object Identifier,
DLR= The German Aerospace Center. Automation of modeling, model fine-tuning and prediction in this framework is important as it allows
for updating the predictions as more training data is added.

marginally soil (e.g. the Sahara desert) or are completely hid-
den. We recommend instead using standard values for shift-
ing sand areas as follows:

– 0 value for soil carbon content/density, total N, P, and
K;

– 100 % for sand content;

– 0 % for clay/silt content;

– 1.6 t m−3 for bulk density;

Producing global maps at 30 m requires a serious High
Performance Computing infrastructure, beyond standard
desktop computers. The 30 m resolution maps are about 70
times larger in size than 250 m resolution maps. The land
mask at 30 m resolution in the EPSG:4326 projection sys-
tem (WGS84) contains about 210 billion pixels, while with-
out deserts and permanent ice, about 190 billion pixels. Pre-
dictions of 1 soil variable for 5-year periods for 3 standard
depths with lower and upper prediction intervals account for
about 9 trillion pixels; as size on disk, this results in about
5–10 TB of data (after compression). Because we also pro-
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vide predictions for blocks of years, our outputs are even a
few hundred times larger in size than the long-term 250 m
products (Poggio et al., 2021).

2.3 Target soil variables of interest

As target variables of interest for dynamic soil mapping, we
consider the list suggested by Chen et al. (2022), which is
based on bibliometric analysis, and the variables listed in
National Academies of Sciences, Engineering, and Medicine
(2021). As Tier 1 variables of interest, we especially focus
on soil organic carbon (SOC) content (g kg−1), soil organic
carbon density (SOCd, kg m−3), soil pH in H2O, texture frac-
tions (sand, silt, and clay) based on USDA system, bulk den-
sity (t m−3), and soil types. We use USDA and/or ISO vari-
ables and laboratory standards as much as possible, as these
are documented in the highest detail and are often used in
international projects; for example, we use Dry Combustion
for SOC and USDA soil taxonomy for soil types, which is
fully open access documentation available to everyone.

Soil organic carbon density (SOCd in kg m−3) can be es-
timated at the site level and is the central and most important
variable of interest for global soil mapping. The SOCd can
be used to derive the organic carbon stock in t ha−1 (Hengl
and MacMillan, 2019):

SOCd[kgm−3
] =

SOC[%]
100

·BD[kgm−3
]

·

(
1−

CF[%]
100

)
=

SOCs[kgm−2
]

HT[m]
(1)

where BD is the bulk density of fine earth, CF is the vol-
umetric percent of coarse fragments, HT is the thickness of
the horizon layer, and SOCs is the organic carbon stock of the
soil for the specific depth interval. Correction for gravel con-
tent is necessary because only material less than 2 mm is ana-
lyzed for SOC concentration. In principle, SOCd (kg m−3) is
strongly correlated with the SOC content (g kg−1). However,
depending on soil mineralogy and coarse fragment content,
SOCd can differ from the SOC content. SOCd can be esti-
mated per depth interval, then aggregated to produce SOC
stocks. Note also that the values of the SOCs in kg m−2 can
also be expressed in t ha−1, in which case a simple conver-
sion formula can be applied:

1 · kgm−2
= 10 · t ha−1 (2)

Total SOC in tonnes for an area of interest can be derived by
multiplying SOCs (stocks) by total area e.g.:

SOCs ·A= 120 tha−1
· 1km−2

= 120 · 100= 12000 t (3)

For example, a 0–10 cm soil layer with 0.82 % of SOC
and bulk density of 1340 kg m−3 and 6 % coarse fragments,
has a SOCd of 10.3 kg m−3, which corresponds to SOCs of
1.03 kg m−2 (or 10.3 t ha−1). An organic soil with 47.2 % of

SOC and bulk density of 179 kg m−3 and 5 % coarse frag-
ments in 0–30 cm, has a SOCd of 80.3 kg m−3, which corre-
sponds to SOCs of 24 kg m−2 (240 t ha−1). A standard agri-
cultural soil layer 0–30 cm with 1.5 % SOC and a bulk den-
sity of 1250 kg m−3 corresponds to SOCd of 18.75 kg m−3

i.e. a SOC stock of about 56 t ha−1 (for 0–30 cm). Unfortu-
nately, some authors use the metric t ha−1, without indicating
referent depth interval (e.g. 0–20, 0–30, 0–100, 0–200 cm)
which can lead to confusion (the SOCs of 0–100 cm layer
can often be 10 %–25 % higher than for 0–30 cm).

It is important to note that, to determine stocks using
global maps, one first needs to reproject the SOCd predic-
tions (kg m−3) onto some equal-area projection such as the
Interrupted Goode Homolosine (IGH; EPSG:54052) (Stein-
wand, 1994). Next, multiply the SOCd in kg m−3 by the total
area to obtain a total number of tons of SOC for the whole
land mask. Another option is to determine the size of each
pixel in WGS84 lon-lat projection system, although this can
get computational. In this paper, we consistently visualize all
the maps and determine all areas using the IGH projection.

2.4 Preparation of training points

As training points for global soil mapping, we use
a compilation of harmonized and quality-controlled soil
O&M’s listed at https://soildb.OpenLandMap.org/ (last ac-
cess: 6 June 2025), which took several years to organize,
import, standardize and harmonize. The data sources for the
training data included:

– Original national or regional monitoring networks with
probability sampling, quality-controlled and maintained
by federal/national agencies (L1);

– Original national or regional 1-time surveys with prob-
ability sampling, quality-controlled and fully docu-
mented (L2);

– Original regional or local soil sampling projects based
on free-sampling (i.e. opportunistic sampling), but
quality-controlled, and fully documented (L3);

– Compiled national or regional soil legacy O&M’s data
sets, quality-controlled and maintained; usually docu-
mented in a peer-review publication (L4);

– Compiled international, national or regional soil legacy
O&M’s data sets, quality-controlled and fully docu-
mented, but with significant missing information about
laboratory methods (L5);

– Compiled international, national or regional soil legacy
O&M’s data sets, usually not quality-controlled, based
on unknown methods, including based on citizen-
science data (L6);
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– Other soil legacy O&M’s data sets without a peer-
review publication, with significant missing information
about laboratory methods (L7);

We have put the greatest effort into importing and bind-
ing L1–L3 data sets such as the National Cooperative Soil
Survey Characterization Database (http://ncsslabdatamart.sc.
egov.usda.gov/, last access: 6 June 2025) and the United
States National Soil Information System, LUCAS soil (Or-
giazzi et al., 2018), Brazilian PronaSolos (Polidoro et al.,
2021), CSIRO’s National Soil Site Database (CSIRO, 2024),
Agriculture and Agri-Food Canada National Pedon Database
(Geng et al., 2010), and the Mexican soil samples national in-
ventory (Paz-Pellat and Velázquez-Rodríguez, 2018). These
represent more than 80 % of the training points used and were
essential to produce global predictions. The L1–L3 points are
also the largest in volume, especially the NCSS Soil Charac-
terization Database for the United States and a combination
of LUCAS soil and national data sets for Europe.

From the 10 world’s largest countries, the largest gaps in
training data are because only very limited training data is
available for 2000–2022 for India, the Russian Federation,
China, and Kazakhstan. Although national data sets are avail-
able for Russia and China (Shangguan et al., 2013), these
do not cover the 2000–2022 period and are relatively sparse.
Similarly, the Canadian CUFS data set (Shaw et al., 2018)
is a great open resource of soil laboratory data; however, it
does not overlap in time with the 2000–2022+ period and,
therefore, was not used for modeling.

From the L4 data set, we should especially emphasize
the following four (each covering larger region/continent):
Africa Soil Profile Database (Leenaars et al., 2014), Latin
America and Caribbean Soil Information System (SISLAC)
database (Díaz-Guadarrama et al., 2024), Northern circum-
polar permafrost soil profiles (Hugelius et al., 2013a), and
the Mangroves soil data base (Maxwell et al., 2023). We
also used several global or near-global databases produced
as compilations from old reports and scientific papers (L5),
for example: ISRIC’s WoSIS (Batjes et al., 2024), Fine Root
Ecology Database (FRED) (Iversen et al., 2017), Soil Health
DB (Jian et al., 2020), and the International Soil Carbon Net-
work Database (Harden et al., 2018). Many of these are ac-
tually compilations of the above-listed national or regional
databases and, as such, do not necessarily need to be im-
ported, as this could lead to many duplicates (these would
hence be a compilation of compilations). Some, however,
contain additional smaller data sets contributed by smaller
organizations or individuals. Thus, it was important to im-
port and check all available point data sets to avoid missing
out.

From citizen science data (L6) the significant data set is
the LandPKS app (Quandt et al., 2018) observations (165 000
observations with coordinates on December 2024), which is
currently the biggest L6-type soil data set for global soil map-
ping. Beyond citizen science data, we also used a significant

number of pseudo-observations (documented in the next sec-
tions) to help also represent areas with extreme climate/land-
scape conditions, e.g. shifting sands/deserts, mountain peaks,
and bare rock areas. Pseudo-observations were added primar-
ily to represent and integrate soil knowledge into ML.

We provide all import and harmonization steps in
https://soildb.OpenLandMap.org/ and explain how to access
the analysis-ready compiled and harmonized soil samples.
Some training soil points are proprietary as we have signed a
data sharing agreement that limits us to share them publicly,
but we always provide preparation steps and a description
of the data so that eventually users can detect any potential
standardization/harmonization issues.

For mapping soil types (USDA subgroups), we used a
compilation of points provided by the USDA (about 320 000
locations with soil classification) and extended it with har-
monized soil profiles from various other projects, especially
WoSIS points and national soil profile data sets. To re-
duce global gaps, we put particular effort into translating
some compatible national soil classification systems, e.g.,
the Brazilian soil classification system and the Canadian soil
classification systems. Usually, we translate the input Cana-
dian or Brazilian classes to the 2 to 3 most probable soil types
using the recommended translation tables (Krasilnikov et al.,
2009); translating to multiple classes is more realistic, but
results in many duplicate points. This inherent classification
uncertainty is further propagated in the models. However, to
avoid any issues with poor translation, only the original high-
quality USDA classes (un-harmonized) are used for valida-
tion (as hold-out samples).

In principle, only USDA soil points with soil types are
fully harmonized and can be considered analysis-ready,
while other data sets required careful checks and prepara-
tion, so they could also be included in the analysis. To speed
up the cleaning up of points for soil type mapping, we used
the following three strategies:

– We use fuzzy search strategies to avoid missing out
points with possible types or missing “s” at the
end of the soil type. For example, a text containing
“typic haplaquoll, fine loamy mixed mesic” will be
matched with the targeted soil type “typic haplaquolls”.
Fuzzy matching has been implemented using the
agrep function in R with max.distance=0.02,
ignore.case=TRUE; this has been shown to per-
form the best in removing only incompatible classes.

– We search for soil types in multiple columns in the soil
profile databases. For example, in the case of the Aus-
tralian CSIRO NatSoil database, some USDA soil clas-
sification is only available in comments.

– We record all translations and soil types cleaning
in one large Google Sheet so that all harmo-
nization/translation steps can be back-tracked (see
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https://doi.org/10.5281/zenodo.4748499, Hengl and
Gupta, 2025).

The import, translation and binding of soil-type train-
ing points are also fully documented in https://soildb.
OpenLandMap.org/. In the end, these efforts provided a total
of 332 thousand training points with soil type (USDA soil
taxonomy subgroup), which yielded slightly more spatial lo-
cations than we prepared for soil property mapping. Unfor-
tunately, most of the points (> 80 %) with USDA soil taxon-
omy are located in the USA and, as such, the North Amer-
ican continent is overrepresented in our models (see further
Fig. 6b).

To quantify potential extrapolation problems due to spa-
tial clustering and geographical gaps in point data, we run
the Isolation Forest (Liu et al., 2008) on the training points
and the selected most important covariates to produce an ex-
trapolation risk probability map. This was only used to illus-
trate the effects of over-representation of training points and
to suggest to next generation projects where to place more
samples in the future to help improve these predictions.

2.5 Standardization and harmonization

Before spatial analysis, it is important to standardize (con-
vert to the same measurement units, the same physical stan-
dards) and harmonize (bring to the same laboratory reference
methods) soil laboratory data to avoid potential bias in pre-
dictions and could also have serious consequences on deci-
sion making. From all the variables analyzed in soil science,
the organic carbon and texture fractions of the soil must be
carefully treated because different countries use contrasting
laboratory methods and standards, and the difference in val-
ues can often be considerable (> 5 % in relative terms). For
example, soil organic carbon has historically been analyzed
using a variety of laboratory methods, including (Chatterjee
et al., 2009; Shamrikova et al., 2022):

– Walkley Black method (WB);

– Tyurin method;

– Dry Combustion method (DC);

– Loss on Ignition (LOI);

All four SOC determination methods can be consid-
ered compatible; however, values need to be corrected to
a common standard, otherwise, this can lead to bias in to-
tal stocks. For example, the DC method, which is the cur-
rent recommended standard for soil organic carbon (ISO
10694:1995), produced about 20 %–40 % higher values than
the WB method for the same samples. Locally, various
groups have developed harmonization functions by analyz-
ing the same soil samples using multiple laboratory methods
(Chatterjee et al., 2009). In recent decades, numerous har-
monization studies have been published producing functions

and coefficients for translating SOC to the target laboratory
method; however, these are often based on local data and
therefore may not be globally applicable. Additionally, inter-
laboratory comparisons that analyze samples from the same
pedons have shown significant differences (Safanelli et al.,
2023). This implies that the variation in the values of SOC,
pH, and other soil properties comes in large part from short-
range variability and the interlaboratory component, and not
only from the harmonization strategy. Therefore, we have de-
cided to use a simple harmonization principle described in
Shamrikova et al. (2022):

WB× 1.3= Tyurin× 1.15= DC (P = 0.95) (4)

We have applied this harmonization to any SOC data set
with the laboratory method explained in the metadata. Where
metadata do not provide any information, we looked at the
year of sampling and country of origin, and we estimated
the laboratory method based on indications from the litera-
ture. For most of the laboratory data (> 90 %) we had enough
metadata to correctly determine the laboratory method used.

For carbon concentration and density values from the
United States Soil Characterization Database (NCSS SCD)
(United States Department of Agriculture and National Co-
operative Soil Survey, 2023), several steps were taken to
harmonize the different methods of estimating carbon, bulk
density, and rock fragments. As carbon concentration mea-
surement methods in NCSS SCD have shifted from WB to
DC approaches (Soil Survey Staff, 2022), several regres-
sions were used to harmonize all organic carbon measure-
ments with WB to then integrate them into the larger global
dataset by converting to DC using a previously fitted con-
version model. Previous internal regressions that relate the
SCD DC measurements to WB (Wills et al., 2013, 2014)
have resulted in a contrasting relationship with the broader
literature, so we decided to normalize all NCSS SCD carbon
concentration values to WB to allow more widely accepted
conversion equations to equivalent DC equations to be imple-
mented. For all samples with DC total carbon (TC) estimates,
we first regressed all samples with a 1 : 1 pH less than 7.4 (to
exclude carbonates) against the WB measurements (WB =
TC × 1.046, R2

= 0.92, N = 8671). This allowed all DC to-
tal carbon measurements with pH < 7.4 to be converted to
WB units. Then, for additional samples with higher pH val-
ues that had DC SOC values, pre-adjusted for carbonates,
we regressed those carbon values against WB again to con-
vert them to a common unit (WB = DC× 1.037, R2

= 0.90,
N = 175).

In NCSS SCD, there are also more 1/3 bar bulk density
(BD.3) measurements available than oven dry bulk density
(BDod); we therefore also regressed these two methods to
maximize our sample size (BDod = BD.3× 1.102, R2 =
0.99, N = 90,230). We also tested regression models with
intercept values for both carbon- and bulk-density models.
Finally, to adjust the carbon densities for rock fragments, we
analyzed the US NCSS National Soil Information System
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Figure 2. Comparison of imported soil laboratory data sets in terms of relationship between soil carbon density, carbon content, sampling
depth, bulk density and others: (a) relationship between SOC content [g kg−1] and SOC density (SOCd) [kg m−3] is often close to linear,
although this relationship is significantly more diffuse for organic soils; (b) soil carbon – depth plots usually indicate negative log-log rela-
tionship; (c) a global pedo-transfer function fitted using the highest quality laboratory data to gap-fill low SOC density [kg m−3] values from
SOC [g kg−1] values; and (d) SOC [g kg−1] and bulk density of fine-earth are also highly correlated and follow a bimodal distribution with
one peak for mineral, and one for organic soils. AfSPDB = Africa Soil Profile Database (Leenaars et al., 2014), Alaska interior soil database
(Manies et al., 2020), BZE-LW = Bodemzusandserhebung/German Agricultural Soil Inventory (Poeplau et al., 2020), Canada NPDB =
Agri-Food Canada National Pedon Database (Geng et al., 2010), Chilean SOCDB = Chilean Soil Organic Carbon Database (Pfeiffer et al.,
2020), CSIRO NatSoil (CSIRO, 2024), Mangroves soil database (Maxwell et al., 2023), SoDaH = the SOils DAta Harmonization database
(Wieder et al., 2021), and USDA NCSS = National Cooperative Soil Survey Characterization Database.
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Figure 3. Density plots for the final global harmonized soil organic carbon and soil pH: (a) general relationship between soil organic carbon
and bulk density with bimodal distribution of values (lines drawn by hand to illustrate overlap between organic and mineral soils), and
(b) trend-plot showing, overall, no visible differences in soil pH distribution through time. Note that because SOC has a relatively right-
skewed distribution, there is a significant difference in the mean value of SOC vs. the median value. Soil pH, on the other hand, is already
log-transformed and hence the mean and median values more or less match.

(NASIS) for all SCD samples. The SCD rock estimates only
include fragments less than about 0.1016 m in diameter, so
we opted to use the NASIS field total rock volume estimates,
which include all rock sizes. A rock density of 2.65 t m−3

was assumed for all samples. Similar corrections were ap-
plied to other L1–L3 data sets used in this work.

2.6 Insertion of pseudo-observations and gap-filling of
missing values

Most legacy soil data sets in the world were not generated us-
ing probability sampling and/or strict experimental designs
and, as such, are often not directly fit for spatial modeling
(Hendriks et al., 2019). If we were to ignore that some areas
are over-represented, the resulting models fitted using such
data could propagate potential bias in terms of, e.g. over-
representation of agricultural land (Tian et al., 2025b). That
is why it is important to add covariate layers and additional
points to assist machine learning models in producing pre-
dictions that also better match expert knowledge (Minasny
et al., 2024).

Insertion of pseudo-observations is especially important
for mapping chemical and physical soil properties, soil car-
bon stocks, as otherwise one could significantly over- or un-
derestimate global stocks. Consider the following two ex-
amples: (1) the majority of soil surveys ignore taking sam-
ples from C horizons (parent material layer), semi-desert and
shifting sand areas as it is obvious to surveyors that these
contain no SOC; (2) mountainous areas, inaccessible areas
such as swamps, jungles and similar are also often under-

represented due to inaccessibility. The world’s deserts (polar
deserts, Sahara, and similar) cover almost 33 % the Earth’s
land surface: approximately 20 % of the Earth’s land sur-
face are hot deserts; polar deserts (Antarctica and Greenland)
cover another 10 %. Very few soil surveys actually go to the
middle of a desert or on top of a mountain to collect soil
samples.

To avoid over-predicting SOC and under-predicting sand
content for the world, we added pseudo-training points to
help incorporate our soil knowledge in ML. To generate
pseudo-points, we used primarily the GLANCE data set
(Stanimirova et al., 2023a), which is an extensive, quality-
controlled point dataset covering years 1984 to 2020 and
which is based on very high-resolution satellite images (usu-
ally about 30 cm resolution). We specifically used the classes
“Bare rock” (5) and “Shifting sand, deserts without any veg-
etation” (6) as these are also easy to validate, and we be-
lieve that the risk of inserting erroneous pseudo-observations
is low.

In addition to GLANCE points, we also used the global
point data set with all major mountain tops (http://www.
peaklist.org/ultras.html, last access: 6 June 2025; about 1500
mountain tops), also to avoid generating extrapolation for the
highest mountain chains, such as the Alps, the Himalayas,
and similar. These areas are often under-sampled or not rep-
resented at all because they are extremely inaccessible. To
avoid adding false 0 points for SOC, we double-checked
the pseudo-observation points by overlaying them vs. the
30 m resolution land cover map of the world GLC_FCS30D
(Zhang et al., 2021). We only used the GLANCE point and
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the mountain tops that were also classified as “190 Impervi-
ous surfaces”, “200 Bare areas”, and/or “220 Permanent ice
and snow”. In the end, this gave us 4680 high-quality pseudo-
observations that are either permanent deserts, bare rock, or
snow. At all these points, we have inserted 0 values for soil
organic carbon (content and density), and also 100 % sand
content for all points classified as sand in the GLANCE data
set.

Note that we insert pseudo-observations for modeling pur-
poses to better represent feature space, especially towards the
edges of the feature space; however, after the modeling, we
do not produce predictions for shifting sand areas and per-
manent ice as previously explained. This is for the following
reasons: although we could have computed predictions for
shifting sands and permanent ice, we believe that this would
have increased production costs without adding significant
value to the output maps. In addition, several covariates used
for modeling are also often not accurate in such areas, po-
tentially affecting the quality of the predictions. We, instead,
advise users to gap-fill the maps using simple rules as indi-
cated above or similar strategies (e.g. insert 0 SOC values
and 100 % sand content for shifting sands).

In addition to inserting 0 values for obvious shifting
sand/deserts and bare rock areas, we also gap-filled around
5 %–6 % soil carbon density points that only had SOC con-
tent but no bulk density. This was done by fitting a simple pe-
dotransfer function (PTF) to estimate SOC [kg m−3] directly
from SOC [g kg−1] measurements, avoiding estimating the
bulk density that would be used to calculate SOC [kg m−3].
We fit a bivariate quadratic function where the SOC density
is a function of the SOC content and soil depth (shown in
Fig. 2c), then use this function to fill in the missing values
for the SOC density. We recommend using this PTF only for
smaller values of SOC, e.g. < 0.5 % SOC, as the relationship
for larger SOC values is of the order of magnitude more un-
certain. In this work, we used this PTF to fill in gaps for the
missing bulk density [kg m−3] only where the SOC content is
< 0.4 % or < 4 ‰, as for this part of the range model it is sig-
nificant with R2 > 0.96. The relationship between the den-
sity and content of SOC in soils with SOC > 1 % becomes
proportionally more complex with a high uncertainty even-
tually for SOC > 10 %, and therefore we recommend using
this PTF only for small values of SOC (< 0.4 %).

2.7 Preparation of covariate layers

To integrate land use changes, soil management, and climate
effects, we used more than 160 TB of covariate data for mod-
eling and prediction at 30 m resolution. The following four
data sources are the largest in size and can be considered the
most important:

– Landsat bimonthly and annual global composites de-
scribed in Consoli et al. (2024) and derived products

(Tian et al., 2025a; Isik et al., 2025) (30 m spatial reso-
lution);

– 6-scale Digital Terrain Model relief parameters de-
scribed in Ho et al. (2025) (multi-scale pyramid repre-
sentation at 30, 60, 120, 240, 480, 960 m);

– CHELSA Climate time-series of climatic and biocli-
matic variables v2.1 (Karger et al., 2017) (1 km spatial
resolution);

– MODIS Land Surface Temperature MOD11A2
(https://doi.org/10.5281/zenodo.4527052, Hengl and
Parente, 2021) and Water Vapor data sets MCD19A2
(https://doi.org/10.5281/zenodo.8226291, Parente
et al., 2023) (1 km spatial resolution);

From the Landsat archive, we use the Blue, Green, Red,
NIR, SWIR1, SWIR2 bands, and derivatives (biophysical
indices) such as Normalized Difference Vegetation Index
(NDVI), Normalized Difference Water Index (NDWI), Soil
Adjusted Vegetation Index (SAVI), Bare Soil Index (BSI),
Normalized Difference Tillage Index (NDTI), annual Bare
Soil Frequency (BSF), Normalized Difference Snow Index
(NDSI), Fraction of Absorbed Photosynthetically Active Ra-
diation (FAPAR) and Gross Primary Productivity (Tian et al.,
2025a; Isik et al., 2025). Although we originally considered
using the bimonthly values of all variables, winter months in
the northern hemisphere and heavily clouded areas, like rain
forests, have been shown to carry a significant amount of ar-
tifacts, which can propagate to predictions and lead to more
serious artifacts. To avoid such issues, we decided to only use
the lower (25 % probability) annual quantile in the original
bands instead of using bimonthly values or other quantiles.
The decision to use the lower quantile comes from the fact
that several artifacts originates from failing cloud mask, lead-
ing higher values in the raw bands, that are not impacting the
lower quantiles. To keep a single consistent model, the usage
of the lower quantile is applied at global scale, and not only
in the areas with artifacts. However, it is possible that the pre-
diction accuracy of soil properties could be further increased
with further improvements in the Landsat composites.

From the DTM variables, we use 6-scale DTM global pa-
rameters derived at pixel resolutions of 30 m and of 60, 120,
240, 480 and 960 m, which were later resampled to 30 m us-
ing cubic splines. The DTM variables include terrain height,
slope in degrees, multidirectional hillshade, topographic wet-
ness index, negative/positive openness, LS factor, minimum,
maximum, profile, tangential and ring curvature. This type
of multi-scale nested terrain derivation is known as “Mixed
scaled Gaussian Pyramid” (Behrens et al., 2018), designated
to capture spatial dependencies and interactions of the land-
scape and soil at various scales. Relationships between dif-
ferent soil properties and terrain change at different spatial
resolutions are often in a non-linear way. Hence, we prepare
standard DTM variables from fine to coarse resolution (mi-
croscale, mesoscale, and macroscale) to allow ML to select
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an optimal set of terrain representation based on the training
data.

Beyond the above listed-layers, we also
use: peatland extent ensemble estimate
(https://doi.org/10.5281/zenodo.13951438, Hengl, 2025),
bare rock extent based on the Local Climate zones map
(Demuzere et al., 2022), forest and wetlands cover based
on ESA CCI (https://doi.org/10.5281/zenodo.13951438,
Hengl, 2025), crop cover based on GLAD time-series
30 m (Potapov et al., 2022), World Karst Aquifer Map
(WHYMAP WOKAM) (Chen et al., 2017), sediment
types based on GUM v1.0 (Börker et al., 2018), bare
soil fractions (mean and maximum) and photosyntheti-
cally active vegetation fractions based on GVFCP v3.1
(https://doi.org/10.5281/zenodo.11961219, Hengl, 2024),
Global WaterPack annual water extent probability (250 m)
(Klein et al., 2017), snow probability P90 long-term
MODIS-based (https://doi.org/10.5281/zenodo.5774953,
Hengl, 2021), soil salinity grade (250 m) (Ivushkin et al.,
2019), Global Soil Bioclimatic variables (Lembrechts et al.,
2022), geometric temperature, landform class based on
the USGS EcoTapestry, and MERIT Hydro upstream area
(Yamazaki et al., 2019). Because the Global Soil Bioclimatic
variables are also based on SoilGrids (sand, silt, clay predic-
tions) and soil salinity grade is also based on soil property
predictions, we use these layers only for soil type mapping
and not soil property mapping, to avoid possible circularity
in the models.

For quantitative soil properties, we also use soil depth
(center of the sample horizon) as a covariate. This means that
all such models are 3D+T, i.e. we fit one model per prop-
erty that can be used to predict values for any year and for
any depth. As further detailed in the following, predictions
are then averages over spatio-temporal blocks of five years
(e.g. 2000–2005) and variable depths interval (0–30, 30–60
and 60–100 cm). However, we did not use the month of field
observation of the year of sampling as a covariate because
this has been shown to lead to artifacts. In addition, because
majority of covariates are time-series of annual/bimonthly
images, time is already deeply embedded in the covariates;
hence, we do not find it necessary to also include it as a con-
tinuous variable.

In summary, we used a total of 363 covariate layers for
mapping soil properties and soil types, either as time series of
bimonthly/annual images from 2000–2022+, long-term esti-
mates of climate, or assumed static variables (DTM param-
eters, lithology types, and similar). For soil type mapping,
we used a much smaller number (229) of covariate layers be-
cause we excluded all time-varying layers, and hence only
long-term estimates of climate, vegetation and similar are
used. Not all layers were used in the final prediction as the
feature selection process would typically reduce the number
of initial number of layers to 60–120, removing layers that
marginally contributed to the final model.

2.8 Variables transformation for soil properties

To account for a highly skewed distribution of soil organic
carbon, both content and density, these properties were trans-
formed into a natural log (with offset = 1, ln(x+ 1)). Tian
et al. (2025b) show that using log-transformation before
modeling helps increase accuracy, especially accuracy of
lower values (agricultural soils) i.e. helps decrease impact of
a small portion of very high SOC values in the organic soil.
Once the target variable is transformed to a close-to-normal
distribution, visualization of data and derivation of standard
linear regression metrics such as R2, RMSE and similar are
possible. This means that we automatically transform all log-
normal variables and do all modeling in log-space. The fi-
nal predictions are then back-transformed (exp(x)−1) in the
original space in the last step. We report error metrics for log-
normal variables in both original and transformed spaces.

Soil texture fractions are transformed using a modified
version of the additive log-ratio (ALR) transform, which for
the forward transformation reads:

Texture1 = log2

(
Sand

a
+ 1

Clay
a
+ 1

)
,

Texture2 = log2

(
Silt
a
+ 1

Clay
a
+ 1

)
. (5)

where a is a normalization factor corresponding to the sum-
mation value of the three fractions (e.g. 100 if they are rep-
resented in %). The new transformation removes the singu-
larities that are present in the ALR transformation if one or
more of the textures fractions is equal to zero. Furthermore,
the usage of log2 and the normalization by a of each texture
in the forward transformation guaranty that both variables
in the transformed space are in the range −1 and 1. For the
data collected in this work, the distributions of Texture1 and
Texture2 are close to a uniform distribution and a normal dis-
tribution, respectively. These properties facilitate the model-
ing phase compared to having skewed, sparse distributions or
numerically noisy values that were observed using standard
ALR transform. The variables Texture1 and Texture2 are then
modeled and predicted separately. This leads to no guaranty
that after applying a straightforward back-transformation to
the predictions, the texture fractions would sum up to a, nor
that each of them is greater than or equal to 0. For these
reasons, the back-transformation applied to the prediction is
slightly modified to guaranty that these constraints are re-
spected, and it reads:

x1 = 2Texture1 , x2 = 2Texture2 , (6)

C =max
(

0,
3− x1− x2

1+ x1+ x2

)
, (7)

S =max(0,x1C+ x1− 1) , (8)
L=max(0,x2C+ x2− 1) , (9)
T = S+L+C, (10)
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Sand=
a

T
S, Silt=

a

T
L, Clay=

a

T
C. (11)

2.9 Model calibration and prediction of soil properties

For each property, the data set is first partitioned into three
subsets: (1) calibration, (2) training, and (3) stratified test
sets, with an approximate ratio of 1 : 8 : 1. The calibration set
is used for feature selection and hyperparameter tuning, the
training set for model development, and the hold-out test set
for final evaluation. The hold-out test set is not used for any
other purpose but for accuracy assessment. When the data set
is large, to prevent the excessive data volume from skewing
the process, we cap the calibration and test set sizes at 8000
and 6000 samples, respectively. For calibration and test sets,
we use spatial subsetting with a standard density of points per
100 km by 100 km tile (for example, a maximum of 2 points
per tile). This ensures that the overall density of points is
standard and that there are no geographical groups (Roberts
et al., 2017), similar to the approach used in Poggio et al.
(2021). The data set partition scheme is represented in Fig. 4.

For feature selection, we use Repeated Subsampling-
Based Cumulative Feature Importance (RSCFI), a variant
of Recursive Feature Elimination with Cross-Validation
(RFECV) (Wadoux et al., 2020). RSCFI optimizes model
performance while efficiently eliminating less rele-
vant covariates, achieving results comparable to those
of RFECV. Hyperparameter tuning is performed using
HalvingGridSearchCV (Pedregosa et al., 2011), a
resource-efficient approach that iteratively narrows down
the best parameter combinations, optimizing the Lin’s
Concordance Correlation Coefficient (CCC).

After calibration and accuracy assessment, the whole
dataset was used to train the Tree-Based Quantile Regres-
sion Forest (TB-QRF) and the RF models. We used the
compiled versions of these models to produce predictions
at 30 m resolution. In addition, we used the non-compiled
version of the models to retrieve the single-tree outputs to
produce 120 m resolution maps that also include quantiles
0.16 and 0.84 for uncertainty estimation. The entire pipeline
has been developed using open-source code and integrated
into the scikit-map library (https://github.com/openlandmap/
scikit-map, last access: 6 June 2025). The combination of
QRRF and RSCFI helps reduce model complexity, with-
out suffering from multicollinearity effects. We consider the
QRRF and RSCFI combination, hence, to be over-fitting-
proof and not impacted with the multicollinearity in covari-
ates.

The predictions are run per 1° by 1° tiles (∼ 120 km by
∼ 120 km) using parallel computing over 10 CPU servers
and by reading from 17 storage servers to the central stor-
age data lake (SeaweedFS file service). The world land mask
can be represented with about 18 500 120 km tiles. After pre-
dicting target variables per tile, global mosaics are built us-
ing GDAL to produce complete, consistent Cloud-Optimized
GeoTIFFs, one global scale (whole land mask) file for each

combination of variable, time-frame, depth-range, and mean
or quantile. Prediction is the most costly part of the data
production, with each soil property taking at least 3 d of
HPC with about 1500 threads and 14 TB of RAM to produce
space-time predictions of a single soil property. The final
output mosaics contain variable type, reference method and
measurement units, depth interval, and reference begin/end
year in the file name (see https://github.com/openlandmap/
soildb, last access: 6 June 2025, for more details).

2.10 Block predictions in spacetime

We produce in memory point predictions for the years 2000,
2005, 2010, 2015, 2020 and 2022, and soil depths 0, 30,
60, and 100 cm; these are then averaged in 2 by 2 spatio-
temporal blocks that represent timeframes of 5 years with
one year overlap (excluding the last timeframe) and variable
depth ranges:

spbi,j =
Pi,j +Pi+1,j +Pi,j+1+Pi+1,j+1

4
, (12)

as also shown in Fig. 5.
We decided to use block predictions as most of the users

require predictions of soil properties per standard depth in-
tervals. We also block-predictions in time primarily to re-
duce interannual variability, especially interannual oscilla-
tions coming from Landsat-derived indices. Note that while
depth is a feature of the model, the prediction year is not.
However, the prediction year was used to determine the spe-
cific layers to use in time-dependent features, so the models
are fully temporally consistent.

2.11 Derivation of the per-pixel prediction uncertainty

To produce per-pixel uncertainty, we use the TB-QRF (Mein-
shausen, 2006), where the output of each single tree in the RF
has been used to derive the prediction intervals:

ŷ1stb1,1
= [P1,1,P1,2,P2,1,P2,2]

ŷ2stb1,1
= [P1,1,P1,2,P2,1,P2,2]

ŷ3stb1,1
= [P1,1,P1,2,P2,1,P2,2]

· · ·

ŷN stb1,1
= [P1,1,P1,2,P2,1,P2,2]

(13)

where ŷ1stb1,1
is the mean prediction from the individual tree

(out of a total of N trees). These are then used to derive the
lower and upper 68 % probability quantiles:

ŷlower =Q0.16

({
ŷ1stb1,1

, ŷ2stb1,1
, · · ·, ŷN stb1,1

})
, (14)

ŷupper =Q0.84

({
ŷ1stb1,1

, ŷ2stb1,1
, · · ·, ŷN stb1,1

})
. (15)

Note that compared to other QRF the distribution is ob-
tained from a list of tree outputs and not from the single
leafs. We decided to predict the quantiles 0.159 and 0.842
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Figure 4. Schematic partition of the soil properties dataset. For each property, the whole dataset including pseudo-points (Ypp) is divided
in calibration (Ypp,c), training (Ypp,t), and stratified test (Ypp,s) sets, with an approximate ratio of 1 : 8 : 1. The calibration dataset is used to
perform hyper parameters tuning and features selection. The optimized model structures is trained with the Ypp,t set under three different
validation setups: stratified testing, 5-folds spatial blocking CV and leave-one-year-out (LOYO) CV. In all the testing phases of the validation,
the pseudo-points were removed from the test sets, so using Ys or splits of Yt. The obtained results are used to derive all the reported accuracy
metrics. The whole dataset is instead used to train the final model used for predictions.

Figure 5. Spatio-temporal prediction blocks scheme: predictions are generated for four space-time points, then averaged to derive mean
prediction and lower and upper prediction intervals. Note that at the time of analysis no ARD Landsat data was available for 2023–2025,
hence for the last period the block support is < 5 years.
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to lead to a 68 % interquartile range (IQR) and assuming a
Gaussian distribution, 68 % interval corresponds to the ±1
standard deviation. To derive 1 standard deviation prediction
error from the lower and upper intervals, users should calcu-
late the range and then divide by 2.

In addition, compared to 90 % or 95 % IQRs, this allows
us to have a smaller number of trees (e.g. 64) in the RF
without leading to artifacts in case of noisy trees or covari-
ates that are generally in the extremes of the distribution,
and therefore speed-up computing. For variables with more
complex distributions, for example, log-normal, gamma, or
multi-modal distributions, dividing the upper minus lower
range by 2 should be used with caution, as also the predic-
tion distributions per pixel are often skewed, and hence the
true errors might not match the approximated 1 std. It is also
possible to save all N trees as independent predictions, and
hence the users could then derive any arbitrary quantile or do
per-pixel statistical tests.

To derive both predictions and prediction uncertainty on a
global scale, we used a hybrid Python/C++ implementation
of TB-QRF and RF Python/C++ where the models are fit-
ted using the scikit-learn library in Python, then translated
to C++ source code and compiled using tl2cgen. Spatio-
temporal overlay and predictions were also performed using
C++ interfaced with Python within the scikit-map library. Fi-
nally, although TB-QRF is a fairly robust method and is ap-
plied to all regression problems, it can sometimes over- or
under-estimate actual prediction errors, and therefore we also
test the accuracy of the prediction intervals using the proce-
dure described in Tian et al. (2025b).

2.12 Model calibration and prediction for soil types

For modeling and mapping soil types, we also use the RSCFI
framework, but with the difference that we develop two mod-
els: RF and LightGBM (Ke et al., 2017); the final predic-
tions are then generated as an ensemble model by averaging
the two. The approach is based on fitting models to features
that are potentially valuable and selecting them based on the
mean decrease in impurity. To enhance robustness, the model
was trained 50 times, each time using different bootstrap-
sampled subsets (80 %) of the calibration data set, selected
by spatial blocking (100 by 100 km blocks). Features below
the mean importance threshold were discarded in each iter-
ation. To optimize computational burden, we selected 100
features that were consistently repeated in at least 25 model
runs in both models. The final selected features were applied
to the calibration and validation data sets before hyperparam-
eter tuning.

2.13 Cross-validation and quality control

We decided to run the evaluation of soil properties models
in three different modalities: (i) on a test set derived from
stratified sampling based on Köppen–Geiger climate classi-

fication from CHELSA V.2.1 (Karger et al., 2017), (ii) with a
5-fold spatial blocking CV with 100 km by 100 km tiles, and
temporal CV using the leave-one-year-out (LOYO) approach
(Fig. 4). We consider the results of the accuracy assessment
using the test set to give an overoptimistic estimate of the
mapping accuracy and the results of temporal and spatial CV
to give an over-pessimistic estimate: we expect that the actual
accuracy is between the two numbers.

For each model, we report RMSE, mean error (bias),
R-squared (R2), Lin’s concordance correlation coefficient
(CCC), defined as:

RMSE=

√√√√1
n

n∑
i=1

(yi − ŷi)2,

bias=
1
n

n∑
i=1

(yi − ŷi),

R2
= 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 ,

CCC=
2rsysŷ

(ȳ− ¯̂y)2+ s2
y + s2

ŷ

, (16)

and the fraction of Tweedie deviance explained (D2) (Hastie
et al., 2015; Pedregosa et al., 2011), calculated as:

d(yi , ŷi )=

(yi − ŷi )2, p = 0 (Normal)

2
[
yi log

(
yi

ŷi

)
− yi + ŷi

]
, p = 1 (Poisson)

2
[
log

(
ŷi

yi

)
+

yi

ŷi
− 1

]
, p = 2 (Gamma)

2
[

y
2−p
i

(1−p)(2−p) −
yi ŷ

1−p
i

1−p
+

ŷ
2−p
i

2−p

]
, otherwise

D2
= 1−

∑n
i=1d(yi , ŷi )∑n
i=1d(yi , ȳ)

, (17)

where yi is the observed value, ŷi is the predicted value, ȳ

is the mean value, n is the total number of samples, r is the
Pearson correlation between y and ŷ, s2

y is the variance of the
observed values, s2

ŷ
is the variance of predicted values, and ¯̂y

is the mean of predicted values. Finally, to asses performance
in quantifying uncertainty, we also report Prediction Interval
Coverage Probability (PICP), computed as the ratio of ac-
tual values that reside inside a model’s estimated confidence
intervals for the corresponding predictions.

For cross-validation, we consistently make sure that train-
ing vs. validation data do not have the same coordinates, i.e.
do not belong to the same sites. Using samples from the same
profiles has been shown to lead to over-fitting as the model
is able to cross-predict values; therefore, blocking values and
enforcing an equal spread of points throughout the globe is
important to avoid biased predictions (Roberts et al., 2017;
Hackländer et al., 2024).

Note that, for log-normally distributed variables such as
SOC, we report RMSE and CCC in log-space. Although
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RMSE in log-scale is abstract and difficult to interpret, how-
ever, for log-normal variables RMSE in original scale is of-
ten overly sensitive to high values (e.g. < 1 % very high val-
ues can double or triple RMSE), so that it becomes difficult
if not impossible to compare performance of two models.
Log-scale RMSE, on the other hand, allows comparing pre-
dictive performance of models where SOC training points
come from either agricultural or forest soils. We further use
log-scale RMSE to run simulations (using log-normal dis-
tribution) to try to detect numeric resolution and detectable
changes in SOC.

2.14 Spatial dependence analysis for residuals

To evaluate the spatial structure of the prediction residuals,
we computed empirical semivariograms of the absolute pre-
diction errors. In an operational setting, this means that vari-
ograms are fitted per each of the six continents (Antarctica
is excluded). Prediction errors were obtained through 10-
fold cross-validation explained in the previous sections. The
coordinates were reprojected to continent-specific azimuthal
equidistant projections (Equi7) to assist in the distance cal-
culation (Bauer-Marschallinger et al., 2014). For each con-
tinent, pairwise distances and squared differences in predic-
tion errors were computed, and the empirical variogram was
derived by binning these differences into 5 km distance inter-
vals, up to a maximum lag of 125 km. A Locally Weighted
Scatterplot Smoothing (LOWESS) smoothing line was fit-
ted to the binned semi-variance estimates to visualize spatial
trends. To support interpretation, we also fit spherical var-
iogram models to data within a truncated spatial range of
125 km. GLanCE pseudo-observations were excluded from
the analysis to avoid distortion of spatial dependencies.

2.15 Soil property change analysis against land cover
change

To compare changes in soil properties for 2000 to 2022+
versus land cover change, we used a total of 12 500 unique
spatial locations sampled following the strategy described in
Hackländer et al. (2024). This is a point data set generated
using the stratified random sampling approach and excluding
areas covered by permanent water or ice (Brus, 2022). Each
sampled point was overlaid with predicted maps of SOCd
and pH for the periods 2000–2005 and 2020–2022, as well
as the ESA CCI land cover maps for the years 2000 and
2020 (ESA, 2017). Based on this overlaid dataset, spatially
matched changes in SOCd and pH were derived and linked to
the corresponding land cover transitions for analysis and vi-
sualization. For each change class (e.g. broad-leave forest to
pasture), we derive the mean SOCd and soil pH change value
and the distribution of values. These values are then reported
and sorted to see which land use change categories result in
larger changes in soil properties, i.e. to detect which are the
key drivers of change.

2.16 Extrapolation risk assessment

Extrapolation often leads to decreased performance in ma-
chine learning models, but it is an unavoidable aspect of
large-scale spatial mapping. Several methods exist to iden-
tify predictions made in dissimilar feature spaces, includ-
ing the Area of Applicability (AOA) (Meyer and Pebesma,
2021), Isolation Forest (Liu et al., 2008), and Homosoils
(Nenkam et al., 2022). Given the extensive spatial scope
and computational demands of this study, we selected the
Isolation Forest algorithm due to its efficiency and suitabil-
ity for non-normally distributed multivariate datasets (Liu
et al., 2008). Isolation Forest detects regions of the fea-
ture space that differ from the training data by recursively
partitioning the dataset and isolating individual samples.
It works by constructing an ensemble of randomly gener-
ated trees and calculating an anomaly score based on the
average path length required to isolate a sample. Samples
located in low-density or unfamiliar regions of the fea-
ture space generally require fewer partitions, resulting in
shorter path lengths and thus higher anomaly scores. We used
the ensemble.IsolationForest implementation of
scikit-learn (Pedregosa et al., 2011) to generate these scores.
The average path length within the training data set serves
as a baseline threshold to distinguish between in-sample and
out-of-sample predictions (Liu et al., 2008). To effectively
communicate the extrapolation risk to users, we normalize
the anomaly scores on a scale 0–1, where higher values rep-
resent greater extrapolation risk for a given sample or pixel.
The threshold separating the in-sample and out-of-sample re-
gions was similarly rescaled to this normalized scale, ensur-
ing consistency with the extrapolation risk probability maps
delivered to end users.

3 Results

3.1 Harmonization of training data

After multiple rounds of import, binding and internal tests,
we finally prepared about 216 000 soil samples with soil car-
bon density (kg m−3), 408 000 soil samples with soil car-
bon content (g kg−1), 272 000 samples with soil pH in H2O,
363 000 samples with clay, silt, and sand content (%), and
134 000 samples with bulk density oven dry (t m−3), which
we consider to be analysis-ready. The additional samples
from pseudo-observations from the PTF helped us increase
the number of training points for mapping the SOC density
from 227 000 to 305 820.

The final density of the training points prepared for the
soil carbon, pH, soil texture fraction, and soil type mapping
is shown in Fig. 6. Compared to some previous global mod-
eling attempts (Poggio et al., 2021; Padarian et al., 2022b),
our training data is harmonized to a single standard, e.g.,
DC method for SOC and try to equally represent the diver-
sity of biomes and land use systems: from agricultural soils,
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Figure 6. Density of training points used to build global predictive mapping models, and quality control plots for a number of key variables:
(a) soil samples with soil organic carbon and/or soil pH, (b) soil profiles with soil taxonomy class, and (c) temporal coverage of samples
from several larger datasets. Only points collected after year 1999 were used for modeling soil properties. For soil type mapping and to match
high resolution covariates, we prioritize using points that are collected with GPS accuracy.
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forests, and specific biomes such as tropical peatlands to
mangrove forests. The final harmonized points are available
via https://soildb.openlandmap.org (last access: 6 June 2025)
(the publicly available data; exclude LUCAS soil samples
and similar) and will be continuously updated.

3.2 Accuracy of soil properties predictions

Results of validation using the stratified test data (hold-out
samples) show RMSE of 17.7 [kg m−3] (0.486 in log-scale)
and CCC of 0.88 for SOC density, RMSE of 51.3 [g kg−1]
(0.574 in log-scale) and CCC of 0.87 for SOC content,
RMSE of 0.15 [t m−3] and CCC of 0.92 for bulk density
of fine-earth, RMSE of 0.51 and CCC of 0.91 for soil pH,
RMSE of 8.4 % and CCC of 0.87 for soil clay content, RMSE
of 9.9 % and CCC of 0.87 for soil silt content, and RMSE of
12.6 % and CCC of 0.84 for soil sand content respectively.
These accuracy levels match or exceed the accuracy levels
reported in Poggio et al. (2021). Our predictions appear to
be potentially more accurate for soil pH (our results RMSE
0.51 vs. 0.77), bulk density (our results RMSE 0.15 vs. 0.19),
and texture fractions (our results RMSE 8.4 % vs. 13 % for
clay content). Note that RMSE as an accuracy metric for
log-normal/skewed variables is of limited use and probably
should be avoided as RMSE is highly sensitive on few high
values (e.g., organic soils); hence we are not able to compare
our results to the results from SoilGrids V2 for SOC content.
Based on the D2 metric (distribution independent), the best
performing variables appear to be soil pH, bulk density, and
texture fractions, but all numbers are in principle compara-
ble and in the range 0.70–0.85 for the holdout samples. We
recommend to other groups to also report their D2 metric as
this seems to be distribution-independent; in the case of log-
normal variables, we recommend estimating RMSE also in
the log-space (natural logarithm).

The PICPs for the target prediction interval (68 %) for the
SOC density, SOC content, bulk density, and pH models are,
respectively, 63 %, 67 %, 38 % and 57 %. While for SOC
density and content the values are quite close to the ideal
scenario, pH and in particular bulk density, the PICPs are
quite smaller than the target PI. This motivated us to also
check the quantile coverage probability (QCP), from which
we can see that for the pH, the difference is reasonable and
symmetrically deriving from upper and lower quantiles. For
bulk density instead, the lower density is drastically off, and
only converging to good performance around PI 90 %. In fu-
ture versions, we can focus on improving the PICP for bulk
density and predicting bulk density in space-time. Finally, the
PICPs for texture fractions are 57 %, 64 % and 57 % for sand,
silt and clay, respectively.

The accuracy results for different validation strategies are
shown in Fig. 7. These show a clear difference between strat-
ified testing and spatial CV (with blocking), which was also
expected. In general, we consider that temporal and spatial
CV give the most pessimistic accuracy results and stratified

testing gives independent results, but because we do not re-
ally have a probability sample, we consider these results po-
tentially over-optimistic. For example, for predicting SOC
density, CCC is between 0.73–0.88; for soil pH, the RMSE
is between 0.51 and 0.83. The difference in D2 for all vari-
ables between stratified hold-outs and spatial blocking ap-
pears to be the largest, with values for SOC density, for ex-
ample, ranging between 0.68–0.84. It is interesting to ob-
serve that the temporal CV achieves accuracy similar to that
of the spatial CV indicating that indeed models fitted over a
longer period of years (25+ years) can be used to predict also
new years e.g. 2025, 2026 for which we maybe have no new
training points. The predicted soil property maps also show
very gentle changes, with most pixels (> 90 %) not changing
much from period to period.

Table 1 shows the results of the accuracy assessment for
the target soil properties for different standard depths: 0–
30, 30–60 and 60–100 cm. These results indicate that, as
expected, the highest accuracies for SOC density and con-
tent are achieved for the top soil: CCC drops from 0.84 to
0.76 going from 0–30 to 60–100 cm. However, the differ-
ence in accuracy between depths in our results appears to
be in general minor, with most values oscillating ± 5–10 %
between different depths (Table 1). This is a somewhat un-
expected result, although for SOC density and similar the
values at higher depth are also significantly lower, so pos-
sibly this is why the errors are also in average lower even
though models are typically based on much fewer points than
what is available for top-soil. Table 2 shows differences in ac-
curacy for different continents based on Equi7grid zones (6
continents) (Bauer-Marschallinger et al., 2014). On average,
CCC seems to be comparable with no continent perform-
ing significantly worse. It seems that Asia shows the most
accurate predictions, although there also seem to be signifi-
cantly less points available for that continent, hence this over-
performance might just be effect of low density of points.

Our results of cross-validation also show some bias in pre-
dicting SOC content and SOC density and clay content, with
our models potentially over-predicting smaller SOC values
and under-predicting higher clay content. This indicates that
it is important to use prediction intervals (we provide lower
and upper prediction intervals as maps as shown in Fig. 9) to-
gether with predictions to incorporate the uncertainty of these
models.

Semivariograms representing spatial autocorrelation of
model residuals for SOCd are shown in Fig. 10. Except for
North America, residuals show either no spatial autocorre-
lation structure or spatial dependence at shorter distances,
i.e. up to maximum 10–20 km. Considering that only a frac-
tion of the points are available at distances of < 10 km. We
hence do not consider kriging of residuals for these data, al-
though for further merging with local data combining vari-
ogram modeling with RF could help increase accuracy.
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Figure 7. Accuracy plots for (a) soil organic carbon density [kg m−3], (b) soil organic carbon content [g kg−1], and (c) soil pH H2O based
on the (left) stratified testing set, (center) spatial cross-validation, and (right) temporal cross-validation (LOYO). CCC for SOC density
and content are derived in log-scale; RMSE based on stratified testing for SOC density and SOC content in log-scale is 0.486 and 0.574
respectively.

3.3 Key covariates explaining global distribution of
targeted soil variables

The results of variable importance for the soil variables of in-
terest are shown in Fig. 11. For SOC density, it is especially
interesting to see that Landsat-derived GPP (30 m resolution,
bimonthly aggregated to annual) comes in the top three most
important covariates (see R1). Conceptually speaking, we ex-
pect that primary productivity is the key source of SOC, at
least in natural vegetation systems. As expected, depth ex-
plains almost 30 % of variability in the SOC distribution and
is distinctly at the top, which justifies the use of soil depth as
a covariate.

The global distribution of soil pH can be primarily ex-
plained by the CHELSA Aridity Index (long-term), annual
precipitation, and the grade of salinity (Ivushkin et al., 2019).

The correlation plots in Fig. 12 show how the top 4 most im-
portant variables listed for the SOC density correlate with
each other as shown using 1 : 1 density plots: higher GP-
P/higher vegetation index and cooler climates convert to
higher SOC. SOC density and soil depth are close to linearly
correlated on a log-log scale, as are SOC density and GPP.
This also illustrates that the uncertainty of individual driving
factors is still relatively high.

3.4 Accuracy of soil type predictions

The results of the accuracy assessment using spatial blocking
for the soil subgroups (818) show that, as expected for this
high number of classes, the F1 score does not exceed 0.30.
We observed log loss of 2.49, 2.74 and 2.46 for RF, Light-
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Figure 8. Accuracy plots for (a) sand fraction [%], (b) silt fraction [%], and (c) clay fraction [%] based on the (left) stratified testing set,
(center) spatial cross-validation, and (right) temporal cross-validation (LOYO).

GBM and the ensemble model; and a F1 score of 0.23, 0.30
and 0.30 respectively. Overall, the ensemble model seems to
be justified, although the difference in accuracy is marginal.

Figure 13 shows the 30 most important variables for the
RF and LGB ML models displayed together. The features are
sorted in descending order according to the importance val-
ues of the LightGBM model. This indicates that both mod-
els agree with each other in terms of important features, but
there are changes in the order. Elevation (GEDTM30) seems
to be the most important feature in both models. In general,
climate variables from the CHELSA product at 1 km spatial
resolution dominate the list of important features.

Figure 14 shows an example of soil type prediction maps
for Lithic Haploxerolls. The global map reveals places where
Lithic Haploxerolls are more probable, especially in North
America, the Mediterranean, and central Asia. For a more
detailed view, we focused on a small area to illustrate the

small-scale variations compared to the land features depicted
in the satellite imagery. We compared the probability maps
with the OpenLandMap probability maps at 250 m resolution
from 2018 (https://doi.org/10.5281/zenodo.1476844, Hengl
and Nauman, 2018). Since OpenLandMap 2018 does not in-
clude soil subgroups, in this case Lithic Haploxerolls, we ag-
gregated all Haploxeroll subgroups in our map to generate a
comparable probability layer (see Fig. 14d). Overall, the in-
crease in spatial detail is a positive result: predictions help
detect many local features, and could be potentially used for
farm-scale decisions. However, it is difficult to know how
well these predictions match the true patterns in soil polype-
dons in the field.
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Figure 9. Predicted soil organic carbon and soil pH at 30 m resolution with zoom-in on two sample areas, with corresponding satellite images
from Map data © 2025 Google. Soil-depth plots indicate 68 % probability prediction intervals based on the Quantile Regression Random
Forest.

3.5 Comparison with other similar global data sets

Figure 15 shows the difference in spatial detail and general
patterns for an area in Germany. This illustrates the differ-
ence between 30 and 250 m spatial resolution, which in a
case of managed land can be drastic with 250 m completely

missing field boundaries and patterns within the field. The
SOC content predictions from SoilGrids V2 seem to over-
predict the SOC values by a factor of 2–3 times, which is
a known problem with SOC predictions where models have
limited accuracy and most of low values are over-predicted.
Note that it is not easy to compare all possible SOC and pH
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Table 1. Model performance for SOCd, SOC content, BD, and pHH2O across different depth intervals, calculated on the testing set. The
values signed with ∗ are computed in the log(1+ x) space, as illustrated in Fig. 7. Note that “All points” can include also points that are
deeper then 100 cm.

Property Depth (cm) RMSE CCC D2 R2 bias

SOCd

0–30 18.7 0.840∗ 0.617 0.729∗ −3.83
30–60 20.1 0.780∗ 0.615 0.648∗ −2.26
60–100 13.3 0.758∗ 0.569 0.621∗ −2.03
All points 17.7 0.882∗ 0.700 0.792∗ −2.85

SOC

0–30 57.8 0.816∗ 0.665 0.699∗ −10.4
30–60 44.4 0.784∗ 0.637 0.658∗ −7.11
60–100 25.5 0.726∗ 0.477 0.590∗ −4.07
All points 51.3 0.866∗ 0.685 0.768∗ −8.56

BD

0–30 0.141 0.916 0.846 0.846 −0.00160
30–60 0.170 0.893 0.809 0.809 0.00296
60–100 0.157 0.913 0.845 0.845 −0.00367
All points 0.148 0.916 0.847 0.847 −0.00209

pHH2O

0–30 0.528 0.895 0.814 0.814 0.00883
30–60 0.444 0.926 0.867 0.867 −0.000479
60–100 0.490 0.922 0.863 0.863 0.0203
All points 0.508 0.908 0.836 0.836 0.00484

maps as our predictions relate to specific time intervals (e.g.
2000–2005), while many soil mapping products ignore time-
dimension.

In the case of soil texture fractions, bulk density, coarse
fragments, and clay mineralogy, there is probably no need to
map these at shorter time intervals, e.g. < 20 years. In the
case of chemical soil properties, our results show that differ-
ences (changes) will be visible at 5 year intervals, although
in general changes in all soil properties are relatively minor
(gradual), and users need to carefully look and zoom in to
notice any changes.

In general, the investment in processing global 30 m res-
olution data seems to be paying off, and the spatial detail
of our predictions is comparable to that of Helfenstein et al.
(2024). The differences between our predictions and national
predictions open an opportunity for further local-global data
fusion. Some ideas on how to implement this are mentioned
further in the discussion section.

3.6 Detected trends in soil organic carbon density and
soil pH

Based on the predictions, we also derived changes in soil
properties corresponding to land cover transitions using the
sampled point data set. The distributions of the SOCd and pH
changes between 2000 and 2022+ across the most promi-
nent land cover change classes are visualized in Fig. 16. In
general, both SOCd and pH exhibit decreasing trends for
these change classes. Transitions involving tree loss such
as “Tree cover broadleaved evergreen 7−→ Mosaic crop-
land or natural vegetation” (TREBE-MCRNV), “Tree cover

broadleaved deciduous 7−→Mosaic cropland or natural veg-
etation” (TREBD-MCRNV), “Tree cover broadleaved decid-
uous 7−→ Cropland rainfed” (TREBD-CRPRF), “Tree cover
needleleaved deciduous 7−→Mosaic tree and shrub or herba-
ceous cover” (TREND-MTSHH) and “Tree cover needle-
leaved evergreen 7−→ Grassland” (TRENE-GRASS), are as-
sociated with stronger negative trends in SOCd.

These results align with the findings that SOC loss in
the tropics is largely driven by deforestation (Fig. 17), al-
though increasing droughts and forest fires could also be the
main driver of this trend (Naval et al., 2025). For other land
cover transitions, the decrease in SOCd is less pronounced.
Changes in pH exhibit a relatively uniform distribution in all
examined land cover change classes, with a slight trend to-
ward acidification. We finally estimate that the world has lost
11 Pg of SOC from 2000 to 2022 based on these results. Note
that, due to the limited availability of training data, especially
for the Russian Federation, the actual loss of SOC could be
even higher.

4 Discussion

4.1 Summary findings

We implemented a High Performance Computing system
(EO-SoilMapper) to map dynamic soil properties at multi-
ple depths (0–30, 30–60 and 60–100 cm) over time (5-year
intervals from 2000–2022+) and with uncertainty quantified
per pixel. This allowed us to produce complete, consistent
and current predictions of some key soil properties such as
SOC content, SOC density, soil pH, and soil types at un-
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Table 2. Model performance for SOCd, SOC content, BD, and pHH2O, Sand, Silt and Clay across different continents (AF = Africa, AS =
Asia, EU = Europe, NA = North America, OC = Oceania, SA = South America). Compare with Table 1.

Property Metric AF AS EU NA OC SA

SOCd

RMSE 6.27 11.74 13.19 18.71 8.11 38.78
D2

1.5 0.75 0.77 0.71 0.68 0.85 0.41
CCClog(1+x) 0.87 0.92 0.86 0.87 0.94 0.81
Nsamples 273 74 906 1697 545 234

SOC

RMSE 6.85 25.2 63.74 57.17 19.01 23.01
D2

1.5 0.8 0.95 0.59 0.65 0.82 0.75
CCClog(1+x) 0.9 0.95 0.81 0.85 0.89 0.89
Nsamples 375 84 1487 1826 428 569

BD

RMSE 0.07 0.08 0.19 0.17 0.15 0.14
D2

0 0.88 0.95 0.7 0.85 0.85 0.83
CCC 0.93 0.98 0.81 0.92 0.92 0.91
Nsamples 1297 433 1248 1850 724 394

pH

RMSE 0.49 0.32 0.55 0.49 0.54 0.46
D2

0 0.83 0.93 0.82 0.85 0.81 0.79
CCC 0.9 0.96 0.9 0.92 0.89 0.88
Nsamples 600 108 1684 2478 607 524

Sand

RMSE 13.26 10.03 14.23 12.2 11.86 11.35
D2

0 0.82 0.93 0.72 0.84 0.79 0.82
CCC 0.9 0.96 0.82 0.91 0.88 0.9
Nsamples 1667 337 863 2559 90 479

Silt

RMSE 9.47 6.87 11.13 10.55 4.73 7.82
D2

0 0.57 0.76 0.65 0.74 0.63 0.6
CCC 0.81 0.95 0.77 0.85 0.83 0.84
Nsamples 1667 337 863 2559 90 479

Clay

RMSE 8.31 6.57 8.07 8.57 10.56 9.26
D2

1 0.73 0.73 0.68 0.77 0.73 0.7
CCC 0.89 0.93 0.78 0.85 0.85 0.87
Nsamples 1667 337 863 2559 90 479

precedented spatial resolution. We refer to this data set as
the “OpenLandMap-soildb”. Our ambition is to continuously
update, expand and improve these data to serve the global
good, especially to support projects such as the United Na-
tions Convention to Combat Desertification (UNCCD), Land
Degradation Neutrality, open source carbon accounting, and
soil health monitoring across borders.

We evaluated the accuracy of prediction models using
stratified testing based on climate zones, 5-fold spatial block-
ing cross-validation, and LOYO using best quality data. The
results show improvements in terms of spatial detail (Fig. 15)
and accuracy (Fig. 7) for SOC content, SOC density, and
soil pH, compared to previous global soil mapping initia-
tives (Hengl et al., 2017; Poggio et al., 2021). Having a time-
series of predictions based on a single model allows compar-
ing changes over time, which is especially interesting when
it comes to tracking chemical soil properties such as SOC
and soil pH (Fig. 16). The loss of carbon density is known

to be related to land degradation, which often begins with
deforestation, draining of wetlands, and similar. Naval et al.
(2025) found that annual forest burning depletes soil C stocks
(0–30 cm) by 16 %, triennial burning by 19 %, and long-term
agriculture by 38 % (compared to undisturbed forest in the
tropics). Our results show that the SOC losses for the last
25+ years are primarily driven by deforestation and the re-
moval of peatlands.

These results of the accuracy assessment confirm that the
time invested in preparing these data at high spatial reso-
lution (30 m) was worthwhile. This required significant ef-
forts to prepare and fine-tune the training data and input
covariate layers, in addition to the technical challenges of
processing these data in a cost-effective way. It was espe-
cially tedious to import and bind all national and interna-
tional soil laboratory measurements and observations into a
single analysis-ready training data set. Laboratory soil data
are often only available in parts and without any standard
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Figure 10. Sample semi-variograms of SOCd prediction residuals across six continents (10-fold CV), with distances computed using
continent-specific equal-area projections. Binned every 5 km up to 125 km (dark blue dots an line), smoothed by LOWESS (pink). GLanCE
points (pseudo-observations) were excluded.

Table 3. Total carbon stocks (Pg) by period and soil depth.

Period Depths [cm] Lower (p16) Mean Upper (p84)

2000–2005
0–30 249 472 899
30–60 151 302 608
60–100 133 289 635

2005–2010
0–30 245 468 898
30–60 147 296 602
60–100 129 284 629

2010–2015
0–30 243 465 891
30–60 148 297 600
60–100 132 285 626

2015–2020
0–30 242 462 885
30–60 147 296 596
60–100 131 285 623

2020–2022
0–30 239 461 890
30–60 144 293 599
60–100 128 283 627
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Figure 11. Variable importance plots for soil organic carbon density, soil organic carbon content, and soil pH.

schema: to fully document all harmonization steps can be ex-
tremely lengthy, and eventually we had to often make expert
decisions, resulting in the extensive code-base provided at
https://soildb.openlandmap.org. We will continue to extend
this data and make the process transparent/open source.

We have released all the data produced as open data (CC-
BY license), available via an interactive app at https://world.
soils.app (last access: 6 June 2025), and have exposed our
workflows currently implemented via the scikit-map package
calling for the establishment of open development communi-
ties, comparable to the Open Soil Spectral Library (Safanelli
et al., 2025), to help maintain and improve these data. In
the next sections, we discuss limitations of the data, suggest
some recommended uses of them, and envision future devel-
opment directions.

4.2 Towards a more accurate estimate of soil dynamics

One of the significant results of this work is that we have
been able to estimate SOC stocks based on detailed SOC den-
sity maps. Our results show (Table 3) the global stocks for
each spatio-temporal block. For example, the carbon stock
for the 0–30 cm depth interval in the most recent time-frame
(2020–2022+) is estimated to be 461 Pg (Peta grams) for
114 million km2 (excluding Antarctica, Greenland, deserts,
and permanent ice/snow) with a 68 % probability range of

239–890 Pg. We further estimate that the total stocks for 0–
1 m of the soil depth is 1037 Pg. This number is somewhat
higher than what is reported by Padarian et al. (2022b), but
also significantly less than what several other sources suggest
(Jackson et al., 2017; Lin et al., 2022).

The significant amount of SOC in our predictions in the
subsoil is mainly contributed to the northern hemisphere and
tropical peatlands. In the rest of the world, deeper soils typ-
ically contain only a fraction of the total SOC e.g. 10 %–
15 % of the total stock for 30–200 cm. Our predictions of
high SOC stocks for northern latitudes (> 55°) should be
taken with caution, as we had limited training data for Rus-
sia. Our predictions for northern latitudes are likely based
on two main data sources: the Northern Circumpolar Soil
Carbon Database (NCSCD) (Hugelius et al., 2013b) and the
Interior Alaska Carbon and Nitrogen stocks (Manies et al.,
2020). These data sets appear to represent northern peatlands
and wetlands with obvious right skewness toward high SOC
density (Fig. 18). Most of the literature agrees that most SOC
stocks in the world belong practically to Canada and the Rus-
sian Federation (Scharlemann et al., 2014; Crowther et al.,
2016). We now provide predictions of SOC density at high
spatial detail. An important note here is that many of the
tundra and taiga areas of the world, although probably have
a high SOC content, are also shallow soils with a signifi-
cant amount of coarse fragments. Although we corrected for
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Figure 12. Scatterplots for the top 4 most important variables for modeling SOC density. GPP= annual Gross Primary Productivity based on
Landsat; NDVI = Normalized Difference Vegetation Index (0–255 values); CHELSA Bioclim 5 = the highest temperature of any monthly
daily mean maximum temperature.

coarse fragments during the derivation of the SOC content,
many soil profiles do not report coarse fragmentation, so the
actual stocks we estimated could be somewhat lower in fact.
We plan to add coarse fragments, depth to bedrock, and sim-
ilar to the list of variables for global soil mapping in the next
update. Many soil properties are, in fact, (quasi-)static e.g.
clay mineralogy, lithology and parent material, also bulk den-
sity and similar do not change even at a scale of few hundred
years, and hence need only high quality long-term estimates.
The bulk density (BD) of the fine-earth fraction, however, is
controlled by SOC content; thus, because SOC changes, we
can assume that BD might also change and hence need to be
also mapped in spacetime.

Our results further show that the planet has lost at least
11 Pg of SOC for 0–30 cm in the period 2000–2022+. We
think that this is probably a conservative estimate as our mod-
els possibly smooth out and also miss especially some peat-
lands in the tropics. It is important to note that this number
is derived directly from the data. We make no assumptions
or apply change functions that represent the processes and/or
drivers of the SOC change (e.g. Padarian et al., 2022b). We
hope to improve this estimate with each new update of the
predictions, which will hopefully be driven mainly by the
addition of more and higher quality training points.
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Figure 13. Variable importance plots for soil type mapping using RF and LGB models. Labels are colored based on the model (RF or LGB)
that assigned the highest importance to each feature.

4.3 The OpenLandMap approach to global soil mapping

Having a 30 m resolution data product means that the state-
of-the-art global soil mapping is on a path to becoming com-
patible (in terms of spatial detail, consistency, and complete-
ness) with high-resolution global layers such as land cover
(Potapov et al., 2020), cereal extent (Van Tricht et al., 2023),
forest canopy (Turubanova et al., 2023), and similar. Our
predictions span almost 25 years and therefore can be used
to detect changes, i.e. this is now potentially a farm-scale,
decision-ready geospatial soil database. Our trend analysis
based on space-time predictions visually shows that the de-
crease in SOC is correlated with deforestation, especially in
countries rich in organic soils such as Indonesia (Fig. 17).

We model dynamic soil properties using a data fusion ap-
proach, that is, using an extensive combination of time se-
ries of EO-based biophysical indices, climatic variables, ter-
rain variables, variables representing human impact, and us-

ing pseudo-observations to help incorporate soil knowledge
into ML (Fig. 1). Compare with the approach of van Wese-
mael et al. (2024), for example, who decided to fit two sep-
arate models – one for areas with enough bare-soil spectra,
one for areas permanently covered with vegetation such as
grasslands and forests (bare-soil spectra are often only avail-
able for 1/3 to 1/2 of the land mask or less). In our opin-
ion, direct use of bare-soil spectra, for example from Landsat
or Sentinel optical images, although shown to be promising
for mapping SOC in agricultural areas, seems to be applica-
ble only for a narrow niche of mapping top soil in intensely
managed agricultural soils. In our framework, we use instead
a much denser number of long time-series of Landsat in-
dices (bi-monthly to annual) to represent both bare surface
and vegetated spectra. This makes our OpenLandMap-soildb
global soil mapping approach an order of magnitude more
computational, more hyper-dimensional than the approach of
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Figure 14. Example probability maps of soil types: (a) Global probability of Lithic Haploxerolls, (b) Regional probability of Lithic Hap-
loxerolls in the area marked with a red star in the USA in (a), (c) Map data © 2025 Google of the same region, (d) Aggregated probability of
all Haploxerolls, and (e) Probability of Haploxerolls from OpenLandMap 2018 map at 250 m resolution. Lithic haploxerolls training points
are shown as red circles in (a) and (b). Note: the probability maps for Lithic Haploxerolls and aggregated Haploxerolls shown use different
legends – the legend for 250 m predictions have been adjusted to achieve similar contrast.

van Wesemael et al. (2024) and/or Fu et al. (2024), and this
is probably a downside. On the other hand, the advantage of
our approach is that we did not have to fit separate models,
then fix boundary issues etc. Another disadvantage of our ap-
proach is that we underused the potential of extracting bare-
surface soil spectra. In summary, using bare-earth soil spec-
tra and using dense time-series of monthly/bimonthly spec-
tral signatures (our approach) are both valid approaches and
would need to be compared versus the same test data to ob-
jectively compare differences.

From a personal perspective, the scale of the product, due
to the 30 m/120 m spatial resolution, different timeframes
and depths, quantiles and mean, and numerous properties,
required a high computational effort. In general, the produc-
tion phase required hundreds of thousands of CPU hours and
resulted in more than 30 TB of output storage size. Conse-
quently, we had to make compromises in terms of selection of
properties and temporal resolution – currently we only map
5-year periods (averaged over 5-year blocks: 2000–2005,
2005–2010, 2010–2015, 2015–2020, 2020–2022+). For top
soil SOC density we also produced a more granular prod-
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Figure 15. Comparison between SOC content maps of the region in the Netherlands, based on: (A) satellite imagery from Map data © 2025
Google; (B) our model predictions for the 2020–2021 period (0–30 cm depth, 30 m resolution). (C) locally generated national SOC maps (0–
5 cm depth, 25 m resolution, converted from SOM) for the year 2020, produced by Helfenstein et al. (2024); (D) SoilGrids V2 data (0–5 cm
depth, 250 m resolution) released in 2020 (Poggio et al., 2021).

uct with overlapping biannual time-frames to be used as an-
nual product in the range 2015–2022+. In addition, we origi-
nally wanted to also map coarse fragments, depth to bedrock,
macro and micronutrients, and similar (Fig. 19), but these
would have pushed us beyond the project budget. To illus-
trate data volumes, the world’s land mask at 30 m is about
220 billion pixels (Ho et al., 2025), therefore, if we include
multiple depths and uncertainty, only one time period for one
soil property contains more than a trillion pixels. Some vari-
ables such as depth to bedrock have already been mapped
(Shangguan et al., 2017), but only at coarse spatial resolution
(1 km) and with limited accuracy. This is also because only
limited training (point data) on depth to bedrock is available;
depth to bedrock is also a so-called “censored variable” and
might require special modeling framework to account for a
large number of > 200 cm values. Adding depth to bedrock,
coarse fragment fraction, World Reference Base soil types,
and similar are hence a high priority for the next updates.

The preparation, harmonization, and binding of points
(training data) and the preparation of the covariate layers
took almost 60 %–80 % of the OpenLandMap-soildb project

time and was difficult to predict. Consider, for example, the
peatland extent map of the world: currently, there are at least
four overlapping data sets that claim to represent the extent
of the world’s peatlands:

1. WRI’s Global Peatlands extent map at 30 m (250 m ef-
fective resolution) (Gumbricht et al., 2017; Xu et al.,
2018);

2. Peat-ML at cca 8 km (Melton et al., 2022);

3. PEATGRIDS at 1 km (Widyastuti et al., 2024);

4. Global Peatlands Map 2.0 produced by the Global Peat-
lands Initiative (https://globalpeatlands.org/, last access:
6 June 2025);

A practical logical solution for us was to average
between the multiple sources to produce an ensem-
ble extent map with values 0 %–100 % (a probability
map of the world’s peatlands we produced is available
at https://doi.org/10.5281/zenodo.13951438). However, this
takes time and requires maintenance; therefore, many global
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Figure 16. Distribution of soil property changes from 2000–2005 to 2020–2022+ (ridgeline plots; left: SOCd, right: pH) across the top
10 most frequent land cover change classes. TREBE – Tree cover broadleaved evergreen; MCRNV – Mosaic cropland or natural vegetation;
TREBD – Tree cover broadleaved deciduous; MTSHH – Mosaic tree and shrub or herbaceous cover; GRASS – Grassland; CRPRF – Cropland
rainfed; TREND – Tree cover needleleaved deciduous; TRENE – Tree cover needleleaved evergreen. The intensity of the color indicates the
relative density (frequency) of occurrences for each land cover change class within the sampled dataset.

soil mapping projects in essence need to budget for exces-
sive preparation, gap filling, and harmonization of both target
training points and covariates. We currently do not see how
this type of work could be replaced with AI as a team of ex-
perts is needed to open, analyze, compare maps, and design
an original procedure to combine data.

4.4 OpenLandMap-soildb methods and data limitations

Although our cross-validation results show that our predic-
tions are significant, with CCC often exceeding 0.8, it is also
important to list some observed limitations of these data. The
following key limitations should be especially emphasized:

– Soil laboratory data harmonization issues: Although
we have fully documented import, harmonization, and
binding of soil laboratory data, we admit that harmo-
nization based on a simple translation formula (Eq. 4)
and the potential difference in SOC and soil pH values
between different data sets is unknown. We consider
this a noise component and assume that it is random,
but this has not been tested. Many soil observations
and measurement data sets are discontinued/no longer
maintained; hence, it would be difficult to find all orig-
inal data producers and check all reference laboratory
methods used. Liu et al. (2024) shows how even trivial
things, such as differences in soil sample grinding and
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Figure 17. Comparison predictions of SOC density for 2000–2005 and 2020–2022 periods for area in Indonesia. (A) SOCd map for the
period 2000–2005, (B) Satellite imagery from 2014 (Powered by Esri), indicating largely intact forest cover, (C) SOCd map for the period
2020–2022, and (D) ESRI satellite imagery from 2022, revealing extensive clearing and agricultural conversion.

Figure 18. Density plot showing: (a) relationship between SOC density and Bulk Density (fine-earth), and (b) SOC content and SOC density
based on the Northern Circumpolar Soil Carbon Database (NCSCD) (Hugelius et al., 2013b). The right figure shows how the main source of
uncertainty in SOC stock estimates for the world are likely the high variation in the the stocks for soils with > 10 % of SOC.
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Figure 19. Primary soil properties of interest for global soil mapping (Chen et al., 2022), ISO code, temporal granularity and current
availability in OpenLandMap-soildb. The ISO standard code is approximated. Toxic metals include: arsenic, cadmium, cobalt, chromium,
copper, nickel, and lead.

drying processes, can lead to significant differences in
the SOC estimate at the laboratory level. It is very well
possible that we have missed some important metadata
and that our code could be further optimized; we call
soil scientists and soil laboratory data curators to look at
our code (https://soildb.openlandmap.org) and help im-
prove the consistency of data import.

– Large geographical gaps and spatial clustering of train-
ing points: Unfortunately, availability of training data
follows the well-known paradox of all physical geog-
raphy, where places with highest biodiversity/geodiver-
sity usually have proportionally fewer ground observa-
tions and measurements. There is no simple solution for
this. Nevertheless, we have at least made sure that the
hold-out samples (5 %–10 % best quality samples) are
equally distributed to avoid over-representing USA and
Europe.

– Depth is used as a covariate resulting in redundancy
of other covariates: soils are 3D, but our covariates usu-
ally only represent the soil surface (with few exceptions,

e.g., the soil bioclimatic variables (Lembrechts et al.,
2022)). This means that the values of all covariates are
basically copied across all soil depths, leading to re-
dundancy in the training data. Although technically this
is not a problem for decision-tree-based algorithms, re-
dundancy is obvious and this does not appear optimal.
One solution to this problem is to fit separate models
for different depths as in Nauman et al. (2024); another
option is to fit multi-response models where models for
multiple depths are fitted at once, but this would require
that we gap-fill all missing values as multi-response
models require that all values are available across re-
gression matrix.

– Smoothing of some lower/higher values and omission
of potential hotspots: We have compared our predic-
tions of clay content with the SOLUS predictions for
USA (Nauman et al., 2024) to discover that our pre-
dictions miss several hotspots of higher clay content
(> 50 % clay fraction) for example, in the Mississippi
river delta and similar. This is a known issue of regres-
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sion smoothing out values and soil laboratory values
over-representing agricultural soils. Although there is
no simple solution to this problem (without collecting
more training points), we recommend at least that users
incorporate our prediction intervals into their decision
frameworks.

– Limited data with repetitions over time/lack of soil mon-
itoring stations: Unfortunately, unlike meteorological
data, very few soil monitoring projects produce repeated
measurements over time (in meteorology, these are re-
ferred to as “stations”, or in statistics, as “longitudinal
data”). Exceptions are LUCAS soil points and a few
other national/sub-national permanent soil monitoring
networks (e.g. Broeg et al., 2024 and Keel et al., 2019),
where soil surveyors return to the same locations ev-
ery few years. The ideal data set for dynamic modeling
is where the majority of points contain repetitions over
time; in this case we would need at least 4–5 repetitions
so that we can also observe changes in soil properties
per site. In our case, only a few areas (e.g. Europe with
LUCAS soil) have repeated measurements over time,
which means that most of the data (> 80 %) basically
do not overlap spatially. This is a serious limitation and
can only be improved by more countries setting up per-
manent monitoring stations where exactly the same soil
properties are measured at least every 2–3 years.

– Limitations of using multispectral EO data for soil:
Soil-landscapes units are often independent of the land
cover: same soil types and similar soil properties can
be observed across variety of land cover; this requires
that EO data is integrated with hydrological relief vari-
ables, parent material maps and similar. Nevertheless, it
is very possible that some jumps in values in our predic-
tions have nothing to do with the actual soil-landscape
patterns.

– Multicollinearity issues/too many overlapping covari-
ates: In this work, we start with a large number of co-
variates (300+) and many covariates overlap i.e. suffer
from a multicolinearity problem. Using Principal Com-
ponent Analysis or embeddings could help decrease
multicolinearity and decrease model complexity; how-
ever, this comes at the cost of interpretability, and an
additional model (additional modeling step) is needed
to fit e.g. sparse autoencoders. This actually increases
computing significantly, as we need to convert all pix-
els from original covariates to components (so, in fact,
2 rounds of predictions: 1st round to derive compo-
nents/embeddings, and 2nd round to generate predic-
tions). The recent Google Earth Embeddings and Tesera
embeddings (Feng et al., 2025) are the most promising
solution to the multicolinearity problem; however, most
of these are based on Sentinel-2 and cover only a re-
cent period (2017+) and therefore are not suitable for

long-term analysis. In addition, Tessera embeddings and
similar are currently not available globally but only for
certain geographic areas and periods.

Our modeling also suffers from limited harmonization of
the training data. The values of soil properties can differ only
because different laboratory standards and different sampling
designs are used. For example, a country that only sam-
ples agricultural soils and makes all of their soil laboratory
data on sampling and monitoring agricultural land available
could significantly underestimate national SOC stocks, as it
would completely miss various SOC pools in forests, wet-
lands, and peatlands. To produce unbiased global estimates
of SOC changes at the highest possible spatial resolution, the
world needs global unbiased predictive mapping models that
can account for large spatial clustering of training points and
where all values are at least standardized, at best fully har-
monized using interlaboratory collaborations (Safanelli et al.,
2023).

Unfortunately, most international organizations cannot
still fully agree on the standard for the sampling, analysis and
registration of SOC stocks (Even et al., 2025). For example,
the UN’s Convention to Combat Desertification (UNCCD)
currently measures Land Degradation Neutrality at 300 m
spatial resolution focusing on 0–30 cm top-soil only (Cowie
et al., 2018); other organizations require 0–100 cm estimates,
while in Europe soils have been sampled for 0–20 cm depth
intervals (Orgiazzi et al., 2018). In that sense, we also have
high hopes for all the harmonization and networking initia-
tives of the FAO’s Global Soil Partnership (GSP). In particu-
lar, the Global Soil Laboratory Network (GLOSOLAN) is a
promising platform to find international standards that work
for everyone. If these are application-centered and are re-
leased as open data/with code on Github, Codeberg.org or
similar, this could solve many problems of data harmoniza-
tion.

In this work, we also promote adding pseudo-observations
to help incorporate soil knowledge into machine learning.
Note, however, that from the total set of measurements
used for model building, only about 5 %–10 % of the total
training points were pseudo-observations (pseudo-points are
available at https://soildb.openlandmap.org); however, their
spread around the global land surface is consistent, and thus
they may appear as being overrepresented. It is important
to emphasize again that we used pseudo-observations only
for the final model fitting and not for validation or hold-out
testing of the predictions. Also note that, even though we
use pseudo-observations representing deserts, permanent ice,
and rock outcrops, we do not predict values for them. We be-
lieve that the addition of high-quality pseudo-observations
helps produce more realistic predictions, especially at the
edges of feature space where arid landscapes and climate
tend to dominate (as also illustrated in Tian et al., 2025b).

The soil type maps we produced in this study are based
on a relatively simple ML approach of basically putting all
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points and covariates together and then fitting the best model
possible. This approach ignores multiple aspects of the data:

– Soil is three-dimensional, that is, for soil classification,
it would be important to have more information about
vertical stratification in the sense of diagnostic horizons
and parent material (we currently only used soil depth).
In some parts of the world, ground-penetrating sensors
are used, for example, to produce Gamma radiometric
images (Ng et al., 2023) or similar. To our knowledge,
no such data are available globally (and might not be
available in the decades to come).

– We ignore hierarchical relationships (proximity; parent-
child relationships) between soil classes. To our knowl-
edge, there is currently no ML method in which a hi-
erarchical relationship can be integrated into the model
fitting, but it makes sense to continue exploring this op-
tion further.

– For training models, unfortunately, we did not have
global maps of diagnostic properties or similar as in-
put layers. For a global list of soil types, the number of
diagnostic properties would have been excessive, e.g., a
few hundreds of properties. This was currently beyond
the scope of this project.

We could not obtain access to the national soil profile data
set of China (Liu et al., 2022), LUCAS for the year 2022, and
the Soils4Africa project pan-continental collection of soil
samples for the purpose of global soil mapping. We still have
huge geographic gaps in training points for the 4–5 largest
countries: Russian Federation, China, India, Kazakhstan, and
similar (Fig. 6). The recent contribution to the opening of soil
carbon lab data by Chen et al. (2025) is a step forward and
can help increase the accuracy of OpenLandMap-soilDB in
Asia. Hopefully, if the data curators of the previously listed
point data sets recognize the benefits of using and contribut-
ing to OpenLandMap-soilDB, we would be happy to inte-
grate these data and update predictions. We are open to sign-
ing data sharing agreements that protect these laboratory data
from misuse.

4.5 Detection limits and standard change rates

As shown in Fig. 5, we decided to aggregate the predic-
tions into space-time blocks (4-points) and then serve only
block predictions further e.g. predictions for 0–30 cm depth
interval for the period 2000–2005. This increases usability of
these data as most users are interested in depth intervals (e.g.
0–30 cm) and block-predictions in time (e.g. 2000–2005) can
be matched with land cover change maps as in, e.g. Potapov
et al. (2022), which are also centered on 5-year periods 2000–
2005, 2005–2010, . . ., 2020–2025.

Averaging predictions and prediction intervals has the fol-
lowing effects on the output data:

– The prediction intervals of the blocks are about 30 %–
40 % narrower than for the original point predictions
(Fig. 20).

– Blocking predictions between two years reduces inter-
annual variability, which is usually not of interest for
SOC mapping. For example, climatic oscillations be-
tween years can result in significant differences in
Landsat-based indices from year to year (as in climatic
modeling, it is important to smooth out random varia-
tion), which could then reflect on soil predictions. This
makes trend analysis cumbersome, as the values oscil-
late from year to year.

– As the prediction errors of the means are narrower than
the individual prediction errors, this allows users to de-
tect changes in SOC at shorter periods even using sam-
pling methods of limited precision (Fig. 20).

From a practical point of view, most users of soil maps ex-
pect that soil predictions refer to some standard depth inter-
val, e.g. 0–30 cm. Likewise, soil properties change gradually
and often slowly; hence it is sensible to expect that, if one
were to produce predictions of SOC content for every year,
most of pixels in the map would not change much and this
change could be significantly lower than the average predic-
tion error. Broeg et al. (2024) showed, using revisited sites
for Bavaria, that although the accuracy of the SOC predic-
tion was high, direct validation of the derived SOC trends
revealed a significantly higher uncertainty. In this work, be-
cause we also opted to generate predictions at 30 m spatial
resolution, which makes this a relatively large data set, we
also decided to average the values to somewhat reduce the
data volumes from hundreds of terabytes to a few tens of ter-
abytes. One could argue that we could have produced only
point predictions, then let users aggregate values how ever
they prefer, again we have estimated that in that case data vol-
umes would have expanded beyond what we can handle (in
terms of computing time/costs), but in the future saving the
whole distributions of predictions would be an option (pro-
vided that there is enough storage for these data).

Figure 20 shows an example of the simulated effect on the
standard prediction error (error of the mean) assuming av-
eraging values of 1 to 500 points under the assumption that
the SOC density follows a log-normal distribution. Assum-
ing that the standard prediction error (RMSE) of our model
is 0.5 on the logarithmic scale, and assuming that the mean
value is 9 kg m−3 for 0–30 cm (agricultural soil), it is easy to
show that the standard error of the mean for an average of 4
points (e.g. 0 and 30 cm depths and years 2000 and 2005) will
be about 2.8 kg m−3. Following the Nyquist theorem (Hengl
et al., 2013), the detection limit is RMSE/2, hence we would
be able to detect per-pixel changes which are > 1.4 kg m−3

per 5-year period. Assume the standard SOC sequestration
rates for the conversion of cropland to grassland of approx-
imately 0.5 t ha−1 yr−1 for 0–30 cm (which corresponds to

Earth Syst. Sci. Data, 18, 989–1036, 2026 https://doi.org/10.5194/essd-18-989-2026



T. Hengl et al.: Global soil information at 30 m spatial resolution 1023

Figure 20. Simulated example of how SOC density prediction errors estimated through validation (a) relate to detection limits for different
SOC sequestration/SOC loss rates (b).

1SOC of approximately 1.25 kg m−3 for a 5-year period).
This means that with the model error of 0.5 on the log-scale,
one would probably not be able to detect changes in SOC
on a scale of 5-years, but a 20-year scale would be required
(Fig. 20b). On the other hand, assuming a detection limit of
1.4 kg m−3, one should be able to estimate SOC loss at a time
period of 5 years, assuming 2.5 t ha−1 yr−1 SOC loss rates for
0–30 cm depth interval, i.e., a loss of about 1.25 kg m−3 for
5-year intervals. If you compare with the accuracy plot for
SOC density (Fig. 7) this shows that our RMSE for the SOC
density on the log scale is approximately 0.5 (based on strat-
ified sampling), which corresponds to the numbers we used
above. This gives us some confidence that our predictions can
at least be used to detect the serious effects of land degrada-
tion on the SOC changes, as also illustrated in Fig. 17. Broeg
et al. (2024) also achieved a relatively high prediction ac-
curacy for mapping SOC for German croplands (R2

= 0.61;
RMSE = 5.6 g kg−1); however, direct validation of the de-
rived annual SOC trends was also cumbersome (R2

= 0.16;
p < 0.0001).

Although averaging the error seems to help increase the
detection limit (following the 1/

√
N rule), we should empha-

size that this does not change our average prediction error, so
there is still some work to do to try to improve the prediction
errors for local farms. Having shown this calculus, the RMSE
of our predictions of SOCd is 0.5 on the logarithmic scale,
which refers to point predictions. For block predictions, the
error of the mean value is possibly about 30 %–40 % less than
0.5, so the detectable difference between two periods is pos-
sibly even more optimistic. Also note that because most of
the training data come from the USA and EU (Fig. 6), it is
very well possible that our prediction errors are narrower for
the two continents than for the whole land mask. On the other

hand, in countries where we have major gaps (Russia, Kaza-
khstan, China, India, tropical forests parts of Africa, and sim-
ilar) we possibly perform worse than global average.

4.6 Combining global and local efforts across scales

Global predictive soil mapping efforts, such as the one de-
scribed in this manuscript, overlap with local (national or re-
gional) efforts. Is this redundancy inhibiting soil data produc-
tion and confusing soil data users? Feeney et al. (2022) com-
pared global vs local SOC predictions for Great Britain (GB)
and discovered surprising inconsistencies, leading to the con-
clusion that we probably often underestimate the uncertainty
of SOC predictions from predictive soil mapping. Users, land
owners and land managers can become overwhelmed by the
amount of data offered and question which to use. We in-
stead believe that as long as some shared standards/shared
open data licenses are used, local and global mapping efforts
can be combined to the benefit of end users. We specifically
support groups in using our global predictions as covariates
in local modeling or as input for data fusion (see Fig. 21)
and “federated learning” frameworks (Gallios et al., 2025).
To demonstrate the synergy of local and global modeling,
we are currently discussing global-local data fusion of soil
carbon density predictions based on national, pan-EU (Tian
et al., 2025b) and our global predictions.

Although many soil mapping projects seem to overlap (as
in the case of land cover mapping, for example), we be-
lieve that there is still a lot of room for multiple initiatives,
as many projects are, in fact, delivering different standards.
Consider the following technical specification of soil carbon
in OpenLandMap-soildb (one of the Essential Climate Vari-
ables of the Global Climate Observing System):
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Figure 21. Proposed scheme for merging global and local soil predictive mapping outputs based on three scenarios: (1) local predictions are
significantly more accurate, hence can be used to replace global predictions; (2) local and global predictions are comparable accuracy and
can be best statistically combined; (3) only global predictions are available.

– Referent variable: soil organic carbon density in
kg m−3;

– Referent laboratory method: DC ISO 10694:1995(E);

– Measurement support size: 1×1 m horizontal, 5 cm ver-
tical;

– Prediction depth interval: 0–30 cm;

– Prediction time-interval: 2000–2005;

– Prediction error distribution: 68 % probability (1 stan-
dard deviation);

In order to combine the predictions of two projects as
shown in Fig. 21, both local and global should match in
all specifications; otherwise, differences in values could be
unrelated to the accuracy of each individual map. A “soil
carbon map” tag is no longer specific enough. We probably
need to start using more specific standards and specifications
where soil variables match at least in reference laboratory
methods, measurement units, and temporal coverage – for
example, “5-year soil carbon stocks for 0–30 cm depth inter-
val for 2000–2005”. Products from different projects could
possibly be harmonized, but in general, without complying
with the same standard, it is probably not necessary to com-
pare or criticize what are essentially different soil data prod-
ucts; for example, the predictions of the organic carbon con-
tent of soil (%) are not 1 : 1 with the predictions of soil or-

ganic carbon density (kg m−3), which is also illustrated in
Figs. 2a and 18b.

4.7 Broader impacts and possible future development
directions

In 2008, a group of world leaders in digital soil mapping
launched the idea of mapping soils for the entire world at
a high spatial resolution of 100 m: the GlobalSoilMap.net
project (Hempel et al., 2014). The main idea of Global-
SoilMap was to produce global maps in a resolution com-
patible with publicly available SRTM DEM (90 m), at that
time one of the most popular global environmental prod-
ucts. In the original plan, the proposal was to achieve this per
country, then to combine all data together. Although stitch-
ing high-resolution national soil maps to produce global data
sets is technically possible and politically correct (see, e.g.
FAO, 2022), it has been shown to lead to significant differ-
ences at political borders. In addition, often a large number
of countries are left blank, leading to limited usability of such
data.

In 2009, it seemed that GlobalSoilMap could be achieved
in a few years time, but this was a gross underestimate. It
took almost 18 years to produce complete and consistent soil
property maps with comparable spatial resolution. Thanks
to the exponential development of computing and Machine
Learning, we are now able to predict not only soil proper-
ties at 100 m, but at 10× finer volumes and in space-time.
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However, this long delay in producing soil data that matches
most land cover and vegetation products indicates that global
soil mapping is complex, especially with soils being hid-
den, buried, and impacted by multiple soil-forming processes
working at the same time in a non-linear way (compared to
vegetation and land cover mapping where EO images often
suffice), having high short-range variability, and often based
on unrecorded historic processes including extreme events
such as flooding, landslides, vertical movement of materials,
and similar. The mapping of soils remains one of the most
challenging tasks in physical geography.

We foresee the following future development directions in
dynamic soil mapping (unsorted):

– Hybrid Machine-Learning/Process-Based modeling:
there is increasing interest in the so-called “Knowledge-
based ML”. Liu et al. (2024) shows how a relatively
detailed model ecosys can be combined with ground
measurements to recalibrate modeling and optimize ac-
curacy. The ecosys framework requires a large number
of inputs, produces daily values, and is currently opti-
mized for agricultural systems. The computational load
required to run ecosys at 30 m for all land mask would
be enormous. In the meantime, we recommend to all
soil mappers to at least put effort to develop ML models
following “Soil Science-Informed ML” e.g. by speci-
fying observational priors, pseudo-observations, adding
model structure designs and loss functions (Minasny
et al., 2024).

– Global digital soil twin: assuming that we manage
to integrate state-of-the-art process-based models with
high resolution EO data and in-situ laboratory measure-
ments, one could expect that one day we will be able
to model soil-vegetation-land-use-climate interactions
within a paradigm of digital soil twin (digital copy of
the world soils is connected with the physical twin and
data automatically flows in two directions).

– Development of rapid and cost-effective in-situ soil
sampling instruments: soil laboratory analysis remains
costly and global training data sets are often limited
to most developed nations. Modern in situ technologies
such as soil spectroscopy and similar show that the costs
of measuring soil chemical and physical soil properties
can be reduced to fractions of traditional soil laboratory
costs (e.g. about USD 150 per sample). In addition, land
owners often do not have patience to wait weeks until
the results of laboratory analysis are released. Here, one
of the most striking examples is the LUCAS soil survey,
where soil laboratory data takes almost 3–5 years un-
til they are released. Some recent results with relatively
cost-effective NIR instruments show that there is an op-
portunity to use a handheld near-infrared device (NIR,
1350–2550 nm) for near-real-time SOC measurements
(Kalopesa et al., 2025). The results of using the Yard-

Stick™ instrument (Gyawali et al., 2025) also show sat-
isfactory results with the opportunity to scan changes in
soil properties every 1 cm of depth (continuous func-
tions).

– Finer-temporal resolution modeling: in this paper we
mapped soil properties using annual values of bio-
physical indices and climatic variables. Many soil vari-
ables could also be mapped at bimonthly or monthly
temporal resolutions. For example, many geochemical
soil properties, such as available Nitrogen (N), Phos-
phorus (P), and Potassium (K), have been shown to vary
within a few weeks between sampling; soil moisture is
even more variable, with values changing within hours.
Again, to map the world at monthly intervals at high
spatial resolution would be extra computationally in-
tensive and is certainly beyond our state of technology.
However, we have recently produced bimonthly 30 m
resolution GPP (Isik et al., 2025), so this is definitely
possible, but we would likely have to limit any such
models to top-soil only and 1–2 soil variables.

– Using multi-response models to model and predict all
variables using a single model: In this work, we fit mul-
tiple separate models for each property. This means that
we assume that all target variables are independent, but
they are not. To deal with multi-colinearity and overlap
in target variables, one could fit a very holistic single
model able to predict multiple depths and soil proper-
ties all at once. This multi-output approach works bet-
ter for values that are somehow correlated and is also
more elegant as the prediction would be for all proper-
ties at once. Random Forest is again applicable statis-
tical method here, as it supports multi-response models
and predictions.

– Using global Generative Foundation Models: currently
there is increasing interest in building global founda-
tion models or World Foundation Models (WFMs) that
would basically include all literature on soils (tabular,
textual data, schemes, and scientific visualizations) and
would be able to represent world soil distribution and
properties. Bodnar et al. (2025) recently released “Au-
rora”, a large-scale foundation model trained on more
than one million hours of diverse geophysical data, and
which can outperform several existing weather forecast-
ing operational systems while also being orders of mag-
nitude faster. Once such models become robust and con-
vincing, they could be used to connect users directly
with the data, which could make many traditional soil
scientists and agronomists redundant. An example of
how LLMs can already be used to boost knowledge
about soils is shown in Fig. 22.

– Hyperspectral EO missions: Although spatiotemporal
models can be relatively accurate with a high R2, the
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Figure 22. Example of how LLM’s (in this case Google’s Gemini™) can be directly combined with the global data sets we have produced
to help with understanding the soils better and with taking actions. Image and text source: USDA’s Illustrated Guide to Soil Taxonomy.

detected changes based on EO predictions are often
of limited use: EO-derived SOC estimates have a low
signal-to-noise ratio, and hence the detection of precise
SOC changes over time remains cumbersome. Harris
and Bardgett (2025) recently tested using hyperspectral
(drone-based) images and got promising results even for
mapping soil microbial community composition. In that
sense, ESA’s Copernicus Hyperspectral Imaging Mis-
sion for the Environment (CHIME) and NASA’s Sur-
face Biology and Geology (both planned to launch in
2028) might offer an unprecedented opportunity to map
soil variables at high spatial resolution. However, hyper-
spectral imaging might not become a “silver bullet” for
all soil variables.

On the one hand, we can anticipate many exciting devel-
opments in soil science in the near future; on the other hand,
we recognize that soil science seems to be actively diverse,
lagging behind many other environmental fields, especially
in terms of having stable cyberinfrastructures and standards.
For example, when it comes to soil laboratory data, there
are now at least five independent initiatives where global soil
point data have been prepared and made ready for modeling:

1. WoSIS soil profiles and samples (Batjes et al., 2024);

2. International Soil Carbon Network (ISCN) (Harden
et al., 2018);

3. Open Soil Spectral Library (OSSL) (Safanelli et al.,
2025);

4. SoDaH: SOils DAta Harmonization database (Wieder
et al., 2021);

5. SoilHive (https://www.soilhive.ag/, last access:
6 June 2025) hosted by the Varda foundation shows all
soil data available for any location in the world (both
point, polygon, and raster layers);

Compare this with databases produced in the fields of bio-
diversity, biology, meteorology, or similar:

1. GBIF (the Global Biodiversity Information Facility;
https://www.gbif.org, last access: 6 June 2025) with
3 billion occurrence records;

2. NOAA’s hosted GHCN (Global Historical Climatology
Network) with over 100 000 meteorological stations and
1B of daily measurements;
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3. FLUXNet (https://fluxnet.org/data/, last access:
6 June 2025) with hourly measurements of some 100+
biophysical variables at more than 250 automated
measurement stations worldwide;

4. GLANCE (https://doi.org/10.34911/rdnt.x4xfh3, Stan-
imirova et al., 2023b) with more than 2M observations
of land cover;

5. GEOROC Database (Geochemistry of Rocks of the
Oceans and Continents; https://georoc.eu/georoc/, last
access: 6 June 2025) containing almost 30M values of
major and trace element concentrations, radiogenic and
nonradiogenic isotope ratios, etc;

It is easy to notice that soil science is seriously lagging
behind GBIF and similar initiatives. In our opinion, global
soil science critically misses: (a) a global (permanent) soil
monitoring network of at least 300–500 permanent stations
where soil properties can be tracked on a monthly/annual ba-
sis, (b) professional infrastructure where various groups can
enter and access point data (compare to https://www.gbif.
org/dataset/, last access: 6 June 2025), and (c) agreements
on data sharing, soil sampling (Even et al., 2025), and open
soil laboratory standards including a universal soil classifica-
tion system blessed by the IUSS (International Union of Soil
Science).

An inspiring model for monitoring soil properties over
time is the International Soil Moisture Network (https://ismn.
earth/, last access: 6 June 2025) that provides open access
to approximately 3200 automated measurement stations with
hourly measurements of soil moisture, temperature, precipi-
tation, and similar (Dorigo et al., 2021). Another infrastruc-
ture critically missing in soil science, in our opinion, are
globally applicable mobile phone apps that allow anyone
to take photographs of soil, soil spectral scans, and similar
and share (as in, e.g. iNaturalist app). Many soil enthusi-
asts and agronomists have asked us in the past “How do I
share my data?”. At the moment, we can only recommend
to those colleagues who register their (in situ) data on https:
//Zenodo.org, last access: 6 June 2025, https://SoilHive.ag,
last access: 6 June 2025 or similar, obtain a DOI and then
let us know that we can import and integrate your data into
these models to help build better soil maps for everyone. The
LandPKS app (https://landpotential.org/mobile-app/, last ac-
cess: 6 June 2025) could here potentially play an important
role if it extends its functionality to soil laboratory data, soil
profile photographs, and soil spectral scans.

Aroca-Fernandez et al. (2025) recently developed a frame-
work called WALGREEN, which runs on top of Google
Earth Engine and the Copernicus Data Space Ecosystem, and
shows how to generate SOC predictions on-demand (that is:
select an area of interest, drop training points, and down-
load SOC predictions). WALGREEN is primarily based on
EO images, and the performance in terms of accuracy and
robustness is currently unknown. Automation of modeling,

predictions, even automated deployment of maps in an app is
a reality today. However, knowledge of soil science is needed
more than ever. The application of all these (AI) tools has
become much easier, so we have to spend much less time in
actually implementing machine learning and statistics, but at
the same time we still need to know what we do and have
a clear picture of what to put the outcome into perspective,
to actually be able to have a proper interpretation of the out-
come and the results; and without a sufficient background
knowledge we will not be able to put it into perspective.

5 Data availability

The data products produced can be accessed via the
associated repository records (Consoli et al., 2025,
https://doi.org/10.5281/zenodo.15470431; OpenGeo-
Hub Foundation, 2026, https://world.soils.app/), while the
training dataset is available via Hengl and Gupta (2025,
https://doi.org/10.5281/zenodo.4748499). Due to Zenodo’s
storage limitations and the large size of the dataset, only
portions of the data are stored in Zenodo, distributed across
multiple buckets. We provide predictions of soil properties
in 120 m resolution with uncertainty (16th percentile, mean,
and 84th percentile) for only the first and last period (2000–
2005 and 2020–2022+). In addition, we provide soil type
probability maps in 120 m resolution based on USDA Soil
Taxonomy, organized at the subgroup level. Complete global
30 m resolution mosaics are available through the Google
Earth Engine (https://code.earthengine.google.com/?asset=
projects/global-pasture-watch/assets/gsm-30m, Hengl et al.,
2026).

Each data set layer follows a standardized naming format,
structured into 10 key fields: generic variable name, vari-
able procedure combination, position in the probability dis-
tribution or variable type, spatial support, depth reference,
time reference (including start and end times), bounding box,
EPSG code, and version code. Each metadata field serves
a specific purpose in assessing the datasets’ fitness for use.
For the data sets presented in this study, the metadata specify
a uniform spatial support of 30 m resolution, a depth refer-
ence denoted as s (depth from the surface), a bounding box
identified as go, and an EPSG code of EPSG:4326. For the
other fields: the generic variable name helps users identify
the required predictor layer; the variable procedure combina-
tion provides indications of how the data were derived and
its source; the time reference, comprising the start and end
dates, ensures users can select layers matching their relevant
temporal scope; and the version code, which reflects the cre-
ation date of the corresponding layer, facilitates tracking and
version control.
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6 Code availability

The code used to harmonize the training points and
generate predictions is available under the MIT license
at https://doi.org/10.5281/zenodo.15608971 (Hengl et al.,
2025).

7 Conclusions

We have produced the first batch of 30 m resolution soil prop-
erty annual dynamic maps for 2000–2022+. This is an open
data output aiming at serving international modeling and
monitoring projects, especially the UNCCD’s Land Degra-
dation Neutrality programme, FAO’s Global Soil Partnership
and similar, to help countries and land owners get baselines
of their soil stocks and better understand the soil dynam-
ics. For modeling, we use state-of-the-art harmonized soil
laboratory data sets (training points) that we have been col-
lecting and improving over the years. We make import pro-
cedures transparent and fully documented via https://soildb.
OpenLandMap.org/. The results indicate that (research ques-
tion #1) Landsat-derived biophysical indices rank high in the
variable importance results, especially with GPP coming in
the top three most important variables and showing a clear
positive correlation with SOC density. These results indi-
cate clear interconnection between GPP and SOC accumu-
lation, and a warning to all land use systems that decrease
annual GPP – this will likely also result in significant losses
in SOC. The prediction accuracy assessment indicates that
(research question #2) the best achievable mapping accuracy
is RMSE of 17.7 [kg m−3] (0.486 in log-scale) for SOC den-
sity, RMSE of 51.3 [g kg−1] (0.574 in log-scale) for SOC
content, RMSE of 0.15 [t m−3] for bulk density of fine-earth,
RMSE of 0.51 for soil pH, RMSE of 8.4 % for soil clay con-
tent, and RMSE of 12.6 % for soil sand content, respectively.
Further analysis of trends in SOC density and soil pH indi-
cates that (research question #3) the key drivers of negative
changes in SOC are land degradation, primarily the conver-
sion of tropical forests to cash crops; for soil pH, the most
important explanatory variable appears to be the CHELSA
Aridity Index (long-term), annual precipitation, and salinity
grade. Finally, (research question #4) the remaining hot spots
of global SOC are boreal peatlands (of Canada and Russia)
and tropical peatlands storing the majority of total soil car-
bon. Especially Canada and the Russian Federation seem to
contain most of the world’s soil carbon. We estimate that the
world has lost at least 11 Pg of SOC in the top soil in the pe-
riod 2000–2022+ and that the current SOC stock of the land
is 461 Pg for 0–30 cm.

The 30 m resolution predictions of soil properties and
USDA subgroups show an unprecedented level of detail;
however, we warn users that prediction errors are still rela-
tively wide and that this uncertainty (per pixel) should be in-
corporated into decision making to prevent taking high-risk
decisions. Further recommended uses of these data include:

continental soil carbon dynamics monitoring, derivation of
secondary soil variables such as soil hydraulic properties us-
ing pedotransfer functions, land degradation, and soil health
assessment.

We plan to update these predictions for each subsequent
year and also as the new point data sets become available.
We currently engage in Data-Sharing Agreements for vari-
ous soil datasets that are not in the public domain, and we
would like to engage with more countries outside of Europe
in a similar manner. In addition, for those countries which
consider accurate position of sample locations (GPS coordi-
nates) to be private data, we would like to extend this to the
federated model space, which would further enable global
products to be aligned with (finer resolution) national prod-
ucts becoming available in a few jurisdictions. Additional
improvements in the accuracy of the dynamic predictions can
be implemented by combining global and local models, es-
pecially at national scales. The only requirement for further
data fusion is that all parties use the same standard (e.g. 0–
30 cm; 5-year time blocks; DC reference laboratory methods
and similar). We call on research groups to use these data to
derive secondary soil properties and test their applicability
for real-world applications.
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