Articles | Volume 18, issue 2
https://doi.org/10.5194/essd-18-945-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-18-945-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benchmark of plankton images classification: emphasizing features extraction over classifier complexity
Thelma Panaïotis
CORRESPONDING AUTHOR
National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
Laboratoire d'Océanographie de Villefranche, Sorbonne Université, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Emma Amblard
Laboratoire d'Océanographie de Villefranche, Sorbonne Université, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Fotonower, 48 Rue René Clair 75018 Paris, France
Guillaume Boniface-Chang
Google Research, 6 Pancras Sq, London N1C 4AG, UK
Gabriel Dulac-Arnold
Google Research, 8 Rue de Londres, 75009 Paris, France
Benjamin Woodward
CVision AI, 81 West St, Medford, MA 02155, USA
Jean-Olivier Irisson
Laboratoire d'Océanographie de Villefranche, Sorbonne Université, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Related authors
Ariadna Celina Nocera, Lars Stemmann, Marcel Babin, Tristan Biard, Julie Coustenoble, François Carlotti, Laurent Coppola, Lucas Courchet, Laetitia Drago, Amanda Elineau, Lionel Guidi, Helena Hauss, Laëtitia Jalabert, Lee Karp-Boss, Rainer Kiko, Manon Laget, Fabien Lombard, Andrew McDonnell, Camille Merland, Solène Motreuil, Thelma Panaïotis, Marc Picheral, Andreas Rogge, Anya Waite, and Jean-Olivier Irisson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-522, https://doi.org/10.5194/essd-2025-522, 2025
Preprint under review for ESSD
Short summary
Short summary
Plankton and detritus play a key role in ocean health and climate regulation. We present a large global dataset of images and information collected from 2008 to 2018 using specialized underwater camera (UVP). This publicly available dataset will support more accurate ecological models and help train artificial intelligence tools, improving how scientists track ocean biodiversity and monitor environmental changes.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Ariadna Celina Nocera, Lars Stemmann, Marcel Babin, Tristan Biard, Julie Coustenoble, François Carlotti, Laurent Coppola, Lucas Courchet, Laetitia Drago, Amanda Elineau, Lionel Guidi, Helena Hauss, Laëtitia Jalabert, Lee Karp-Boss, Rainer Kiko, Manon Laget, Fabien Lombard, Andrew McDonnell, Camille Merland, Solène Motreuil, Thelma Panaïotis, Marc Picheral, Andreas Rogge, Anya Waite, and Jean-Olivier Irisson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-522, https://doi.org/10.5194/essd-2025-522, 2025
Preprint under review for ESSD
Short summary
Short summary
Plankton and detritus play a key role in ocean health and climate regulation. We present a large global dataset of images and information collected from 2008 to 2018 using specialized underwater camera (UVP). This publicly available dataset will support more accurate ecological models and help train artificial intelligence tools, improving how scientists track ocean biodiversity and monitor environmental changes.
Marine Di Stefano, David Nerini, Itziar Alvarez, Giandomenico Ardizzone, Patrick Astruch, Gotzon Basterretxea, Aurélie Blanfuné, Denis Bonhomme, Antonio Calò, Ignacio Catalan, Carlo Cattano, Adrien Cheminée, Romain Crec'hriou, Amalia Cuadros, Antonio Di Franco, Carlos Diaz-Gil, Tristan Estaque, Robin Faillettaz, Fabiana C. Félix-Hackradt, José Antonio Garcia-Charton, Paolo Guidetti, Loïc Guilloux, Jean-Georges Harmelin, Mireille Harmelin-Vivien, Manuel Hidalgo, Hilmar Hinz, Jean-Olivier Irisson, Gabriele La Mesa, Laurence Le Diréach, Philippe Lenfant, Enrique Macpherson, Sanja Matić-Skoko, Manon Mercader, Marco Milazzo, Tiffany Monfort, Joan Moranta, Manuel Muntoni, Matteo Murenu, Lucie Nunez, M. Pilar Olivar, Jérémy Pastor, Ángel Pérez-Ruzafa, Serge Planes, Nuria Raventos, Justine Richaume, Elodie Rouanet, Erwan Roussel, Sandrine Ruitton, Ana Sabatés, Thierry Thibaut, Daniele Ventura, Laurent Vigliola, Dario Vrdoljak, and Vincent Rossi
Earth Syst. Sci. Data, 16, 3851–3871, https://doi.org/10.5194/essd-16-3851-2024, https://doi.org/10.5194/essd-16-3851-2024, 2024
Short summary
Short summary
We build a compilation of early-life dispersal traits for coastal fish species. The database contains over 110 000 entries collected from 1993 to 2021 in the western Mediterranean. All observations are harmonized to provide information on dates and locations of spawning and settlement, along with pelagic larval durations. When applicable, missing data are reconstructed from dynamic energy budget theory. Statistical analyses reveal sampling biases across taxa, space and time.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [preprint], https://doi.org/10.48550/arXiv.1603.04467, 2016.
Anglès, S., Jordi, A., and Campbell, L.: Responses of the coastal phytoplankton community to tropical cyclones revealed by high-frequency imaging flow cytometry, Limnology and Oceanography, 60, 1562–1576, https://doi.org/10.1002/lno.10117, 2015.
Baker, N., Lu, H., Erlikhman, G., and Kellman, P. J.: Deep convolutional networks do not classify based on global object shape, PLOS Computational Biology, 14, e1006613, https://doi.org/10.1371/journal.pcbi.1006613, 2018.
Bendale, A. and Boult, T. E.: Towards Open Set Deep Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1563–1572, https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Bendale_Towards_Open_Set_CVPR_2016_paper.html (last access: 15 December 2025), 2016.
Benfield, M., Grosjean, P., Culverhouse, P., Irigolen, X., Sieracki, M., Lopez-Urrutia, A., Dam, H., Hu, Q., Davis, C., Hanson, A., Pilskaln, C., Riseman, E., Schulz, H., Utgoff, P., and Gorsky, G.: RAPID: Research on Automated Plankton Identification, Oceanography, 20, 172–187, https://doi.org/10.5670/oceanog.2007.63, 2007.
Bi, H., Guo, Z., Benfield, M. C., Fan, C., Ford, M., Shahrestani, S., and Sieracki, J. M.: A Semi-Automated Image Analysis Procedure for In Situ Plankton Imaging Systems, PLOS ONE, 10, e0127121, https://doi.org/10.1371/journal.pone.0127121, 2015.
Blaschko, M. B., Holness, G., Mattar, M. A., Lisin, D., Utgoff, P. E., Hanson, A. R., Schultz, H., Riseman, E. M., Sieracki, M. E., and Balch, W. M.: Automatic in situ identification of plankton, in: 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05), Vol. 1, 79–86, https://doi.org/10.1109/ACVMOT.2005.29, 2005.
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Callejas, S., Lira, H., Berry, A., Martí, L., and Sanchez-Pi, N.: No Plankton Left Behind: Preliminary Results on Massive Plankton Image Recognition, in: High Performance Computing, Cham, 170–185, https://doi.org/10.1007/978-3-031-80084-9_12, 2025.
Chellapilla, K., Puri, S., and Simard, P.: High Performance Convolutional Neural Networks for Document Processing, Tenth International Workshop on Frontiers in Handwriting Recognition, https://inria.hal.science/inria-00112631v1 (last access: 15 December 2025), 2006.
Chen, C., Liaw, A., and Breiman, L.: Using Random Forest to Learn Imbalanced Data, https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf (last access: 15 December 2025), 2004.
Cheng, K., Cheng, X., Wang, Y., Bi, H., and Benfield, M. C.: Enhanced convolutional neural network for plankton identification and enumeration, PLOS ONE, 14, e0219570, https://doi.org/10.1371/journal.pone.0219570, 2019.
Ciranni, M., Gjergji, A., Maracani, A., Murino, V., and Pastore, V. P.: In-domain self-supervised learning for plankton image classification on a budget, Proceedings of the Winter Conference on Applications of Computer Vision, 1588–1597, https://openaccess.thecvf.com/content/WACV2025W/MaCVi/html/Ciranni_In-domain_self-supervised_learning_for_plankton_image_classification_on_a_budget_WACVW_2025_paper.html (last access: 15 December 2025), 2025.
Colas, F., Tardivel, M., Perchoc, J., Lunven, M., Forest, B., Guyader, G., Danielou, M. M., Le Mestre, S., Bourriau, P., Antajan, E., Sourisseau, M., Huret, M., Petitgas, P., and Romagnan, J. B.: The ZooCAM, a new in-flow imaging system for fast onboard counting, sizing and classification of fish eggs and metazooplankton, Progress in Oceanography, 166, 54–65, https://doi.org/10.1016/j.pocean.2017.10.014, 2018.
Colin, S., Coelho, L. P., Sunagawa, S., Bowler, C., Karsenti, E., Bork, P., Pepperkok, R., and de Vargas, C.: Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes, eLife, 6, e26066, https://doi.org/10.7554/eLife.26066, 2017.
Cowen, R. K. and Guigand, C. M.: In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results, Limnology and Oceanography: Methods, 6, 126–132, https://doi.org/10.4319/lom.2008.6.126, 2008.
Cowen, R. K., Sponaugle, S., Robinson, K. L., Luo, J., Oregon State University, and Hatfield Marine Science Center: PlanktonSet 1.0: Plankton imagery data collected from F. G. Walton Smith in Straits of Florida from 2014-06-03 to 2014-06-06 and used in the 2015 National Data Science Bowl, NCEI Accession 0127422, https://doi.org/10.7289/v5d21vjd, 2015.
Cui, J., Wei, B., Wang, C., Yu, Z., Zheng, H., Zheng, B., and Yang, H.: Texture and Shape Information Fusion of Convolutional Neural Network for Plankton Image Classification, in: 2018 OCEANS – MTS/IEEE Kobe Techno-Oceans (OTO), 2018 OCEANS – MTS/IEEE Kobe Techno-Oceans (OTO), 5 pp., https://doi.org/10.1109/OCEANSKOBE.2018.8559156, 2018.
Cui, Y., Jia, M., Lin, T.-Y., Song, Y., and Belongie, S.: Class-Balanced Loss Based on Effective Number of Samples, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9268–9277, https://openaccess.thecvf.com/content_CVPR_2019/html/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.html (last access: 15 December 2025), 2019.
Culverhouse, P. F., Simpson, R. G., Ellis, R., Lindley, J. A., Williams, R., Parisini, T., Reguera, B., Bravo, I., Zoppoli, R., Earnshaw, G., McCall, H., and Smith, G.: Automatic classification of field-collected dinoflagellates by artificial neural network, Marine Ecology Progress Series, 139, 281–287, https://doi.org/10.3354/meps139281, 1996.
Dai, J., Wang, R., Zheng, H., Ji, G., and Qiao, X.: ZooplanktoNet: Deep convolutional network for zooplankton classification, in: OCEANS 2016 – Shanghai, OCEANS 2016 – Shanghai, 6 pp., https://doi.org/10.1109/OCEANSAP.2016.7485680, 2016.
Dai, J., Yu, Z., Zheng, H., Zheng, B., and Wang, N.: A Hybrid Convolutional Neural Network for Plankton Classification, in: Computer Vision – ACCV 2016 Workshops, Cham, 102–114, https://doi.org/10.1007/978-3-319-54526-4_8, 2017.
Dieleman, S., Fauw, J. D., and Kavukcuoglu, K.: Exploiting Cyclic Symmetry in Convolutional Neural Networks, in: Proceedings of The 33rd International Conference on Machine Learning, International Conference on Machine Learning, 1889–1898, 2016.
Drago, L., Panaïotis, T., Irisson, J.-O., Babin, M., Biard, T., Carlotti, F., Coppola, L., Guidi, L., Hauss, H., Karp-Boss, L., Lombard, F., McDonnell, A. M. P., Picheral, M., Rogge, A., Waite, A. M., Stemmann, L., and Kiko, R.: Global Distribution of Zooplankton Biomass Estimated by In Situ Imaging and Machine Learning, Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.894372, 2022.
Du, A., Gu, Z., Yu, Z., Zheng, H., and Zheng, B.: Plankton Image Classification Using Deep Convolutional Neural Networks with Second-order Features, in: Global Oceans 2020: Singapore – U.S. Gulf Coast, Global Oceans 2020: Singapore – U.S. Gulf Coast, 5 pp., https://doi.org/10.1109/IEEECONF38699.2020.9389034, 2020.
Dyck, L. E. van, Kwitt, R., Denzler, S. J., and Gruber, W. R.: Comparing Object Recognition in Humans and Deep Convolutional Neural Networks – An Eye Tracking Study, Frontiers in Neuroscience, 15, 750639, https://doi.org/10.3389/fnins.2021.750639, 2021.
Eerola, T., Batrakhanov, D., Barazandeh, N. V., Kraft, K., Haraguchi, L., Lensu, L., Suikkanen, S., Seppälä, J., Tamminen, T., and Kälviäinen, H.: Survey of automatic plankton image recognition: challenges, existing solutions and future perspectives, Artif. Intell. Rev., 57, 114, https://doi.org/10.1007/s10462-024-10745-y, 2024.
Eftekhari, N., Pitois, S., Masoudi, M., Blackwell, R. E., Scott, J., Giering, S. L. C., and Fry, M.: Improving in Situ Real-Time Classification of Long-Tail Marine Plankton Images for Ecosystem Studies, in: Computer Vision – ECCV 2024 Workshops, Cham, 121–134, https://doi.org/10.1007/978-3-031-92387-6_8, 2025.
Elineau, A., Desnos, C., Jalabert, L., Olivier, M., Romagnan, J.-B., Costa Brandao, M., Lombard, F., Llopis, N., Courboulès, J., Caray-Counil, L., Serranito, B., Irisson, J.-O., Picheral, M., Gorsky, G., and Stemmann, L.: ZooScanNet: plankton images captured with the ZooScan, SEANOE [data set], https://doi.org/10.17882/55741, 2024.
Ellen, J., Hongyu Li, and Ohman, M. D.: Quantifying California current plankton samples with efficient machine learning techniques, in: OCEANS 2015 – MTS/IEEE Washington, OCEANS 2015 – MTS/IEEE Washington, 9 pp., https://doi.org/10.23919/OCEANS.2015.7404607, 2015.
Ellen, J. S. and Ohman, M. D.: Beyond transfer learning: Leveraging ancillary images in automated classification of plankton, Limnology and Oceanography: Methods, 22, 943–952, https://doi.org/10.1002/lom3.10648, 2024.
Ellen, J. S., Graff, C. A., and Ohman, M. D.: Improving plankton image classification using context metadata, Limnology and Oceanography: Methods, 17, 439–461, https://doi.org/10.1002/lom3.10324, 2019.
Faillettaz, R., Picheral, M., Luo, J. Y., Guigand, C., Cowen, R. K., and Irisson, J.-O.: Imperfect automatic image classification successfully describes plankton distribution patterns, Methods in Oceanography, 15–16, 60–77, https://doi.org/10.1016/J.MIO.2016.04.003, 2016.
Falkowski, P.: Ocean Science: The power of plankton, Nature, 483, S17–S20, https://doi.org/10.1038/483S17a, 2012.
Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems?, The Journal of Machine Learning Research, 15, 3133–3181, 2014.
Geraldes, P., Barbosa, J., Martins, A., Dias, A., Magalhães, C., Ramos, S., and Silva, E.: In situ real-time Zooplankton Detection and Classification, in: OCEANS 2019 – Marseille, OCEANS 2019 – Marseille, 6 pp., https://doi.org/10.1109/OCEANSE.2019.8867552, 2019.
González, P., Álvarez, E., Díez, J., López-Urrutia, Á., and del Coz, J. J.: Validation methods for plankton image classification systems, Limnology and Oceanography: Methods, 15, 221–237, https://doi.org/10.1002/lom3.10151, 2017.
González, P., Castaño, A., Peacock, E. E., Díez, J., Del Coz, J. J., and Sosik, H. M.: Automatic plankton quantification using deep features, Journal of Plankton Research, 41, 449–463, https://doi.org/10.1093/plankt/fbz023, 2019.
Gorsky, G., Ohman, M. D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J.-B., Cawood, A., Pesant, S., Garcia-Comas, C., and Prejger, F.: Digital zooplankton image analysis using the ZooScan integrated system, Journal of Plankton Research, 32, 285–303, https://doi.org/10.1093/plankt/fbp124, 2010.
Greer, A. T., Woodson, C. B., Smith, C. E., Guigand, C. M., and Cowen, R. K.: Examining mesozooplankton patch structure and its implications for trophic interactions in the northern Gulf of Mexico, Journal of Plankton Research, 38, 1115–1134, https://doi.org/10.1093/plankt/fbw033, 2016.
Grosjean, P., Picheral, M., Warembourg, C., and Gorsky, G.: Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system, ICES J. Mar. Sci., 61, 518–525, https://doi.org/10.1016/j.icesjms.2004.03.012, 2004.
Guo, C., Wei, B., and Yu, K.: Deep Transfer Learning for Biology Cross-Domain Image Classification, Journal of Control Science and Engineering, 2021, 2518837, https://doi.org/10.1155/2021/2518837, 2021a.
Guo, J. and Guan, J.: Classification of Marine Plankton Based on Few-shot Learning, Arab. J. Sci. Eng., 46, 9253–9262, https://doi.org/10.1007/s13369-021-05786-2, 2021.
Guo, J., Ma, Y., and Lee, J. H. W.: Real-time automated identification of algal bloom species for fisheries management in subtropical coastal waters, Journal of Hydro-environment Research, 36, 1–32, https://doi.org/10.1016/j.jher.2021.03.002, 2021b.
Guyon, I. and Elisseeff, A.: An introduction to variable and feature selection, Journal of machine learning research, 3, 1157–1182, 2003.
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V.: Gene Selection for Cancer Classification using Support Vector Machines, Machine Learning, 46, 389–422, https://doi.org/10.1023/A:1012487302797, 2002.
Hassan, M., Salbitani, G., Carfagna, S., and Khan, J. A.: Deep learning meets marine biology: Optimized fused features and LIME-driven insights for automated plankton classification, Computers in Biology and Medicine, 192, 110273, https://doi.org/10.1016/j.compbiomed.2025.110273, 2025.
Hastie, T., Tibshirani, R., and Friedman, J.: The elements of statistical learning: data mining, inference, and prediction, Springer Science & Business Media, ISBN-13 978-0387952840, 2009.
He, H. and Garcia, E. A.: Learning from Imbalanced Data, IEEE Transactions on Knowledge and Data Engineering, 21, 1263–1284, https://doi.org/10.1109/TKDE.2008.239, 2009.
Hu, Q. and Davis, C.: Automatic plankton image recognition with co-occurrence matrices and Support Vector Machine, Marine Ecology Progress Series, 295, 21–31, https://doi.org/10.3354/meps295021, 2005.
Hutchinson, G. E.: The Paradox of the Plankton, The American Naturalist, 95, 137–145, 1961.
Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L., and Stemmann, L.: Machine Learning for the Study of Plankton and Marine Snow from Images, Annu. Rev. Mar. Sci., 14, 277–301, https://doi.org/10.1146/annurev-marine-041921-013023, 2022.
Jalabert, L., Signoret, G., Caray-Counil, L., Vilain, M., Martins, E., Lombard, F., Picheral, M., and Irisson, J.-O.: FlowCAMNet: plankton images captured with the FlowCAM, SEANOE [data set], https://doi.org/10.17882/101961, 2024.
Kareinen, J., Eerola, T., Kraft, K., Lensu, L., Suikkanen, S., and Kälviäinen, H.: Self-Supervised Pretraining for Fine-Grained Plankton Recognition, arXiv [preprint], https://doi.org/10.48550/arXiv.2503.11341, 9 May 2025.
Kelleher, J. D., Mac Namee, B., and D'arcy, A.: Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies, MIT Press, ISBN 9780262044691, 2020.
Kerr, T., Clark, J. R., Fileman, E. S., Widdicombe, C. E., and Pugeault, N.: Collaborative Deep Learning Models to Handle Class Imbalance in FlowCam Plankton Imagery, IEEE Access, 8, 170013–170032, https://doi.org/10.1109/ACCESS.2020.3022242, 2020.
Kraft, K., Velhonoja, O., Eerola, T., Suikkanen, S., Tamminen, T., Haraguchi, L., Ylöstalo, P., Kielosto, S., Johansson, M., Lensu, L., Kälviäinen, H., Haario, H., and Seppälä, J.: Towards operational phytoplankton recognition with automated high-throughput imaging, near-real-time data processing, and convolutional neural networks, Front. Mar. Sci., 9, https://doi.org/10.3389/fmars.2022.867695, 2022.
Krawczyk, B.: Learning from imbalanced data: open challenges and future directions, Prog. Artif. Intell., 5, 221–232, https://doi.org/10.1007/s13748-016-0094-0, 2016.
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with Deep Convolutional Neural Networks, in: Advances in Neural Information Processing Systems 25, edited by: Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., Curran Associates, Inc., 1097–1105, 2012.
Kyathanahally, S. P., Hardeman, T., Merz, E., Bulas, T., Reyes, M., Isles, P., Pomati, F., and Baity-Jesi, M.: Deep Learning Classification of Lake Zooplankton, Frontiers in Microbiology, 12, https://doi.org/10.3389/fmicb.2021.746297, 2021.
Kyathanahally, S. P., Hardeman, T., Reyes, M., Merz, E., Bulas, T., Brun, P., Pomati, F., and Baity-Jesi, M.: Ensembles of data-efficient vision transformers as a new paradigm for automated classification in ecology, Sci. Rep., 12, 18590, https://doi.org/10.1038/s41598-022-21910-0, 2022.
Langeland Teigen, A., Saad, A., and Stahl, A.: Leveraging Similarity Metrics to In-Situ Discover Planktonic Interspecies Variations or Mutations, in: Global Oceans 2020: Singapore – U.S. Gulf Coast, Global Oceans 2020: Singapore – U.S. Gulf Coast, Biloxi, MS, USA, 8 pp., https://doi.org/10.1109/IEEECONF38699.2020.9388998, 2020.
Le Cun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon, I., Henderson, D., Howard, R. E., and Hubbard, W.: Handwritten digit recognition: applications of neural network chips and automatic learning, IEEE Communications Magazine, 27, 41–46, https://doi.org/10.1109/35.41400, 1989.
Lee, H., Park, M., and Kim, J.: Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning, in: 2016 IEEE International Conference on Image Processing (ICIP), 2016 IEEE International Conference on Image Processing (ICIP), 3713–3717, https://doi.org/10.1109/ICIP.2016.7533053, 2016.
Legendre, P. and Legendre, L.: Numerical ecology, Elsevier, 990 pp., ISBN-13 978-0444538680, 2012.
Li, X. and Cui, Z.: Deep residual networks for plankton classification, in: OCEANS 2016 MTS/IEEE Monterey, OCEANS 2016 MTS/IEEE Monterey, 4 pp., https://doi.org/10.1109/OCEANS.2016.7761223, 2016.
Li, X., Long, R., Yan, J., Jin, K., and Lee, J.: TANet: A Tiny Plankton Classification Network for Mobile Devices, Mobile Information Systems, 2019, 6536925, https://doi.org/10.1155/2019/6536925, 2019.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.: Focal Loss for Dense Object Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 318–327, https://doi.org/10.1109/TPAMI.2018.2858826, 2020.
Liu, J., Du, A., Wang, C., Yu, Z., Zheng, H., Zheng, B., and Zhang, H.: Deep Pyramidal Residual Networks for Plankton Image Classification, in: 2018 OCEANS – MTS/IEEE Kobe Techno-Oceans (OTO), 2018 OCEANS – MTS/IEEE Kobe Techno-Oceans (OTO), 5 pp., https://doi.org/10.1109/OCEANSKOBE.2018.8559106, 2018.
Lombard, F., Boss, E., Waite, A. M., Vogt, M., Uitz, J., Stemmann, L., Sosik, H. M., Schulz, J., Romagnan, J.-B., Picheral, M., Pearlman, J., Ohman, M. D., Niehoff, B., Möller, K. O., Miloslavich, P., Lara-Lpez, A., Kudela, R., Lopes, R. M., Kiko, R., Karp-Boss, L., Jaffe, J. S., Iversen, M. H., Irisson, J.-O., Fennel, K., Hauss, H., Guidi, L., Gorsky, G., Giering, S. L. C., Gaube, P., Gallager, S., Dubelaar, G., Cowen, R. K., Carlotti, F., Briseño-Avena, C., Berline, L., Benoit-Bird, K., Bax, N., Batten, S., Ayata, S. D., Artigas, L. F., and Appeltans, W.: Globally Consistent Quantitative Observations of Planktonic Ecosystems, Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00196, 2019.
Lumini, A. and Nanni, L.: Deep learning and transfer learning features for plankton classification, Ecological Informatics, 51, 33–43, https://doi.org/10.1016/j.ecoinf.2019.02.007, 2019.
Luo, J. Y., Irisson, J.-O., Graham, B., Guigand, C., Sarafraz, A., Mader, C., and Cowen, R. K.: Automated plankton image analysis using convolutional neural networks, Limnology and Oceanography: Methods, 16, 814–827, https://doi.org/10.1002/lom3.10285, 2018.
Luo, T., Kramer, K., Samson, S., Remsen, A., Goldgof, D. B., Hall, L. O., and Hopkins, T.: Active learning to recognize multiple types of plankton, in: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, Cambridge, UK, Vol. 3, 478–481, https://doi.org/10.1109/ICPR.2004.1334570, 2004.
Malde, K. and Kim, H.: Beyond image classification: zooplankton identification with deep vector space embeddings, arXiv [preprint], https://doi.org/10.48550/arXiv.1909.11380, 2019.
Malde, K., Handegard, N. O., Eikvil, L., and Salberg, A.-B.: Machine intelligence and the data-driven future of marine science, ICES J. Mar. Sci., 77, 1274–1285, https://doi.org/10.1093/icesjms/fsz057, 2020.
Maracani, A., Pastore, V. P., Natale, L., Rosasco, L., and Odone, F.: In-domain versus out-of-domain transfer learning in plankton image classification, Sci. Rep., 13, 10443, https://doi.org/10.1038/s41598-023-37627-7, 2023.
Masoudi, M., Giering, S. L. C., Eftekhari, N., Massot-Campos, M., Irisson, J.-O., and Thornton, B.: Optimizing Plankton Image Classification With Metadata-Enhanced Representation Learning, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 17117–17133, https://doi.org/10.1109/JSTARS.2024.3424498, 2024.
McCarthy, K., Zabar, B., and Weiss, G.: Does cost-sensitive learning beat sampling for classifying rare classes?, in: Proceedings of the 1st international workshop on Utility-based data mining, New York, NY, USA, 69–77, https://doi.org/10.1145/1089827.1089836, 2005.
Moreno-Torres, J. G., Raeder, T., Alaiz-Rodríguez, R., Chawla, N. V., and Herrera, F.: A unifying view on dataset shift in classification, Pattern Recognition, 45, 521–530, https://doi.org/10.1016/j.patcog.2011.06.019, 2012.
Ohman, M. D., Davis, R. E., Sherman, J. T., Grindley, K. R., Whitmore, B. M., Nickels, C. F., and Ellen, J. S.: Zooglider: An autonomous vehicle for optical and acoustic sensing of zooplankton, Limnology and Oceanography: Methods, 17, 69–86, https://doi.org/10.1002/lom3.10301, 2019.
Olson, R. J. and Sosik, H. M.: A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging FlowCytobot, Limnology and Oceanography: Methods, 5, 195–203, https://doi.org/10.4319/lom.2007.5.195, 2007.
Orenstein, E. C. and Beijbom, O.: Transfer Learning and Deep Feature Extraction for Planktonic Image Data Sets, in: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), 1082–1088, https://doi.org/10.1109/WACV.2017.125, 2017.
Orenstein, E. C., Beijbom, O., Peacock, E. E., and Sosik, H. M.: WHOI-Plankton – A Large Scale Fine Grained Visual Recognition Benchmark Dataset for Plankton Classification, arXiv [preprint], https://doi.org/10.48550/arXiv.1510.00745, 2015.
Orenstein, E. C., Kenitz, K. M., Roberts, P. L. D., Franks, P. J. S., Jaffe, J. S., and Barton, A. D.: Semi- and fully supervised quantification techniques to improve population estimates from machine classifiers, Limnology and Oceanography: Methods, 18, 739–753, https://doi.org/10.1002/lom3.10399, 2020a.
Orenstein, E. C., Ratelle, D., Briseño-Avena, C., Carter, M. L., Franks, P. J. S., Jaffe, J. S., and Roberts, P. L. D.: The Scripps Plankton Camera system: A framework and platform for in situ microscopy, Limnology and Oceanography: Methods, 18, 681–695, https://doi.org/10.1002/lom3.10394, 2020b.
Orenstein, E. C., Ayata, S.-D., Maps, F., Becker, É. C., Benedetti, F., Biard, T., de Garidel-Thoron, T., Ellen, J. S., Ferrario, F., Giering, S. L. C., Guy-Haim, T., Hoebeke, L., Iversen, M. H., Kiørboe, T., Lalonde, J.-F., Lana, A., Laviale, M., Lombard, F., Lorimer, T., Martini, S., Meyer, A., Möller, K. O., Niehoff, B., Ohman, M. D., Pradalier, C., Romagnan, J.-B., Schröder, S.-M., Sonnet, V., Sosik, H. M., Stemmann, L. S., Stock, M., Terbiyik-Kurt, T., Valcárcel-Pérez, N., Vilgrain, L., Wacquet, G., Waite, A. M., and Irisson, J.-O.: Machine learning techniques to characterize functional traits of plankton from image data, Limnology and Oceanography, 67, 1647–1669, https://doi.org/10.1002/lno.12101, 2022.
Owen, B. M., Tweedley, J. R., Moheimani, N. R., Hallett, C. S., Cosgrove, J. J., and Silberstein, L. P. O.: What is “accuracy”? Rethinking machine learning classifier performance metrics for highly imbalanced, high variance, zero-inflated species count data, Limnology and Oceanography: Methods, https://doi.org/10.1002/lom3.70009, 2025.
Panaïotis, T. and Amblard, E.: ThelmaPana/plankton_classif, Zenodo [code], https://doi.org/10.5281/zenodo.17937437, 2025.
Panaïotis, T., Caray–Counil, L., Woodward, B., Schmid, M. S., Daprano, D., Tsai, S. T., Sullivan, C. M., Cowen, R. K., and Irisson, J.-O.: Content-Aware Segmentation of Objects Spanning a Large Size Range: Application to Plankton Images, Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.870005, 2022.
Panaïotis, T., Caray-Counil, L., Jalabert, L., and Irisson, J.-O.: ISIISNet: plankton images captured with the ISIIS (In-situ Ichthyoplankton Imaging System), SEANOE [data set], https://doi.org/10.17882/101950, 2024.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, arXiv [preprint], https://doi.org/10.48550/arXiv.1912.01703, 3 December 2019.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825–2830, 2011.
Péron, F. and Lesueur, C. A.: Tableau des caractères génériques et spécifiques de toutes les espèces de méduses connues jusqu'à ce jour, in: Annales du Muséum d'Histoire Naturelle, 325–366, 1810.
Picheral, M., Guidi, L., Stemmann, L., Karl, D. M., Iddaoud, G., and Gorsky, G.: The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton, Limnology and Oceanography: Methods, 8, 462–473, https://doi.org/10.4319/lom.2010.8.462, 2010.
Picheral, M., Colin, S., and Irisson, J.-O. : EcoTaxa, a tool for the taxonomic classification of images, https://ecotaxa.obs-vlfr.fr/ (last access: 13 November 2020), 2017.
Picheral, M., Catalano, C., Brousseau, D., Claustre, H., Coppola, L., Leymarie, E., Coindat, J., Dias, F., Fevre, S., Guidi, L., Irisson, J. O., Legendre, L., Lombard, F., Mortier, L., Penkerch, C., Rogge, A., Schmechtig, C., Thibault, S., Tixier, T., Waite, A., and Stemmann, L.: The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms, Limnology and Oceanography: Methods, 20, 115–129, https://doi.org/10.1002/lom3.10475, 2022.
Picheral, M., Courchet, L., Jalabert, L., Motreuil, S., Carray-Counil, L., Ricour, F., and Petit, F.: UVP6Net: plankton images captured with the UVP6, SEANOE [data set], https://doi.org/10.17882/101948, 2024.
Pollina, T., Larson, A. G., Lombard, F., Li, H., Le Guen, D., Colin, S., de Vargas, C., and Prakash, M.: PlanktoScope: Affordable Modular Quantitative Imaging Platform for Citizen Oceanography, Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.949428, 2022.
Py, O., Hong, H., and Zhongzhi, S.: Plankton classification with deep convolutional neural networks, in: 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, 132–136, https://doi.org/10.1109/ITNEC.2016.7560334, 2016.
Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and Dosovitskiy, A.: Do Vision Transformers See Like Convolutional Neural Networks?, in: Advances in Neural Information Processing Systems, 12116–12128, 2021.
Robinson, K. L., Sponaugle, S., Luo, J. Y., Gleiber, M. R., and Cowen, R. K.: Big or small, patchy all: Resolution of marine plankton patch structure at micro- to submesoscales for 36 taxa, Science Advances, 7, eabk2904, https://doi.org/10.1126/sciadv.abk2904, 2021.
Rodrigues, F. C. M., Hirata, N. S., Abello, A. A., Leandro, T., La Cruz, D., Lopes, R. M., and Hirata Jr, R.: Evaluation of Transfer Learning Scenarios in Plankton Image Classification, in: VISIGRAPP (5: VISAPP), 359–366, 2018.
Romagnan, J.-B., Panaïotis, T., Bourriau, P., Danielou, M.-M., Doray, M., Dupuy, C., Forest, B., Grandremy, N., Huret, M., Le Mestre, S., Nowaczyk, A., Petitgas, P., Pineau, P., Rouxel, J., Tardivel, M., and Irisson, J.-O.: ZooCAMNet: plankton images captured with the ZooCAM, SEANOE [data set], https://doi.org/10.17882/101928, 2024.
Rubbens, P., Brodie, S., Cordier, T., Destro Barcellos, D., Devos, P., Fernandes-Salvador, J. A., Fincham, J. I., Gomes, A., Handegard, N. O., Howell, K., Jamet, C., Kartveit, K. H., Moustahfid, H., Parcerisas, C., Politikos, D., Sauzède, R., Sokolova, M., Uusitalo, L., Van den Bulcke, L., van Helmond, A. T. M., Watson, J. T., Welch, H., Beltran-Perez, O., Chaffron, S., Greenberg, D. S., Kühn, B., Kiko, R., Lo, M., Lopes, R. M., Möller, K. O., Michaels, W., Pala, A., Romagnan, J.-B., Schuchert, P., Seydi, V., Villasante, S., Malde, K., and Irisson, J.-O.: Machine learning in marine ecology: an overview of techniques and applications, ICES Journal of Marine Science, 80, 1829–1853, https://doi.org/10.1093/icesjms/fsad100, 2023.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L.: ImageNet Large Scale Visual Recognition Challenge, Int. J. Comput. Vis., 115, 211–252, https://doi.org/10.1007/s11263-015-0816-y, 2015.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C.: MobileNetV2: Inverted Residuals and Linear Bottlenecks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520, 2018.
Schmid, M. S., Cowen, R. K., Robinson, K., Luo, J. Y., Briseño-Avena, C., and Sponaugle, S.: Prey and predator overlap at the edge of a mesoscale eddy: fine-scale, in-situ distributions to inform our understanding of oceanographic processes, Sci. Rep., 10, 1–16, https://doi.org/10.1038/s41598-020-57879-x, 2020.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9, 671–675, https://doi.org/10.1038/nmeth.2089, 2012.
Schröder, S.-M., Kiko, R., Irisson, J.-O., and Koch, R.: Low-Shot Learning of Plankton Categories, in: Pattern Recognition, vol. 11269, edited by: Brox, T., Bruhn, A., and Fritz, M., Springer International Publishing, Cham, 391–404, https://doi.org/10.1007/978-3-030-12939-2_27, 2019.
Schröder, S.-M., Kiko, R., and Koch, R.: MorphoCluster: Efficient Annotation of Plankton Images by Clustering, Sensors, 20, 3060, https://doi.org/10.3390/s20113060, 2020.
Ser-Giacomi, E., Zinger, L., Malviya, S., De Vargas, C., Karsenti, E., Bowler, C., and De Monte, S.: Ubiquitous abundance distribution of non-dominant plankton across the global ocean, Nat. Ecol. Evol., 2, 1243–1249, https://doi.org/10.1038/s41559-018-0587-2, 2018.
Shorten, C. and Khoshgoftaar, T. M.: A survey on Image Data Augmentation for Deep Learning, Journal of Big Data, 6, 60, https://doi.org/10.1186/s40537-019-0197-0, 2019.
Sieracki, C. K., Sieracki, M. E., and Yentsch, C. S.: An imaging-in-flow system for automated analysis of marine microplankton, Marine Ecology Progress Series, 168, 285–296, https://doi.org/10.3354/meps168285, 1998.
Smith, L. N.: A disciplined approach to neural network hyper-parameters: Part 1 – learning rate, batch size, momentum, and weight decay, arXiv [preprint], https://doi.org/10.48550/arXiv.1803.09820, 24 April 2018.
Soda, P.: A multi-objective optimisation approach for class imbalance learning, Pattern Recognition, 44, 1801–1810, https://doi.org/10.1016/j.patcog.2011.01.015, 2011.
Sosik, H. M. and Olson, R. J.: Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry, Limnology and Oceanography: Methods, 5, 204–216, https://doi.org/10.4319/lom.2007.5.204, 2007.
Sosik, H. M., Peacock, E. E., and Brownlee, E. F.: WHOI-Plankton. Annotated Plankton Images – Data Set for Developing and Evaluating Classification Methods, MBLWHOI Library [data set], https://doi.org/10.1575/1912/7341, 2015.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting, The Journal of Machine Learning Research, 15, 1929–1958, 2014.
Sun, Y., Wong, A. K. C., and Kamel, M. S.: Classification of imbalanced data: a review, Int. J. Patt. Recogn. Artif. Intell., 23, 687–719, https://doi.org/10.1142/S0218001409007326, 2009.
Tan, M. and Le, Q.: EfficientNetV2: Smaller Models and Faster Training, in: Proceedings of the 38th International Conference on Machine Learning, International Conference on Machine Learning, 10096–10106, https://proceedings.mlr.press/v139/tan21a.html (last access: 15 December 2025), 2021.
Tang, X., Stewart, W. K., Huang, H., Gallager, S. M., Davis, C. S., Vincent, L., and Marra, M.: Automatic Plankton Image Recognition, Artificial Intelligence Review, 12, 177–199, https://doi.org/10.1023/A:1006517211724, 1998.
Tappan, H. and Loeblich, A. R.: Evolution of the oceanic plankton, Earth-Science Reviews, 9, 207–240, https://doi.org/10.1016/0012-8252(73)90092-5, 1973.
Uchida, K., Tanaka, M., and Okutomi, M.: Coupled convolution layer for convolutional neural network, Neural Networks, 105, 197–205, https://doi.org/10.1016/j.neunet.2018.05.002, 2018.
Van Horn, G. and Perona, P.: The Devil is in the Tails: Fine-grained Classification in the Wild, arXiv [preprint], https://doi.org/10.48550/arXiv.1709.01450, 2017.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.: Attention is All you Need, in: Advances in Neural Information Processing Systems, 2017.
Venkataramanan, A., Laviale, M., Figus, C., Usseglio-Polatera, P., and Pradalier, C.: Tackling Inter-class Similarity and Intra-class Variance for Microscopic Image-Based Classification, in: Computer Vision Systems, Cham, 93–103, https://doi.org/10.1007/978-3-030-87156-7_8, 2021.
Walt, S. van der, Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T.: scikit-image: image processing in Python, PeerJ, 2, e453, https://doi.org/10.7717/peerj.453, 2014.
Ware, D. M. and Thomson, R. E.: Bottom-Up Ecosystem Trophic Dynamics Determine Fish Production in the Northeast Pacific, Science, 308, 1280–1284, https://doi.org/10.1126/SCIENCE.1109049, 2005.
Yan, J., Li, X., and Cui, Z.: A More Efficient CNN Architecture for Plankton Classification, in: Computer Vision, Springer, Singapore, 198–208, https://doi.org/10.1007/978-981-10-7305-2_18, 2017.
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H.: How transferable are features in deep neural networks?, Advances in neural information processing systems, 27, 2014.
Zebin, T., Scully, P. J., Peek, N., Casson, A. J., and Ozanyan, K. B.: Design and Implementation of a Convolutional Neural Network on an Edge Computing Smartphone for Human Activity Recognition, IEEE Access, 7, 133509–133520, https://doi.org/10.1109/ACCESS.2019.2941836, 2019.
Zeiler, M. D. and Fergus, R.: Visualizing and Understanding Convolutional Networks, in: Computer Vision – ECCV 2014, 818–833, https://doi.org/10.1007/978-3-319-10590-1_53, 2014.
Zhang, C., Zhang, M., Zhang, S., Jin, D., Zhou, Q., Cai, Z., Zhao, H., Liu, X., and Liu, Z.: Delving Deep into the Generalization of Vision Transformers under Distribution Shifts, arXiv [preprint], https://doi.org/10.48550/arXiv.2106.07617, 8 March 2022.
Zheng, H., Wang, R., Yu, Z., Wang, N., Gu, Z., and Zheng, B.: Automatic plankton image classification combining multiple view features via multiple kernel learning, BMC Bioinformatics, 18, 570, https://doi.org/10.1186/s12859-017-1954-8, 2017.
Short summary
To address the lack of performance benchmark in plankton image classification, we evaluated machine learning methods on six large and realistic datasets. Testing both traditional and more recent convolutional neural networks (deep learning), we find that relatively small deep networks performed best, particularly for uncommon classes, because they extract richer features. Our results indicate that such compact models are sufficient for classifying small grayscale plankton images.
To address the lack of performance benchmark in plankton image classification, we evaluated...
Altmetrics
Final-revised paper
Preprint