Articles | Volume 18, issue 2
https://doi.org/10.5194/essd-18-945-2026
https://doi.org/10.5194/essd-18-945-2026
Review article
 | 
05 Feb 2026
Review article |  | 05 Feb 2026

Benchmark of plankton images classification: emphasizing features extraction over classifier complexity

Thelma Panaïotis, Emma Amblard, Guillaume Boniface-Chang, Gabriel Dulac-Arnold, Benjamin Woodward, and Jean-Olivier Irisson

Related authors

A global consistent database of plankton and detritus from in situ imaging by the Underwater Vision Profiler 5
Ariadna Celina Nocera, Lars Stemmann, Marcel Babin, Tristan Biard, Julie Coustenoble, François Carlotti, Laurent Coppola, Lucas Courchet, Laetitia Drago, Amanda Elineau, Lionel Guidi, Helena Hauss, Laëtitia Jalabert, Lee Karp-Boss, Rainer Kiko, Manon Laget, Fabien Lombard, Andrew McDonnell, Camille Merland, Solène Motreuil, Thelma Panaïotis, Marc Picheral, Andreas Rogge, Anya Waite, and Jean-Olivier Irisson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-522,https://doi.org/10.5194/essd-2025-522, 2025
Preprint under review for ESSD
Short summary
First release of the Pelagic Size Structure database: global datasets of marine size spectra obtained from plankton imaging devices
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024,https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary

Cited articles

Anglès, S., Jordi, A., and Campbell, L.: Responses of the coastal phytoplankton community to tropical cyclones revealed by high-frequency imaging flow cytometry, Limnology and Oceanography, 60, 1562–1576, https://doi.org/10.1002/lno.10117, 2015. 
Baker, N., Lu, H., Erlikhman, G., and Kellman, P. J.: Deep convolutional networks do not classify based on global object shape, PLOS Computational Biology, 14, e1006613, https://doi.org/10.1371/journal.pcbi.1006613, 2018. 
Bendale, A. and Boult, T. E.: Towards Open Set Deep Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1563–1572, https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Bendale_Towards_Open_Set_CVPR_2016_paper.html (last access: 15 December 2025), 2016. 
Benfield, M., Grosjean, P., Culverhouse, P., Irigolen, X., Sieracki, M., Lopez-Urrutia, A., Dam, H., Hu, Q., Davis, C., Hanson, A., Pilskaln, C., Riseman, E., Schulz, H., Utgoff, P., and Gorsky, G.: RAPID: Research on Automated Plankton Identification, Oceanography, 20, 172–187, https://doi.org/10.5670/oceanog.2007.63, 2007. 
Download
Short summary
To address the lack of performance benchmark in plankton image classification, we evaluated machine learning methods on six large and realistic datasets. Testing both traditional and more recent convolutional neural networks (deep learning), we find that relatively small deep networks performed best, particularly for uncommon classes, because they extract richer features. Our results indicate that such compact models are sufficient for classifying small grayscale plankton images.
Share
Altmetrics
Final-revised paper
Preprint