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Abstract. Plankton imaging devices produce vast datasets, the processing of which can be largely accelerated
through machine learning. This is a challenging task due to the diversity of plankton, the prevalence of non-
biological classes, and the rarity of many classes. Most existing studies rely on small, unpublished datasets that
often lack realism in size, class diversity and proportions. We therefore also lack a systematic, realistic bench-
mark of plankton image classification approaches. To address this gap, we leverage both existing and newly
published, large, and realistic plankton imaging datasets from widely used instruments (see Data Availability
section for the complete list of dataset DOIs). We evaluate different classification approaches: a classical Ran-
dom Forest classifier applied to handcrafted features, various Convolutional Neural Networks (CNN), and a
combination of both. This work aims to provide reference datasets, baseline results, and insights to guide future
endeavors in plankton image classification. Overall, CNN outperformed the classical approach but only signif-
icantly for uncommon classes. Larger CNN, which should provide richer features, did not perform better than
small ones; and features of small ones could even be further compressed without affecting classification perfor-
mance. Finally, we highlight that the nature of the classifier is of little importance compared to the content of the
features. Our findings suggest that compact CNN (i.e. modest number of convolutional layers and consequently
relatively few total parameters) are sufficient to extract relevant information to classify small grayscale plankton
images. This has consequences for operational classification models, which can afford to be small and quick. On
the other hand, this opens the possibility for further development of the imaging systems to provide larger and
richer images.
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1 Introduction

Plankton, defined as organisms unable to swim against cur-
rents, are crucial components of oceanic systems as they
form the basis of food webs and contribute to organic carbon
sequestration (Ware and Thomson, 2005; Falkowski, 2012).
They have been the subject of scientific research for centuries
(Péron and Lesueur, 1810). The definition of planktonic or-
ganisms, based on motility and ecological niche rather than
phylogeny, means that it encompasses a wide range of tax-
onomic clades (Tappan and Loeblich, 1973). Furthermore,
within these clades, plankton is known to be particularly di-
verse (Hutchinson, 1961). Thus, planktonic organisms cover
a wide range of size (from a few micrometers to several me-
ters), shape, opacity, color, etc. While some planktonic taxa
are ubiquitous (e.g. copepods), many are rare and sparsely
distributed (e.g. fish larvae, scyphomedusae) (Ser-Giacomi
et al., 2018).

Historically, plankton was studied by sampling with nets
and pumps followed by identification and counting by tax-
onomists. These approaches, still used today, are precise
but time-demanding. Quantitative imaging and automated
identification are now complementing traditional methods of
plankton observation, with various imaging instruments de-
veloped to generate quantitative data (Lombard et al., 2019).
Some of these instruments image collected samples, such as
the ZooScan (Gorsky et al., 2010), the FlowCAM (Sieracki
et al., 1998), or the ZooCAM (Colas et al., 2018). Others ac-
quire images in situ, such as the Underwater Vision Profiler
(UVP; Picheral et al., 2010, 2022), the In Situ Ichthyoplank-
ton Imaging System (ISIIS; Cowen and Guigand, 2008), the
Imaging FlowCytobot (IFCB; Olson and Sosik, 2007), or
the ZooGlider (Ohman et al., 2019). These instruments vary
significantly in terms of targeted size range, imaging tech-
nique, and deployment requirements, each necessitating dis-
tinct processing pipelines. Moreover, the growing availabil-
ity and ease of use of these instruments are generating an
ever-increasing volume of plankton imaging data. Most of
this data is now processed through automated algorithms.
Among the various processing tasks, detecting or identifying
organisms is commonly performed using supervised machine
learning, where an algorithm learns patterns from training
data and then generalizes these patterns to new data. Despite
significant advances in hardware for high-throughput plank-
ton imaging, these new instruments do not always come with
a solid and easy-to-use software pipeline (Bi et al., 2015 is
a rare counter-example), leaving operators with the burden
of coding or adapting one themselves. Even once the data is
processed, many current analysis workflows still rely on ag-
gregating and summarizing the classified images, since the
usual statistical tools used in ecology are not meant to han-
dle such large amounts of data points. This limits our ability
to leverage the full richness of these new datasets (Malde et
al., 2020).
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Automated classification of plankton images is a challeng-
ing computer science task. To begin with, planktonic com-
munities (Ser-Giacomi et al., 2018), and therefore the result-
ing image datasets (Eftekhari et al., 2025; Schroder et al.,
2019), exhibit significant class imbalance. In other words,
a few classes contribute to a substantial part of the dataset,
while others classes are poorly represented. This specificity
of plankton image datasets contrasts with standard bench-
mark image datasets where classes are almost evenly dis-
tributed: between 732 and 1300 images for each of the 1000
classes in ImageNet (Russakovsky et al., 2015). As a conse-
quence, rare planktonic classes are usually harder to predict
for automated algorithms (Lee et al., 2016; Van Horn and
Perona, 2017; Schroder et al., 2019), although classes with
highly distinctive morphologies could still be correctly clas-
sified even with few training images (Kraft et al., 2022). Sec-
ondly, planktonic organisms encompass a wide range of taxa
and form a morphologically heterogeneous group, varying
in size, shape and opacity. More specifically, certain classes
can exhibit significant intraclass variation: for instance, when
morphological differences arise from life stages (e.g., do-
liolids) or when a class includes diverse, but rare, objects
grouped together, as they are too uncommon to warrant sepa-
rate classes (e.g., fish larvae). This variability can lead to con-
fusion between classes (Grosjean et al., 2004). In addition to
diverse classes of living organisms, real-world plankton im-
age datasets comprise a considerable amount of non-living
objects, such as marine snow aggregates or bubbles (Ben-
field et al., 2007); these classes often constitute the major-
ity of the datasets (Ellen et al., 2019; Schroder et al., 2019;
Irisson et al., 2022). Finally, plankton images collected by
quantitative instruments are typically low in resolution (with
edges measuring only a few hundred pixels or less) and are
often grayscale or with little variation in color; therefore the
distinction among classes needs to be made from a relatively
small amount of information.

Historically, the automatic classification of plankton im-
ages involved training machine learning classifiers using
handcrafted features extracted from the images. These man-
ually extracted features — intended to capture plankton traits
(observable characteristics, primarily morphological) — aim
to summarize the image content in numerical form, provid-
ing a concise representation that facilitates the classification
process. Typical handcrafted features were global image mo-
ments (size, average gray, etc.; Tang et al., 1998), texture
features such as gray-level co-occurrence matrices (Hu and
Davis, 2005), or shape features from Fourier transforms of
the contour (Tang et al., 1998). Classifiers included Support
Vector Machines (SVM; Luo et al., 2004; Hu and Davis,
2005; Sosik and Olson, 2007), Random Forests (RF; Gorsky
et al., 2010) or Multi-Layer Perceptrons (MLP; Culverhouse
et al. 1996). Several studies compared various classifiers
trained on a common set of features, revealing varying results
depending on the dataset, but ultimately no significant differ-
ence in their performance (Grosjean et al., 2004; Blaschko
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et al., 2005; Gorsky et al., 2010; Ellen et al., 2015, 2019).
This suggests that the performance of classical approaches
is not driven by the classifier as much as by the number and
diversity of features that are fed to it. Indeed, classification
performance usually increases with a richer set of features
(Blaschko et al., 2005). Nevertheless, this may not be true if
some features are redundant or introduce noise into the data,
hence the importance of feature selection (Sosik and Olson,
2007; Guo et al., 2021b). Because handcrafted features are
designed for a particular imaging system, a single universal
set that works across all instruments is difficult to define; the
optimal set of features tends to be instrument and dataset de-
pendent (Orenstein et al., 2022). One solution would be to
define a very large, universal feature set and leave it to the
classifier to select the relevant ones for each task. But this
would be a challenging task, as it requires both expertise in
biology, for many taxa (to know what to extract), and in com-
puter science (to know how to do it); feature engineering has
therefore emerged as a complete research field (Guyon and
Elisseeff, 2003). In the following, we will refer to these two-
step methods (1 — handcrafted feature extraction and 2 — clas-
sification) as “classic approaches”, in contrast to the “deep
approaches” introduced later, which bypass manual feature
design by training feature extractors that automatically learn
relevant features for the task at hand (Irisson et al., 2022).

Among classifiers, RF is a tree-based ensemble learning
method that has shown high accuracy and versatility among
computer vision tasks (Hastie et al., 2009). Each decision
tree in the “forest” is trained on a random subset of the data
(i.e. bootstrap), and at each step, it considers a random se-
lection of predictors (or features) to split the data according
to labeled classes. The tree keeps splitting until it reaches a
stopping point, such as a maximum number of splits. Dur-
ing prediction, each object passes through the tree until it
reaches a terminal leaf, where it is classified based on the
majority class within that leaf. By averaging the results from
multiple trees, RF reduces the risk of overfitting (Breiman,
2001). Fernandez-Delgado et al. (2014), who evaluated the
performances of nearly 180 classifiers on various datasets,
concluded that RF outperformed all others. Gorsky et al.
(2010) previously reached this conclusion on a ZooScan im-
ages dataset, resulting in a widespread use of RF classifiers
later on. The IFCB data processing pipeline also switched
from SVM to RF (Angles et al., 2015). Finally, EcoTaxa
(Picheral et al., 2017), a web application dedicated to the
taxonomic annotation of images, initially implemented a RF
classifier to classify unlabeled images.

However, since 2015, an increasing proportion of plank-
ton image classification studies have employed deep learning
methods, especially Convolutional Neural Networks (CNN).
CNN are a kind of artificial neural network, typically used for
pattern recognition tasks like image segmentation or classi-
fication. Their architecture is inspired from the visual cortex
of animals, where each neuron reacts to stimuli from a re-
stricted region (Dyck et al., 2021). In the case of an image
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classification task, a CNN directly takes an image as input
(as opposed to classic approaches for which image features
need to be extracted first), transforms it in various ways (the
“Convolutional” part), combines the resulting features as in-
put for a set of interconnected “neurons” that further reduce
the information (the “Neural Network™ part), and finally out-
puts a probability for the image to belong to each class; the
class of highest probability is chosen as the predicted label.
In contrast to classical approaches described above, the clas-
sification task with CNN is performed in a single step, where
the feature extractor and the classifier are trained simultane-
ously. This process optimizes the deep features specifically
for the classification task. Moreover, those features can be
used to train any kind of classifier, often resulting in bet-
ter classification performance than with handcrafted features
(Orenstein and Beijbom, 2017).

CNN, first developed in 1990 (Le Cun et al., 1989) and
popularized in 2012 (Krizhevsky et al., 2012), were applied
to plankton image classification for the first time in 2015,
during a challenge hosted on the online platform Kaggle
(https://www.kaggle.com/c/datasciencebowl/, last access: 10
December 2025). Since then, numerous studies have demon-
strated the effectiveness of CNN in recognising plankton im-
ages (Dai et al., 2016; Lee et al., 2016; Luo et al., 2018;
Cheng et al., 2019; Ellen et al., 2019; Lumini and Nanni,
2019; Schmid et al., 2020). On a few plankton images
datasets, CNN have proven to reach higher prediction ac-
curacy than the classical approach of handcrafted features
extraction followed by classification (Orenstein et al., 2015;
Kyathanahally et al., 2021; Irisson et al., 2022). Currently,
research on the classification of plankton images, or im-
ages of any other type of marine organisms, is dominated
by CNN (Irisson et al., 2022; Rubbens et al., 2023; Eerola
et al., 2024). While CNN remain a dominant method for im-
age classification, they have been surpassed by vision trans-
formers (Vaswani et al., 2017), a newer state-of-the-art ap-
proach. However, vision transformers are less data-efficient
than CNN, requiring larger datasets and greater computa-
tional resources for effective training (Raghu et al., 2021).
When applied to plankton image classification, vision trans-
formers have shown only marginal improvements over CNN
(Kyathanahally et al., 2022; Maracani et al., 2023).

A relatively recent review (Irisson et al., 2022) revealed
that over 175 papers have addressed the topic of automated
classification of plankton images. As shown earlier, a few
compared classifiers explicitly, with varying outcomes. But
overall, these 100+ studies used different datasets, often only
one per study, and most of which were not publicly released.
The datasets varied in terms of number of classes and number
of images, two factors that significantly affect performance.
They also reported different performance metrics and the one
most commonly reported (global accuracy) is unrepresenta-
tive for unbalanced datasets (Soda, 2011). Indeed, out of the
10 most cited papers in the field (Irisson et al., 2022), 8 con-
ducted a plankton classification experiment, but only 4 re-
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ported per class metrics or a confusion matrix (others only
report global metrics such as accuracy). A similar pattern is
observed among the papers cited here: of the 33 papers that
performed a plankton classification task, only half reported
metrics beyond global metrics (Table S1 in the Supplement).
Looking at the bigger picture, it appears that performance
has remained relatively stable over time, while the taxonomic
classification tasks became increasingly difficult since, with
richer and larger datasets, more taxa were labeled (Irisson et
al., 2022). This suggests that classifiers improved, although
this is unquantifiable for all the reasons above. Earlier plank-
ton image datasets were modest in size, typically containing
a dozen or a few dozen of classes (Benfield et al., 2007),
but were crucial for establishing the first classification meth-
ods. Building on that foundation, three major plankton image
datasets have been published and used in several studies (Ta-
ble 1), while a few other studies have focused on smaller ver-
sions of these datasets (Dai et al., 2016; Zheng et al., 2017,
Lumini and Nanni, 2019). These benchmark datasets share
several important characteristics: they are large (though this
is debatable for PlanktonSet 1.0), representative of true data
(with minimal alteration of class distribution and inclusion
of all classes, such as detritus or miscellaneous), and acces-
sible online. This highlights that a move towards standard-
ization and intercompatibility is ongoing. Beyond publishing
large reference datasets, as we strive to do in this work, an-
other avenur for progress is the collection of many diverse,
albeit smaller, datasets. This is typically the first step for the
creation of “universal” foundation-type models. The push to-
wards more open and reproducible science has helped in this
respect and several local datasets have been published: e.g.
Table 1 in Kareinen et al. (2025), Table 2 in Eerola et al.
(2024).

Currently, despite several years of active research on the
topic and while CNN have been applied to plankton images
for more than five years (Luo et al., 2018), a systematic,
global comparison of classifier performance is still lacking.
Leveraging both previously published and new published
plankton imaging datasets, the motivation for this study is to
provide such a systematic, operational benchmark that eval-
uates practical and accessible approaches suitable for real-
world applications. This includes starting with a classical
feature-based image classification approach and exploring
a few deep-learning methods. All are applied on large, re-
alistic, and publicly released datasets from six commonly
used plankton imaging instruments, to encompass some of
the variability in imaging modalities, processing pipelines,
and target size ranges present in plankton imaging. For the
classical approach, we use the handcrafted features natively
extracted by the software associated with the instrument, as-
suming that they were engineered to be relevant for those
images, and a RF classifier, given its popularity and per-
formance on plankton images. For the deep approach, our
base model is a relatively small and easy to train CNN (Mo-
bileNet V2), readily accessible to non ML specialists and be-
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low state of the art hardware. In addition to this benchmark,
we perform additional comparisons to tackle the following
questions: (i) In which conditions do CNN strongly improve
classification performance over the classical approach? (ii)
Is per-class weighting of errors effective to counter the ef-
fect of class imbalance in plankton datasets? (iii) How rich
do features need to be for plankton images classification: are
larger CNN needed or, on the contrary, can features be com-
pressed? (iv) What are the relative effect of features (deep
vs. handcrafted) and classifier (MLP vs. RF) on classifica-
tion performance?

2 Material and method

2.1 Datasets
2.1.1 Imaging tools

We used datasets from six widely used plankton imaging in-
struments, each with distinct properties such as deployment
methods or the size range of targeted organisms (Table 2).
For a detailed review of these instruments, refer to Lombard
et al. (2019).

2.1.2 Image processing

Each imaging tool had its own specific image processing
and feature extraction pipeline. The motivation here is to
use these tools “out of the box”, as other plankton ecolo-
gists would. ISIIS data was processed using Apeep (Panaiotis
et al., 2022), and features were extracted using Scikit-image
(Walt et al., 2014). The IFCB data processing relied on sev-
eral MATLAB scripts (Sosik and Olson, 2007) to segment
objects and extract different types of features. The UVPapp
application (Picheral et al., 2022) was developed to process
UVP6 images and extract features. Both ZooScan and Flow-
CAM data were processed using ZooProcess (Gorsky et al.,
2010), which generates crops of individual objects together
with a set of features, extracted by ImagelJ (Schneider et al.,
2012). The processing of ZooCam data was very similar to
the processing of ZooScan and FlowCAM data (Colas et al.,
2018). Thus, for all datasets, each grayscale image was as-
sociated with a set of handcrafted features, which depended
on the instrument but were mostly global features, related to
shape and gray-levels, and a label.

2.1.3 Datasets assembling and composition

All datasets were generated in a similar way: complete, real-
world datasets were sorted by human operators; All clas-
sifications were reviewed by one independant operator for
each dataset. Except for IFCB and ZooCAM, samples par-
ticularly rich in some rare classes were added to the dataset
(all images, not just those of the class of interest). Classes
still containing fewer than ~ 100 objects were merged into a
taxonomically and/or morphologically neighboring class. If
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Table 1. Common plankton images benchmark datasets.

949

Name References Imaging Composition Relevant publications
instrument
Images Classes
WHOI- Orenstein et al.  IFCB 3.5M 103 Callejas et al. (2025), Ciranni et al. (2025), Lee et al.
plankton (2015), Sosik (2016), Dai et al. (2017), Orenstein and Beijbom
et al. (2015) (2017), Cui et al. (2018), Hassan et al. (2025), Kraft et
al. (2022), Kyathanahally et al. (2021, 2022),
Langeland Teigen et al. (2020), Liu et al. (2018),
Maracani et al. (2023), Venkataramanan et al. (2021)
ZooScanNet Elineau et al. ZooScan 1.4M 93  Callejas et al. (2025), Ciranni et al. (2025), Guo and
(2024) Guan (2021), Malde and Kim (2019), Schrdoder et al.
(2019), Kyathanahally et al. (2021, 2022), Maracani et
al. (2023)
PlanktonSet 1.0  Cowen et al. ISTIS 30336 121  Dieleman et al. (2016), Du et al. (2020), Geraldes et al.
(2015) (2019), Guo and Guan (2021), Guo et al. (2021a),

Langeland Teigen et al. (2020), Li and Cui (2016), Li
et al. (2019), Py et al. (2016), Rodrigues et al. (2018),
Uchida et al. (2018), Kyathanahally et al. (2021, 2022),
Langeland Teigen et al. (2020), Maracani et al. (2023),
Yan et al. (2017)

Table 2. Main characteristics of the plankton imaging instruments used to collect the datasets.

Instrument  Deployment Covered size range Reference

FlowCAM  Ex situ (laboratory, ship) 20 to 200 pum Sieracki et al. (1998)

IFCB In situ (mooring) 10 to 100 pm Olson and Sosik (2007)
ISIIS In situ (ship-towed) < 1mm to several cm  Cowen and Guigand (2008)
UVP6 In situ (CTD rosette, mooring, AUV) 620 um to a few cm Picheral et al. (2022)
ZooCAM Ex situ (laboratory, ship) > 300 pm Colas et al. (2018)
ZooScan Ex situ (laboratory) 200 um to a few cm Gorsky et al. (2010)

no relevant merging class could be found, objects were as-
signed to a miscellaneous class together with objects impos-
sible to classify. Therefore, every single object from the orig-
inal samples was included in the classification task, ensuring
that the metrics computed on these datasets were as relevant
to a real-world situation as possible. The IFCB images were
taken from Sosik et al. (2015) (years 2011-2014); the images
for other instruments were taken from EcoTaxa (Picheral et
al., 2017), with the permission of their owners. Full refer-
ences for each dataset are provided in Table 3. The number
of images in the resulting datasets ranged from 301247 to
1592196, in 32 to 120 classes (Table 3). As expected, the
datasets collected in situ (ISIIS, UVP6, and IFCB) were par-
ticularly rich in marine snow and other non-living objects,
resulting in a low proportion of plankton.

To assess performance at a coarser taxonomic level, which
may be sufficient in some applications and is more com-
parable to older papers tackling automated classification of
plankton images (e.g. Culverhouse et al., 1996; Sosik and
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Olson, 2007; Gorsky et al., 2010), each class was assigned
to a broader group (Tables 4, S2—-S7). Each class/group was
then categorized as planktonic or non-planktonic (i.e. detritus
and imaging artifacts), allowing metrics to be computed for
planktonic organisms only, excluding the, sometimes domi-
nant, non-living objects (Table 3). The datasets were split, per
class, into 70 % for training, 15 % for validation and 15 % for
testing, once, before all experiments. This split ensured that
the majority of the data was used for training, maximizing
model learning, while preserving a sufficient portion for val-
idation and testing (at least 10 objects for the rarest classes
in FlowCAM and ISIIS datasets).

2.2 Classification models

Each dataset was classified using different models, described
below. The training procedure was the same for all models
and datasets: (i) models were fitted to the training split, ac-
cording to a loss metric, (ii) hyperparameters were assessed
based on the same loss metric but computed on the indepen-
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Table 3. References and dataset composition in terms of the numbers of images, classes and handcrafted features, as well as the proportion
of plankton (i.e. living organisms, as opposed to detritus and imaging artifacts).

Instrument  Dataset reference Composition

# images [min; max per class] Classes Features % plankton
FlowCAM  Jalabert et al. (2024) 301 247 [74; 69 085] 93 47 36.2
ISIIS Panaiotis et al. (2024) 408 166 [70; 321 335] 32 31 15.3
UVP6 Picheral et al. (2024) 634459 [87; 508 817] 54 62 7.7
ZooCAM Romagnan et al. (2024) 1286590 [81; 204 132] 93 48 67.8
ZooScan Elineau et al. (2024) 1451745 [90; 241 731] 120 48 71.2
IFCB Sosik et al. (2015) 1592196 [90; 1177 499] 69 72 12.6

dent validation split to limit overfitting, (iii) the model with
optimal hyperparameters was used to predict the never-seen-
before test split, only once, and various performance metrics
were computed.

The RF classifiers were implemented using Scikit-learn
(Pedregosa et al., 2011). The CNN models were imple-
mented using Tensorflow (Abadi et al., 2016). Training and
evaluation were performed on two Linux machines, depend-
ing on the model: a Dell server equipped with a Quadro
RTX 8000 GPU and a node of the Jean-Zay supercomputer,
equipped with a V100 SXM2 GPU.

The code to reproduce all results is available at
https://doi.org/10.5281/zenodo.17937437 (Panaiotis and
Amblard, 2025).

2.2.1 Classic approach

A RF classifier was trained on handcrafted features extracted
from images by the software dedicated to each instrument.
Their number ranged from 31 to 72 depending on the soft-
ware (Table 3). Most features were global features, computed
on the whole object: morphological features were computed
on the object silhouette; gray-levels features were summaries
of the distribution of gray levels in the object. In the case of
IFCB, additional texture features were extracted, in the form
of gray level co-occurrence matrices. The diversity of fea-
tures is known to be crucial for the performance of the clas-
sifiers (Blaschko et al., 2005).

The loss metric used during training and validation was
categorical cross-entropy, which optimizes the model’s confi-
dence in predicting the correct class by minimizing the differ-
ence between predicted probabilities and actual labels. While
this helps improve accuracy, it does not directly optimize for
accuracy itself, which is based solely on whether predictions
are correct, not on the confidence of those predictions. In
terms of hyperparameters, the number of features used to
compute each split was set to the square root of the num-
ber of features (which is the default for a classification task,
Hastie et al., 2009) and the minimum number of samples in a
terminal node was set to 5. The optimal number of trees was
investigated using a grid search procedure, over the values
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100, 200, 350, and 500; for each, the classifier was fitted on
the training split and evaluated on the validation split. The
number of trees leading to the lowest validation loss was se-
lected. This classic approach is illustrated in the first row of
Fig. 1.

2.2.2 Convolutional neural network

Since our goal here is to assess the performance of easy-to-
use, turnkey models that most research teams should be able
to deploy, we chose a rather small CNN (MobileNet V2; San-
dler et al., 2018), as our reference model. In addition, we also
evaluated the performance of much larger CNN: EfficientNet
V2 (Tan and Le, 2021), in its S and XL versions.

Images were resized and padded to match the input di-
mensions required by each CNN model (MobileNet V2:
224 x 224 x 3; EfficientNet V2 S: 384 x 384 x 3; Efficient-
Net V2 XL: 512 x 512 x 3). Since each image was originally
single-channel, the single channel was replicated across the
typical three color channels used in CNN. To preserve aspect
ratio, each image was resized so that its longest side equaled
the model’s input size, then padded to a square format using
the median value of the border pixels to maintain a homoge-
neous background (Orenstein et al., 2015). Since all images
are resized and padded to a common pixel grid, the large nat-
ural size variation of plankton is compressed, limiting the
amount of scale-specific detail that can be exploited by the
CNN. Finally, the grayscale channel was replicated to create
three identical channels and achieve the desired shape. Since
training a CNN from scratch is time and data-consuming,
we applied transfer learning by using a feature extractor pre-
trained on the ImageNet dataset. The pre-trained feature ex-
tractor could be used as it is, as the features extracted by a
model trained on generic datasets have also proven to be rel-
evant for other tasks (Yosinski et al., 2014), such as plank-
ton classification (Orenstein and Beijbom, 2017; Rodrigues
et al., 2018; Kyathanahally et al., 2021). But they can also be
fine-tuned on the target dataset to achieve better performance
(Yosinski et al., 2014), which is what we did here, for each
dataset.

https://doi.org/10.5194/essd-18-945-2026
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In a CNN, the typical classifier following the feature ex-
tractor is a MLP. To prevent overfitting, we added a dropout
layer (rate =0.5) immediately after the feature vector, pre-
venting the model from relying on a few key neurons only
(Srivastava et al., 2014) This was followed by a fully con-
nected layer with either 600 or 50, depending on the model,
to explore how the layer size impacts performance. Finally,
the model ended with a classification head, the size of which
depended on the number of classes to predict. This resulted
in 4.5 M parameters for the smaller CNN and 208 M for the
larger one. All models are described in Fig. 1.

Data augmentation (Shorten and Khoshgoftaar, 2019) was
used to improve model generalization ability and perfor-
mance, especially for rare classes. Images from the train-
ing set were randomly flipped vertically and horizontally,
zoomed in and out (up to 20 %), and sheared (up to 15°).
Such a process increases the diversity of examples seen dur-
ing training, improving generalization ability of the model
(Dai et al., 2016). Images were not rotated because objects
from a few classes had a specific orientation (e.g. vertical
lines in the ISIIS dataset, or some organisms that have a spe-
cific orientation in datasets collected in situ). As for the RF,
the loss metric was the categorical cross entropy. At the end
of each training epoch (i.e. a complete run over all images
in the training split), both loss and accuracy were computed
on the validation split, to check for overfitting, and model
parameters were saved.

The feature extractor, fully connected and classification
layers were trained for 10 epochs (5 epochs for Efficient-
Nets). Monitoring the loss on the validation set revealed that
this was sufficient for exhaustive training (Fig. S1). The op-
timizer used the Adam algorithm, with a decaying learning
rate from an initial value of 0.0005 and a decay rate of 0.97
per epoch. Similarly to the optimization of the number of
trees of the RF models, the number of training epochs was
optimized by retaining the parameters associated with the
epoch presenting the minimum validation loss, hence reduc-
ing overfitting (Smith, 2018).

2.2.3 Hybrid approaches

Finally, to discriminate the effect of the feature extractor (ei-
ther handcrafted or deep) and the classifier (either a RF or
a MLP), the deep features produced by the fine-tuned Mo-
bileNet V2 (n =1792) were used to train a RF classifier.
Furthermore, to compare RF trained on similar numbers of
features and to evaluate the importance of feature richness,
we reduce the dimension of those deep features from 1792 to
50 using a principal component analysis (PCA) fitted on the
training set only, before feeding them into the RF classifier.
These two “hybrid” approaches are illustrated in the last two
rows of Fig. 1.
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2.2.4 Class weights

In an unbalanced dataset, well-represented classes are given
more importance because examples from these classes are
more frequent in the loss calculation, while very small
classes are almost negligible. As a result, performance on
these small classes is often very poor (Luo et al., 2018;
Schroder et al., 2019). To address this imbalance, training
data can be resampled to achieve a more balanced distri-
bution (e.g. oversampling poorly represented classes and/or
undersampling dominant classes), a set of methods known
as dataset-level approaches (Sun et al., 2009). Alternatively,
the classifier can be tuned so that the misclassification cost
is higher for small classes (i.e. algorithm-level approaches).
Although both types of methods were shown to improve
classification performance in some situations (e.g. for a bi-
nary classification task, McCarthy et al., 2005), resampling
forces the model to learn on an artificial, balanced class dis-
tribution; when the real-world data have a different (often
skewed) distribution, the learned decision thresholds become
mis-calibrated and performance degrades (Moreno-Torres et
al., 2012; Gonzélez et al., 2017). Thus, a class-weighted loss
was implemented to increase the cost of misclassifying rare
plankton classes. Class weights can be set as the inverse fre-
quency of classes, or smoother alternative such as root or
fourth-root of the inverse frequency (Cui et al., 2019), which
gives, for class i:

0.25
wi = <max(c)> 0

Ci

The effect of these per-class weights was investigated by
training both weighted and non-weighted versions of a RF on
native features and of the reference CNN (Mob + MLPgqg;
Fig. 1).

2.2.5 Model evaluation

After each model in Fig. 1 was trained and tuned for either
the number of trees (for classical models) or the number of
epochs (for CNN) on each dataset, models were evaluated on
the test split, to which they had not been previously exposed.
Usual metrics were computed: accuracy score (percentage
of objects correctly classified), balanced accuracy, macro-
averaged F)-score, micro-averaged F|-score, class-wise pre-
cision (percentage correct in the predicted class) and recall
(percentage correct within the true class).

In datasets with strong class imbalance — such as many
plankton datasets — accuracy alone can be misleading. For
instance, in an 11-class dataset with one dominant class com-
prising 90 % of the data (and each of the other classes mak-
ing up only 1 %), a classifier that always predicts the domi-
nant class would achieve 90 % accuracy but would provide
no insight into the ten minority classes. A random classi-
fier that draws labels according to the empirical class distri-
bution would yield a lower-bound 81 % accuracy (0.92+ 10
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Feature extractor
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Figure 1. Description of the models tested. Each model consists of a feature extractor and a classifier, and is named accordingly. For each
model, the brown line represents the feature vector and its length is indicated. For MLPs, the number in subscript gives the size of the
fully connected layer. RF =Random Forest, MLP = Multilayer Perceptron, NW =no weights (i.e. learning not weighted by class size),
PCA = Principal Component Analysis. The colors defined here are consistent with other figures. The MobileNet V2 with a fully connected
layer of size 600 (Mob + MLPg(, in dark blue) will be considered as a reference model and repeated in all figures.

% 0.01%). This baseline reflects the underlying distribution
while still producing a full confusion matrix that can be used
to compute metrics such as precision and recall. In addition,
the balanced accuracy score, computed as the simple average
of per-class recall scores, was also computed, as it is a better
estimate of model performance in such a scenario (Kelleher
et al., 2020).

Furthermore, in the case of plankton datasets, the domi-
nant classes are often not plankton (detritus, mix, etc.). The
accuracy value is mostly driven by these classes (Orenstein
et al., 2015) and, therefore, does not provide any information
about the performance on plankton classes, which are often
the subject of study. To focus on these classes, we also com-
puted the average of precision and recall per class, weighted
by the number of objects in the class, but using only plank-
ton classes, i.e. the target classes (Owen et al., 2025). Aver-
aged plankton recall gives a direct indication of the propor-
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tion of planktonic organisms that were correctly predicted,
while averaged plankton precision reflects how free the pre-
dicted plankton classes are from false positives.

3 Results

3.1 Training time

Training and evaluation times were always shorter for the
classical approach (using pre-extracted handcrafted features
and a RF classifier) than for CNN (which combined fea-
ture extraction and classification). Running on 12 CPU cores,
gridsearch, training, and evaluation for the RF classifier
based on native features took less than an hour for the small-
est dataset (ISIIS, ~ 400000 objects) and a few hours for
the IFCB dataset (~ 1.6 M objects). The extraction of hand-
crafted features could not be reliably timed, as it is performed
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using very different software, but is usually in the order of
hours for about a million objects. In contrast, it took 5h to
train the MobileNet V2 4+ MLPg( for 10 epochs on the ISIIS
dataset but 15 h for the same number of epochs on the IFCB
dataset, using a Quadro RTX 8000 GPU.

3.2 Benchmark performance of MobileNetV2, our
reference model

On the six large and realistic plankton image datasets in-
cluded in this study, a small CNN model (MobileNetV2)
trained with per-class weights achieved strong performance
while remaining easy to implement. The balanced accuracy
across all classes ranged from 79 % to 90 %, with plankton
class precision and recall reaching 80 %, except for ISIIS and
UVP6 datasets. These benchmark results are further com-
pared to other approaches in the following sections.

3.3 Rare classes are where CNN outperform classical
approaches

In terms of overall accuracy, the CNN only showed a mod-
est improvement on five datasets compared with the classi-
cal approach of using handcrafted features and an RF clas-
sifier (+3.5 % to +13.8 %) (Fig. 2). The exception was the
UVP6 dataset, where the improvement was more pronounced
(> 40 %) The use of class weights slightly decreased the ac-
curacy of both the deep and classical approaches, as it fo-
cused training on small classes and less on large classes,
which account for more in the computation of accuracy.
Note that a random classifier achieved 55 %, 61 % and
63 % accuracy on the detritus-dominated IFCB, ISIIS and
UVP6 datasets, respectively. While the accuracies of all non-
random models were higher, they must be gauged in terms
of the increase over the random model and not in absolute
terms.

Deep approaches showed much higher balanced accura-
cies than classical ones, as well as improved precisions and
recalls averaged over plankton classes; this was true both
with and without weights (Fig. 2). The balanced accuracy of
the random classifier was very poor in all datasets, confirm-
ing that this metric is more relevant in datasets with many
small classes. The same applies for F-scores: macro-F cap-
tures the failure of the random classifiers, while micro-Fj
mirrors accuracy (Fig. S2). The improvements brought by
CNN were associated with the fact that they performed bet-
ter on non-dominant classes (e.g. Tables 4, S2-S7).

Class weights improved balanced accuracy for both deep
(up to 8.2 % for the UVP6 dataset) and classical approaches
(up to +18.0 % for the UVP6 dataset). Thus, as expected,
giving more weight to small classes improved their learning
by the classifier, but this was especially true for RF models.
Weighting decreased plankton precision for both models, on
all datasets: errors involving samples from large classes were
less penalized, resulting in a greater contamination of plank-
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ton classes, i.e. lower precision. Symmetrically, the use of
class weights improved the recall of plankton classes for all
models (except MobileNet on the FlowCam dataset). Again,
this improvement is expected since plankton classes, which
typically contain fewer images than non-plankton ones (e.g.
detritus), are given more weight, reducing the number of
false negatives, i.e. increasing recall. Since applying class
weights improved detection of underrepresented classes (pri-
marily plankton), only the weighted versions of each model
will be evaluated in the subsequent analysis.

3.4 Small CNN are sufficient for plankton image
classification

Using a larger and supposedly richer feature extractor, such
as EfficientNet S or EfficientNet XL, did not markedly im-
prove performance metrics (Fig. 3). If anything, performance
was lower with EfficientNet XL, likely due to immediate
overfitting after the first epoch, causing the model to ad-
here too closely to the training data and impair its ability to
generalize. This may be due to the relatively small training
dataset, which, in proportion to the number of parameters in
the model, increases the risk of overfitting. The effect was
especially pronounced with the UVP6 dataset, which is not
only small (~ 635000 images) but also has a low propor-
tion of plankton images (7.7 %); both balanced accuracy and
plankton-specific metrics (average precision and recall) were
notably impacted. On the other hand, compressing the fea-
tures before classification, by using a fully connected layer
of size 50 instead of 600 after the MobileNet feature extrac-
tor, did not reduce classification performance (Fig. 3). Both
results suggest that a relatively small model is enough to ex-
tract all informative content from the small, grayscale plank-
ton images in these datasets.

3.5 The features are more important than the classifier

Moving from native features to MobileNet deep features be-
fore the RF classifier significantly increased all classifica-
tion metrics (Fig. 4). On the contrary, performance stayed the
same when the MLP600 classifier was replaced by a RF af-
ter the same MobileNet feature extractor. This suggests that
the classifier itself is of relatively little importance; rather,
it is the quality of the features that determines performance.
Since features are optimized during CNN training, their qual-
ity aligns with the patterns the algorithm learns to improve
classification accuracy.

Finally, compressing features with a classification-
agnostic dimension reduction method (PCA here) had very
little effect on classification performance (Fig. 4). This sup-
ports the idea, stated in the previous section, that the infor-
mation required to classify the relatively small, gray-scale
plankton images captured by the instruments considered here
can be efficiently summarized in only a few numbers (50
here). This opens operational possibilities since the feature
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Table 4. Classification report for detailed classes in the ZooScan dataset. Reported values are Fj-scores. N test indicates the number of
objects in the test set for each class. A colored version of this table is available in Table S7.

Class Grouped N test Nat+ Mob + Eff S+ Mob+PCA

RF  MLP600 MLP600 +RF

Plankton classes

Actinopterygii Actinopterygii 289 23.8 87.9 91.6 94.5
egg < Actinopterygii Actinopterygii 689 353 88.3 88.3 90.5
Neoceratium Alveolata 53 0.0 92.3 89.5 92.7
Noctiluca Alveolata 980 54.6 92.7 90.2 92.5
Amphipoda Amphipoda 125 0.0 82.7 86.1 90.1
Cumacea Amphipoda 78 304 91.2 94.0 94.8
Hyperiidea Amphipoda 289 26.1 90.2 93.4 92.8
Annelida Annelida 349 21.3 85.0 85.9 87.5
larvae < Annelida Annelida 50 0.0 72.9 75.2 75.0
part < Annelida Annelida 149 35.7 86.2 85.4 88.2
Tomopteridae Annelida 83 7.0 92.1 91.8 89.6
Fritillariidae Appendicularia 1820 28.1 89.7 88.9 90.5
Oikopleuridae Appendicularia 4967 394 94.2 94.5 95.0
tail < Appendicularia Appendicularia 1243 48.6 85.2 84.4 86.9
trunk Appendicularia 193 0.0 67.3 67.1 72.4
Chaetognatha Chaetognatha 7859 75.4 97.3 97.6 97.9
head < Chaetognatha Chaetognatha 190 0.0 56.9 69.8 72.4
tail < Chaetognatha Chaetognatha 555 15.3 73.0 75.0 71.6
cirrus Cirripedia 60 9.1 68.5 59.5 68.6
cypris Cirripedia 147 0.0 87.9 92.8 91.8
nauplii < Cirripedia Cirripedia 649 0.0 922 924 94.3
Evadne Cladocera 5003 17.1 96.8 97.1 97.4
Penilia Cladocera 3592 39.9 96.8 97.0 97.7
Podon Cladocera 292 0.0 88.3 87.8 87.6
Acartiidae Copepoda 8853 242 95.5 95.4 95.9
Calanidae Copepoda 6190 33.0 96.3 96.4 97.0
Calanoida Copepoda 22713 57.6 94.3 94.3 94.9
Calocalanus pavo Copepoda 71 2.7 84.2 85.5 89.9
Candaciidae Copepoda 1767 11.9 95.5 95.1 95.5
Centropagidae Copepoda 6890 32.8 94.6 94.6 95.1
Copilia Copepoda 99 0.0 88.5 94.2 95.1
Corycaeidae Copepoda 3576 28.5 96.3 96.6 97.2
Eucalanidae Copepoda 183 16.8 88.4 90.2 91.3
Euchaetidae Copepoda 1019 213 94.2 94.1 96.2
Haloptilus Copepoda 407 31.8 95.6 95.4 96.5
Harpacticoida Copepoda 832 0.2 90.7 92.7 93.1
Heterorhabdidae Copepoda 355 0.0 87.6 86.2 89.3
Metridinidae Copepoda 2439 14.7 94.6 94.6 95.7
Oithonidae Copepoda 9847 59.2 96.6 96.6 97.0
Oncaeidae Copepoda 3070 9.1 93.4 94.2 94.8
Pontellidae Copepoda 1080 54.8 97.0 96.5 98.6
Rhincalanidae Copepoda 35 52.0 70.2 78.3 85.3
Sapphirinidae Copepoda 162 0.0 91.8 91.2 91.9
Temoridae Copepoda 4549 23.4 96.0 96.0 96.9
Ctenophora Ctenophora 137 0.0 67.0 72.3 81.1
cyphonaute cyphonaute 1334 29.8 98.4 98.5 98.4
larvae < Luciferidae Decapoda 98 16.4 95.2 95.4 97.9
larvae < Porcellanidae Decapoda 748 64.2 96.2 97.4 98.3
megalopa Decapoda 213 279 95.9 95.2 96.7
protozoea < Penaeidae Decapoda 59 0.0 84.2 87.6 92.3
protozoea < Sergestidae ~ Decapoda 89 0.0 78.5 71.7 81.0
zoea < Brachyura Decapoda 1750 40.0 95.7 96.7 97.5
zoea < Galatheidae Decapoda 759 1.3 88.1 88.3 89.3
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Table 4. Continued.

Class Grouped N test Nat+ Mob + Eff S+ Mob+PCA

RF MLP600 MLP600 +RF

Plankton classes

Doliolida Doliolida 1461 37.7 93.2 92.4 93.8
larvae < Echinodermata Echinodermata 76 0.0 80.6 76.6 84.0
pluteus < Echinoidea Echinodermata 361 26.8 86.7 87.8 89.7
pluteus < Ophiuroidea Echinodermata 542 134 91.0 92.5 92.0
Eumalacostraca Eumalacostraca 3453 61.3 914 91.7 92.4
Eumalacostraca potentially protozoea  Eumalacostraca 225 26.1 83.0 81.4 83.8
larvae < Mysida Eumalacostraca 14 0.0 72.7 88.9 82.8
Mysida Eumalacostraca 120 76.5 86.4 91.6 94.4
Harosa Harosa 244 1.6 76.7 75.1 74.2
Isopoda Isopoda 83 67.1 98.8 97.6 98.2
Atlanta Mollusca 68 0.0 84.8 83.9 90.9
Bivalvia < Mollusca Mollusca 777 12.6 95.0 95.5 95.8
Cavolinia inflexa Mollusca 662 58.2 97.5 96.2 97.2
Creseidae Mollusca 767 474 93.7 94.0 94.2
Creseis acicula Mollusca 1294 67.6 94.5 94.4 94.9
Cymbulia peroni Mollusca 14 0.0 80.0 72.7 76.5
egg < Mollusca Mollusca 129 1.5 76.7 77.0 75.7
Gymnosomata Mollusca 79 60.4 92.8 95.7 95.6
Limacinidae Mollusca 2113 253 96.1 96.3 96.9
part < Mollusca Mollusca 255 22 61.9 553 60.9
Actiniaria other_Cnidaria 22 16.7 93.0 93.3 89.8
ephyra other_Cnidaria 179 36.7 86.4 91.5 91.3
Hydrozoa other_Cnidaria 579 13.6 74.6 75.1 78.4
Obelia other_Chnidaria 147 18.2 85.9 85.7 88.5
part < Cnidaria other_Cnidaria 125 0.0 14.8 44.0 44.6
calyptopsis other_Crustacea 1205 12.2 93.5 94.3 93.3
larvae < Stomatopoda other_Crustacea 245 46.5 95.6 96.5 98.4
metanauplii < Crustacea other_Crustacea 37 0.0 81.8 85.3 93.7
nauplii < Crustacea other_Crustacea 845 4.6 91.5 91.8 93.3
Ostracoda other_Crustacea 1169 46.4 96.4 96.7 97.6
part < Crustacea other_Crustacea 3065 2.6 63.2 65.3 68.2
Pyrosomatida Pyrosomatida 75 222 93.9 95.4 94.8
Foraminifera Rhizaria 469 25.7 89.7 89.8 90.4
Phaeodaria Rhizaria 8106 55.1 96.6 96.2 96.7
endostyle Salpida 135 16.0 60.4 58.2 61.4
juvenile < Salpida Salpida 67 0.0 82.3 84.0 81.9
nucleus Salpida 222 11.5 68.6 71.4 74.7
Salpida Salpida 2460 42.1 92.9 92.3 93.4
Bassia Siphonophorae 15 0.0 57.1 50.0 56.0
bract < Abylopsis tetragona Siphonophorae 185 349 91.2 89.0 89.9
bract < Diphyidae Siphonophorae 2185 12.0 85.9 86.0 87.9
eudoxie < Abylopsis tetragona Siphonophorae 98 0.0 90.3 92.1 89.6
eudoxie < Diphyidae Siphonophorae 525 2.9 84.3 86.9 89.9
gonophore < Abylopsis tetragona Siphonophorae 199 12.1 90.9 90.2 93.5
gonophore < Diphyidae Siphonophorae 2460 30.0 93.2 93.4 94.2
nectophore < Abylopsis tetragona Siphonophorae 173 20.7 88.6 87.6 91.7
nectophore < Diphyidae Siphonophorae 4417 63.1 92.9 92.2 93.1
nectophore < Hippopodiidae Siphonophorae 17 18.2 73.3 81.1 85.7
nectophore < Physonectae Siphonophorae 1386 59.5 87.4 81.8 84.7
part < Siphonophorae Siphonophorae 412 0.0 66.8 67.4 69.5
Physonectae Siphonophorae 16 0.0 43.5 48.5 66.7
siphonula Siphonophorae 144 19.2 90.3 86.1 89.0
Coscinodiscus Stramenopiles 1075 41.2 97.3 96.8 97.2
actinula < Solmundella bitentaculata ~ Trachylina 19 0.0 68.8 78.9 82.4
Aglaura Trachylina 455 57.9 91.8 91.7 93.0
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Table 4. Continued.
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Class Grouped N test Nat+ Mob + Eff S+ Mob+PCA
RF MLP600 MLP600 +RF
Plankton classes
Liriope < Geryoniidae Trachylina 34 0.0 52.0 73.0 78.7
Rhopalonema velatum Trachylina 373 49.1 85.6 85.2 87.2
Solmundella bitentaculata  Trachylina 56 3.5 67.4 70.6 73.4
average 229 85.5 86.6 88.5
Non plankton classes
artefact artefact 7718 76.7 80.8 80.0 79.8
badfocus < artefact badfocus 6046 19.6 63.1 62.9 63.1
bubble bubble 2432 19.0 92.2 91.0 91.2
detritus detritus 36260 55.2 82.9 81.4 81.6
fiber < detritus fiber 6708 62.9 74.6 74.7 74.8
Insecta Insecta 169 27.1 84.3 86.9 89.6
egg < other other_egg 2015 59.7 92.2 91.0 92.4
other < living other_living 40 16.3 39.2 59.3 73.7
seaweed seaweed 1272 353 68.0 68.2 66.3
average 41.3 75.2 77.3 79.2
Accuracy Balanced accuracy
1.00 i
0.75 & g
0.50
0.25
® 0.00
8 Plankton averaged precision Plankton averaged recall
D 1.00 S Ze
Ve | 2.7 7
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FlowCam IFCB ISIIS UVP6  ZooCam ZooScan
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Figure 2. Performance comparison between a small CNN (Mob 4+ MLP600), a RF trained on handcrafted features and a random classifier
on all six datasets. Both class weighted and non-weighted versions of the models were evaluated. The models are described in Fig. 1. Plain
bars show the value of each metric at the finest taxonomic level, striped bars show the value after regrouping objects into broader ecological

groups. All values, including F-scores, are reported in Table S8.

extractor, the feature compressor and the classifier can be
separated.

3.6 Performance on coarser groups

Regrouping classes into broader ecological groups improved
all performance metrics (accuracy, plankton precision and

Earth Syst. Sci. Data, 18, 945-967, 2026

plankton recall) across all datasets and approaches (Figs. 2,
3, and 4), as it made the classification task easier, in line
with previous results (Kraft et al., 2022). However, it is im-
portant to note that our method — regrouping classes after
training on detailed classes — differs from retraining a model
on grouped classes alone. In the latter approach, regrouping
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Accuracy Balanced accuracy

Plankton averaged recall
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Figure 3. Performance comparison between our reference CNN (Mob + MLP600), a CNN with a larger feature extractor (Eff S + MLP600
and Eff XL +MLP600) and a MobileNet followed by a smaller MLP (Mob 4+ MLP50) on all six datasets. The models are described in
Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped bars show the value after regrouping objects into
broader ecological groups. All values, including Fy-scores, are reported in Table S8.
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Figure 4. Performance comparison between our reference CNN (Mob + MLP600), a RF trained on deep features extracted by a MobileNet
V2 without (Mob + RF) and with (Mob + PCA + RF) feature reduction, and a RF trained on handcrafted features on all six datasets. The
models are described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped bars show the value after
regrouping objects into broader ecological groups. All values, including F-scores, are reported in Table S8.

would increase the number of examples within each group, groups (e.g. both Appendicularia bodies and houses being la-
likely enhancing performance. Yet, this could also introduce beled as Appendicularia). This decrease in performance is es-
more diversity within each class, sometimes referred to as pecially evident in miscellaneous classes containing objects
“within-class subconcepts” (He and Garcia, 2009), which that could not be assigned to other categories (Tables 4, S2—
might reduce accuracy in certain, morphologically diverse, S7). The performance increase between detailed and coarse
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classes was larger for classical approaches, particularly on
the ZooCam and ZooScan datasets (Fig. 2). This highlights
the fact that classical approaches often confused fine-scale
taxa, comprised within larger groups. A good example is
Copepoda, which has 22 subclasses in the ZooCam dataset
and 20 in the ZooScan dataset. The classification of some
of these ~ 20 classes was often poor with classical models
while the classification of Copepoda, as a whole, was rather
good. Since Copepoda represented a large percentage of the
images in each dataset, 38 % and 34 % respectively, clas-
sifications metrics significantly improved when they were
grouped.

The other side of the same coin is that performance im-
provements when going from a RF on native features to dif-
ferent deep models were larger when the taxonomic level
was more detailed. In Fig. 5, most classes show better per-
formance with the deep models (to the right of zero), and
the increase is more pronounced with detailed classes (top)
than on regrouped ones (bottom), for precision in particular.
In other words, deep models beat classical ones on almost
all classes (most differences in per-class metrics were above
zero) but, on datasets with more and smaller classes, CNN
beat classical approaches more often and by a wider mar-
gin than on coarser datasets. This further supports that CNN
are better than classical approaches specifically at classifying
rare classes.

4 Discussion

4.1 Costs and benefits of using CNN

In terms of accuracy alone, CNN did not appear to offer a
significant performance improvement over the classical ap-
proach of handcrafted feature extraction followed by a RF
classifier. However, the high scores of a purely random clas-
sifier on this metric show how flawed it can be on unbal-
anced datasets. Instead, balanced accuracy (Kelleher et al.,
2020) and metrics on plankton classes only both showed that
CNN performed better in classifying objects, especially in
low abundance classes (and when class weights were used).
This was further confirmed by the fact that the difference
between CNN and the classical approach was lower when
classification was performed at a coarser taxonomic level.
This makes the use of pretrained CNN particularly relevant
for plankton images classification, which are particularly di-
verse, contain many small classes and in which the dominant
classes are often composed of various detritus and artifacts.
Giving more weight to poorly represented classes resulted
in better performance, especially for RF. One plausible ex-
planation would be that weighted RF (Chen et al., 2004) ac-
tually make use of class weights twice: weights are used to
compute the criterion to generate the splits (entropy in our
case) when building the tree; weights are also used when
voting for the majority class in terminal nodes. On the other
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hand, class weights are only used to compute a weighted loss
in CNN (Cui et al., 2019).

While CNN took longer to train than RF in terms of over-
all training duration, the comparison is not straightforward.
First, training a RF model requires extracting features from
the images beforehand. This feature extraction is coded, not
trained, so this part cannot be directly compared. Addition-
ally, it can be challenging to know when feature extraction is
truly complete, as the optimal set of features often depends
on the specific dataset and task. But even in terms of pure
evaluation (i.e. extracting features and predicting the class of
new images), the computation of some handcrafted features
can take a non-negligible amount of time and a CNN may
prove faster, notably thanks to the use of GPUs by the under-
lying software libraries (Chellapilla et al., 2006). Addition-
ally, the training time of CNN depends heavily on the num-
ber of parameters. For instance, our lightweight model (Mo-
bileNet V2) trained in under 100 h, which is fast compared
to larger models (Zebin et al., 2019). Since lightweight CNN
models demonstrated performance comparable to larger ones
for plankton classification tasks (e.g. Kraft et al., 2022), they
present an appealing choice: their computational demands
are often modest and compatible with most recent computers.
Finally, a metric that may be more relevant than computa-
tional time for many applications is the total time investment
of the scientific team, including model setup, training, and
output validation. In this respect, we argue that CNN are ac-
tually simpler to adopt. Modern deep learning libraries such
as Tensorflow (Abadi et al., 2016) or Pytorch (Paszke et al.,
2019) are free and open-source, and the abundance of tutori-
als and pre-trained models means that users need little image
processing or coding expertise to get started, whereas extract-
ing relevant handcrafted features typically requires domain-
specific knowledge. Although training a CNN may involve
some technical steps (e.g. configuring a data loader), the de-
ployment stage is extremely lightweight, often only a few
lines of code to load the saved model and run inference. Con-
sequently, the resulting model packages the whole pipeline
(from image pre-processing to classification) and can be de-
ployed on various devices. And as GPU resources become in-
creasingly available for the scientific community, these pow-
erful tools become more accessible (Malde et al., 2020).

Finally, our results highlight the efficacy of both CNN and
classical methods for accurate prediction of well-represented
plankton classes. However, rare classes still require manual
validation by a taxonomist. Importantly, improved prediction
quality achieved by CNN compared to classical approaches
is likely to save time by reducing the need for prediction cor-
rections, as reported by Irisson et al. (2022).

4.2 Importance of the quality and number of features

Models using a CNN feature extractor, which generated
features much more numerous than the handcrafted ones
(> 1000 vs. ~ 50), performed better as expected from the lit-
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Figure 5. Density distribution (i.e. continuous histogram) of the difference in performance metrics per class when going from RF on native
features to different deep models (colors), on the ZooScan datasets, at two taxonomic levels (rows).

erature (Orenstein and Beijbom, 2017). Increasing the size
of the feature extractor, hence yielding potentially richer fea-
tures (keeping their number in the same order of magnitude:
1792 for the MobileNet V2 vs. 1280 for the EfficientNet V2)
did not lead to a significant improvement in classification
performance; but it did lengthen the training time. Reduc-
ing the number of features from a CNN to an amount sim-
ilar to the number of handcrafted features (50), using PCA
or compression within a small fully connected layer, did not
significantly affect classification performance either. These
results show that the richness and diversity of features is im-
portant, but only to a certain extent with plankton images.
Although features from CNN cannot be individually inter-
preted, texture features were shown to be important for im-
age classification by CNN (Baker et al., 2018). Moreover,
visualization techniques have been developed to provide in-
sights into the convolutional layers of CNN, revealing that
convolutional layers detect patterns like edges and textures
(Zeiler and Fergus, 2014). By contrast, most handcrafted fea-
ture sets were poor in texture-related features, which may ex-
plain their lower performance.

The fact that the number of features can be greatly re-
duced (from 1792 to 50, a 36-fold reduction, in our case;
from 216 to 25, an 8-fold reduction, in Guo et al., 2021b)
suggests there is only a limited amount of relevant informa-
tion in plankton images for CNN to extract. These images are
typically small (~ 100 x 100 pixels for the average ZooScan
image) and often grayscale, which restricts the amount of
useful information available to any classifier. Consequently,
increasing network depth or size does not yield appreciable
performance gains, because the intrinsic information in the
images is already fully exploited by a small CNN.
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Therefore, improvements in classification accuracy are
more likely to come from richer inputs than from larger net-
work architectures. One way to achieve this is by increas-
ing the quantity of annotated plankton images; pooling data
from multiple instruments and sampling conditions has been
shown to improve CNN accuracy (Ellen and Ohman, 2024)
and this is the first step towards building a so-called foun-
dation model for plankton images. A second, independent
route is to enhance the informational content of each im-
age. For example, color cameras such as those used in the
planktoscope (Pollina et al., 2022) or the Scripps Plankton
Camera (Orenstein et al., 2020b), should capture more in-
formation by using multiple channels. Beyond color, addi-
tional fluorescence channels can be obtained using environ-
mental high content fluorescence microscopy, enriching the
information content of images (Colin et al., 2017); but this
method can only be applied ex situ. Expanding the amount of
training data and capturing richer image information should
both yield gains in classification performance, albeit at the
cost of greater storage and processing requirements. Our
findings also open an opportunity to simplify plankton im-
age classification models, by performing a wise feature se-
lection through recursive feature elimination for example (a
backward selection of less informative features until only in-
formative features remain; Guyon et al., 2002; Guo et al.,
2021b). Dimension reduction techniques, such as PCA (Leg-
endre and Legendre, 2012), can also be used to remove both
correlations and noise in the features. The combination of
deep feature extraction, dimension reduction, and a robust
classifier, such as RandomForest, is lightweight and quick to
train, yet yields high quality results (Fig. 4). Because of these
advantages, this approach has been implemented in the Eco-

Earth Syst. Sci. Data, 18, 945-967, 2026



960 T. Panaiotis et al.: Benchmark of plankton images classification

Taxa web application (Picheral et al., 2017), allowing users
to apply such methods to their own plankton image datasets.

The similar performance between a full CNN and a deep
feature extractor combined with a RF classifier (Fig. 4) sug-
gests that the nature of the features is much more important
than the nature of the classifier. These results are consistent
with those comparing different classifiers on handcrafted fea-
tures, where no significant differences could be highlighted
(Grosjean et al., 2004; Blaschko et al., 2005; Gorsky et al.,
2010; Ellen et al., 2015). Still, in highly unbalanced datasets
(IFCB, ISIIS and UVP6), the plankton precision was slightly
higher with the RF than with the MLPgqg, reflecting a lower
contamination of plankton classes by dominant detritus. Its
stronger sensitivity to class weights is another possible ex-
planation in our case.

4.3 Alternative approaches for plankton image
classification

A potential drawback of CNN is that they may not account
for the real size of objects, since all images are rescaled to
the same dimensions before input. One solution to capture
size would be not to scale down images larger than the in-
put dimension but to pad the smaller ones with the back-
ground color. However, very small objects may be reduced to
just 1 pixel after a few pooling layers and all information in
the original image could be lost. Another common solution
would be to concatenate size information from handcrafted
features (e.g. area, Feret diameter) or simply the image di-
agonal size to one of the fully connected layers to create a
model that accounts for both image aspect and object size.
Still, despite the a priori relevance of size to recognize plank-
ton taxa, such approaches do not necessarily provide a large
improvement in classification performance: Kerr et al. (2020)
report a small improvement when geometric features are con-
catenated, while Kyathanahally et al. (2021) report a negligi-
ble gain. Ellen et al. (2019) evaluated the effect of concate-
nating different types of “metadata” (geometric, geotempo-
ral and hydrographic) to fully connected layers: geometric
features alone did not improve model performance, whereas
geotemporal and hydrographic metadata each yielded a no-
ticeable boost, and adding geometric metadata on top of
those provided an additional improvement. One possible ex-
planation is that deep features already capture the essen-
tial information needed for classification, making additional
geometric features redundant. However, adding geotempo-
ral and hydrographic features (individually or combined) en-
hanced prediction performance, which is unsurprising given
the patchy nature of plankton organisms. Plankton taxa tend
to exhibit positive correlations within groups (Greer et al.,
2016; Robinson et al., 2021), and are often associated with
specific environmental parameters — a relationship that ma-
chine learning algorithms can leverage (e.g., relating plank-
ton biomass to environmental conditions, as shown in Drago
et al., 2022). However, one should keep in mind that incor-
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porating metadata features during training may hinder subse-
quent analyses linking these organisms to their environment,
since the classifier learned a correlation between the abun-
dance of some organisms and some environmental conditions
from the training set, and will therefore induce it in its pre-
dictions.

As highlighted above, plankton datasets are often highly
unbalanced, with few objects in plankton classes while the
largest classes often consist of non-living objects such as
marine snow. There are both “algorithm-level” and “data-
level” methods for dealing with class imbalance (Krawczyk,
2016), which can be used separately or simultaneously.
Algorithm-level methods include the use of class weights
to give more importance to poorly represented classes in
the loss computation (Cui et al., 2019); like we did here.
Another algorithm-level method is to use a different loss
function, such as sigmoid focal cross entropy (Lin et al.,
2020), which penalizes hard examples (small classes) more
than easier ones (large classes). Data-level methods include
oversampling small classes and undersampling large classes,
thereby rebalancing the distribution of classes in the train-
ing set (Krawczyk, 2016). While this practice often improves
performance on a test set to which the same modifications
are applied, it can lead to poor performance when evaluat-
ing the model on a real, therefore unbalanced, dataset, be-
cause the model has learned an unrepresentative class dis-
tribution from the training set. This problem is known as
“dataset shift” (Moreno-Torres et al., 2012). Typically, using
a model trained on an idealized training set to classify ob-
jects from a new, real dataset leads to poor prediction quality
(Gonzalez et al., 2017). Similarly, a model trained for spe-
cific conditions (such as location, depth, or time) will likely
fail to generalize to images acquired under different circum-
stances. To mitigate this, a potential solution would be to as-
semble a training set from samples that match the context
of the future deployment (similar climate and season), hop-
ing that similar context will give rise to similar class distri-
butions. Alternatively, and more generically, the training set
can be made as exhaustive as possible by spanning a wide
range of spatial and temporal conditions; its global class dis-
tribution would minimize the average differences with the
class distribution of new samples. Consequently, the impact
of the dataset shift depends directly on how representative
the training data are of the spatial and temporal regimes of
interest. All types of classification models, including cutting-
edge architectures like vision transformers, are susceptible to
dataset shift (Zhang et al., 2022). Today, there is no obvious
solution to deal with dataset shift in classification tasks and
other approaches, such as quantification, should be consid-
ered (Gonzilez et al., 2019; Orenstein et al., 2020a).

Weighting improves the recall of rare classes but reduces
their precision, reflecting the classic precision—recall trade-
off. When downstream analysis involves manual verification,
higher recall is advantageous because a few false positives in
rare classes can easily be corrected while missed detections
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would likely be lost among the most numerous classes and
not easily recovered. Conversely, in high-throughput moni-
toring through imaging, where human review of all samples
is infeasible, emphasizing precision reduces spurious detec-
tions at the cost of under-estimating true abundances. In such
settings, post-hoc confidence thresholding (e.g. Faillettaz et
al., 2016; Luo et al., 2018) offers a pragmatic compromise,
albeit an imperfect one. In all situations, using various in-
tensities of class weighting is a flexible solution to adapt the
classifier to the study’s objective

The rarity of some plankton classes means that some
classes will inevitably be absent from the training set. Be-
cause a conventional classifier is trained on a fixed label
list, every object is forced into one of these known classes,
causing novel or poorly characterized organisms to be mis-
classified. In these situations, approaches such as unsuper-
vised, self-supervised or semi-supervised learning (e.g. au-
toencoders) or specific open-set classifiers can be employed
(Bendale and Boult, 2016; Ciranni et al., 2025; Masoudi et
al., 2024). These methods can leverage the rich feature em-
beddings produced by a CNN while detecting objects that do
not belong to any of the known training classes (Malde and
Kim, 2019; Schroder et al., 2020).

5 Data availability

The datasets used in this study are:
https://doi.org/10.1575/1912/7341 (Sosik et al., 2015),
https://doi.org/10.17882/101950 (Panaiotis et al., 2024),
https://doi.org/10.17882/101961 (Jalabert et al., 2024),
https://doi.org/10.17882/101948 (Picheral et al., 2024),
https://doi.org/10.17882/101928 (Romagnan et al., 2024),
and https://doi.org/10.17882/55741 (Elineau et al., 2024).

6 Code availability

All the code supporting this study is available at
https://doi.org/10.5281/zenodo.17937437 (Panaiotis and
Amblard, 2025).

7 Conclusion and perspectives

In summary, a small CNN achieved strong performance at
plankton image classification across six realistic plankton
image datasets, while being easy to apply. It unsurprisingly
outperformed the classical approach of extracting a small
number of handcrafted features and using a RF classifier,
particularly for rare classes. Applying per-class weighting
improved the detection of underrepresented classes. Surpris-
ingly, using a large CNN did not lead to better classifica-
tion performance than a much smaller one and deep features
could be quite heavily compressed without loss of perfor-
mance. This is likely related to the fact that plankton im-
ages, which are typically small and grayscale, provide rela-
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tively little information content for CNN. Richer images (e.g.
higher resolution, colour or multispectral data) produced by
next-generation imaging systems would provide additional
discriminative information that bigger models could lever-
age. Finally, the nature of the features dominated the out-
come: deep features drove the performance gains, while the
choice of classifier had little impact. Overall, these findings
suggest that larger and more diverse training sets and/or ad-
vances in imaging hardware, rather than ever larger models,
will be key to further improving plankton classification. Fur-
thermore, metrics that emphasize the classes of interest — of-
ten the minority classes in plankton datasets — should be pri-
oritized.

The results presented here are in line with the shift towards
the use of deep learning models for plankton classification
tasks (Rubbens et al., 2023), which was made possible by
advances in computational performance through easier ac-
cess to dedicated hardware, the release of sufficiently large
datasets, and the development of turnkey deep learning li-
braries such as Tensorflow (Abadi et al., 2016) or Pytorch
(Paszke et al., 2019). Datasets in this study are made publicly
available to facilitate future benchmarking of new classifica-
tion methods.

Supplement. The supplement related to this article is available
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Author contributions. JOI and TP conceived the study; GBC and
GDA developed a first CNN classifier; TP and EA implemented the
RF classifier and the final CNN classifier from the initial work of
GBC and GDA, with guidance from BW; EA performed the exper-
iments under the supervision of TP and JOI; TP wrote the original
draft; all authors reviewed and approved the final manuscript.

Competing interests. Emma Amblard was employed by
Fotonower. Guillaume Boniface-Chang was employed by Google
Research, London. Gabriel Dulac-Arnold was employed by Google
Research, Paris. Ben Woodward was employed by CVision Al. The
peer-review process was guided by an independent editor, and the
authors have no other competing interests to declare.

Disclaimer. Views and opinions expressed are those of the
author(s) only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting authority can
be held responsible for them.

Publisher’s note: Copernicus Publications remains neutral
with regard to jurisdictional claims made in the text, published
maps, institutional affiliations, or any other geographical represen-
tation in this paper. The authors bear the ultimate responsibility for
providing appropriate place names. Views expressed in the text are
those of the authors and do not necessarily reflect the views of the
publisher.

Earth Syst. Sci. Data, 18, 945-967, 2026


https://doi.org/10.1575/1912/7341
https://doi.org/10.17882/101950
https://doi.org/10.17882/101961
https://doi.org/10.17882/101948
https://doi.org/10.17882/101928
https://doi.org/10.17882/55741
https://doi.org/10.5281/zenodo.17937437
https://doi.org/10.5194/essd-18-945-2026-supplement

962 T. Panaiotis et al.: Benchmark of plankton images classification

Acknowledgements. We would like to acknowledge scientists,
crew members and technicians who contributed to data collection
and the taxonomist experts who sorted the images to build the
datasets. Special thanks go to Eric Orenstein for providing scripts to
extract handcrafted features from IFCB images and for his valuable
feedback on the manuscript.

Financial support. This work was carried out within the projects
“World Wide Web of Plankton Image Curation”, funded by the
Belmont Forum through the Agence Nationale de la Recherche
ANR-18-BELM-0003-01 and the National Science Foundation
(NSF) ICER1927710, and LOVNOWER funded by the program
“France relance” from 21 December 2020. TP’s doctoral fellowship
was granted by the French Ministry of Higher Education, Research
and Innovation (3500/2019). This work was granted access to the
HPC resources of IDRIS under the allocation AD011013532 made
by GENCI. TP was supported by projects CALIPSO funded by
Schmidt Sciences and BIOcean5D funded by EU Horizon Europe
(grant no. 101059915).

The article processing charges for this open-access
publication were covered by the National Oceanography Centre.

Review statement. This paper was edited by Sebastiaan van de
Velde and reviewed by Kaisa Kraft and Jeffrey Ellen.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, 1., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefow-
icz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems, arXiv
[preprint], https://doi.org/10.48550/arXiv.1603.04467, 2016.

Angles, S., Jordi, A., and Campbell, L.: Responses of the coastal
phytoplankton community to tropical cyclones revealed by high-
frequency imaging flow cytometry, Limnology and Oceanogra-
phy, 60, 1562—1576, https://doi.org/10.1002/Ino.10117, 2015.

Baker, N., Lu, H., Erlikhman, G., and Kellman, P. J.: Deep
convolutional networks do not classify based on global ob-
ject shape, PLOS Computational Biology, 14, el006613,
https://doi.org/10.1371/journal.pcbi. 1006613, 2018.

Bendale, A. and Boult, T. E.: Towards Open Set Deep
Networks, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1563-1572,
https://www.cv-foundation.org/openaccess/content_cvpr_2016/
html/Bendale_Towards_Open_Set_ CVPR_2016_paper.html
(last access: 15 December 2025), 2016.

Benfield, M., Grosjean, P., Culverhouse, P., Irigolen, X., Sier-
acki, M., Lopez-Urrutia, A., Dam, H., Hu, Q., Davis, C.,
Hanson, A., Pilskaln, C., Riseman, E., Schulz, H., Ut-
goff, P, and Gorsky, G.: RAPID: Research on Auto-

Earth Syst. Sci. Data, 18, 945-967, 2026

mated Plankton Identification, Oceanography, 20, 172-187,
https://doi.org/10.5670/oceanog.2007.63, 2007.

Bi, H., Guo, Z., Benfield, M. C., Fan, C., Ford, M., Shahrestani,
S., and Sieracki, J. M.: A Semi-Automated Image Analysis Pro-
cedure for In Situ Plankton Imaging Systems, PLOS ONE, 10,
e0127121, https://doi.org/10.1371/journal.pone.0127121, 2015.

Blaschko, M. B., Holness, G., Mattar, M. A., Lisin, D., Ut-
goff, P. E., Hanson, A. R., Schultz, H., Riseman, E. M., Sier-
acki, M. E., and Balch, W. M.: Automatic in situ identifica-
tion of plankton, in: 2005 Seventh IEEE Workshops on Applica-
tions of Computer Vision (WACV/MOTION’05), Vol. 1, 79-86,
https://doi.org/10.1109/ACVMOT.2005.29, 2005.

Breiman, L.: Random Forests, Machine Learning, 45, 5-32,
https://doi.org/10.1023/A:1010933404324, 2001.

Callejas, S., Lira, H., Berry, A., Marti, L., and Sanchez-Pi, N.: No
Plankton Left Behind: Preliminary Results on Massive Plankton
Image Recognition, in: High Performance Computing, Cham,
170-185, https://doi.org/10.1007/978-3-031-80084-9_12, 2025.

Chellapilla, K., Puri, S., and Simard, P.: High Performance Con-
volutional Neural Networks for Document Processing, Tenth In-
ternational Workshop on Frontiers in Handwriting Recognition,
https://inria.hal.science/inria-00112631v1 (last access: 15 De-
cember 2025), 2006.

Chen, C., Liaw, A., and Breiman, L.: Using Random For-
est to Learn Imbalanced Data, https://statistics.berkeley.edu/
sites/default/files/tech-reports/666.pdf (last access: 15 December
2025), 2004.

Cheng, K., Cheng, X., Wang, Y., Bi, H., and Benfield, M.
C.: Enhanced convolutional neural network for plankton
identification and enumeration, PLOS ONE, 14, e¢0219570,
https://doi.org/10.1371/journal.pone.0219570, 2019.

Ciranni, M., Gjergji, A., Maracani, A., Murino, V., and Pastore,
V. P: In-domain self-supervised learning for plankton image
classification on a budget, Proceedings of the Winter Confer-
ence on Applications of Computer Vision, 1588-1597, https:
/lopenaccess.thecvf.com/content/ WACV2025W/MaCVi/html/
Ciranni_In-domain_self-supervised_learning_for_plankton_
image_classification_on_a_budget_ WACVW_2025_paper.html
(last access: 15 December 2025), 2025.

Colas, F., Tardivel, M., Perchoc, J., Lunven, M., Forest, B.,
Guyader, G., Danielou, M. M., Le Mestre, S., Bourriau, P,
Antajan, E., Sourisseau, M., Huret, M., Petitgas, P., and Ro-
magnan, J. B.: The ZooCAM, a new in-flow imaging system
for fast onboard counting, sizing and classification of fish eggs
and metazooplankton, Progress in Oceanography, 166, 54-65,
https://doi.org/10.1016/j.pocean.2017.10.014, 2018.

Colin, S., Coelho, L. P., Sunagawa, S., Bowler, C., Karsenti,
E., Bork, P, Pepperkok, R., and de Vargas, C..: Quan-
titative 3D-imaging for cell biology and ecology of
environmental microbial eukaryotes, eLife, 6, 26066,
https://doi.org/10.7554/eLife.26066, 2017.

Cowen, R. K. and Guigand, C. M.: In situ ichthyoplankton
imaging system (ISIIS): system design and preliminary re-
sults, Limnology and Oceanography: Methods, 6, 126-132,
https://doi.org/10.4319/1om.2008.6.126, 2008.

Cowen, R. K., Sponaugle, S., Robinson, K. L., Luo, J., Oregon State
University, and Hatfield Marine Science Center: PlanktonSet 1.0:
Plankton imagery data collected from F. G. Walton Smith in
Straits of Florida from 2014-06-03 to 2014-06-06 and used in the

https://doi.org/10.5194/essd-18-945-2026


https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.1002/lno.10117
https://doi.org/10.1371/journal.pcbi.1006613
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Bendale_Towards_Open_Set_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Bendale_Towards_Open_Set_CVPR_2016_paper.html
https://doi.org/10.5670/oceanog.2007.63
https://doi.org/10.1371/journal.pone.0127121
https://doi.org/10.1109/ACVMOT.2005.29
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-031-80084-9_12
https://inria.hal.science/inria-00112631v1
https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
https://doi.org/10.1371/journal.pone.0219570
https://openaccess.thecvf.com/content/WACV2025W/MaCVi/html/Ciranni_In-domain_self-supervised_learning_for_plankton_image_classification_on_a_budget_WACVW_2025_paper.html
https://openaccess.thecvf.com/content/WACV2025W/MaCVi/html/Ciranni_In-domain_self-supervised_learning_for_plankton_image_classification_on_a_budget_WACVW_2025_paper.html
https://openaccess.thecvf.com/content/WACV2025W/MaCVi/html/Ciranni_In-domain_self-supervised_learning_for_plankton_image_classification_on_a_budget_WACVW_2025_paper.html
https://openaccess.thecvf.com/content/WACV2025W/MaCVi/html/Ciranni_In-domain_self-supervised_learning_for_plankton_image_classification_on_a_budget_WACVW_2025_paper.html
https://doi.org/10.1016/j.pocean.2017.10.014
https://doi.org/10.7554/eLife.26066
https://doi.org/10.4319/lom.2008.6.126

T. Panaiotis et al.: Benchmark of plankton images classification 963

2015 National Data Science Bowl, NCEI Accession 0127422,
https://doi.org/10.7289/v5d21vjd, 2015.

Cui, J., Wei, B., Wang, C., Yu, Z., Zheng, H., Zheng, B., and
Yang, H.: Texture and Shape Information Fusion of Convolu-
tional Neural Network for Plankton Image Classification, in:
2018 OCEANS — MTS/IEEE Kobe Techno-Oceans (OTO), 2018
OCEANS — MTS/IEEE Kobe Techno-Oceans (OTO), 5 pp.,
https://doi.org/10.1109/0CEANSKOBE.2018.8559156, 2018.

Cui, Y., Jia, M., Lin, T.-Y,, Song, Y., and Belongie, S.: Class-
Balanced Loss Based on Effective Number of Samples, Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 9268-9277, https://openaccess.thecvf.com/
content_CVPR_2019/html/Cui_Class-Balanced_Loss_Based_
on_Effective_Number_of_Samples_ CVPR_2019_paper.html
(last access: 15 December 2025), 2019.

Culverhouse, P. F., Simpson, R. G., Ellis, R., Lindley, J. A.,
Williams, R., Parisini, T., Reguera, B., Bravo, 1., Zoppoli, R.,
Earnshaw, G., McCall, H., and Smith, G.: Automatic clas-
sification of field-collected dinoflagellates by artificial neu-
ral network, Marine Ecology Progress Series, 139, 281-287,
https://doi.org/10.3354/meps139281, 1996.

Dai, J., Wang, R., Zheng, H., Ji, G., and Qiao, X.: ZooplanktoNet:
Deep convolutional network for zooplankton classification, in:
OCEANS 2016 — Shanghai, OCEANS 2016 — Shanghai, 6 pp.,
https://doi.org/10.1109/0CEANSAP.2016.7485680, 2016.

Dai, J., Yu, Z., Zheng, H., Zheng, B., and Wang, N.: A Hybrid
Convolutional Neural Network for Plankton Classification, in:
Computer Vision — ACCV 2016 Workshops, Cham, 102-114,
https://doi.org/10.1007/978-3-319-54526-4_8, 2017.

Dieleman, S., Fauw, J. D., and Kavukcuoglu, K.: Exploiting Cyclic
Symmetry in Convolutional Neural Networks, in: Proceedings of
The 33rd International Conference on Machine Learning, Inter-
national Conference on Machine Learning, 1889-1898, 2016.

Drago, L., Panaiotis, T., Irisson, J.-O., Babin, M., Biard, T., Car-
lotti, F., Coppola, L., Guidi, L., Hauss, H., Karp-Boss, L.,
Lombard, F., McDonnell, A. M. P., Picheral, M., Rogge, A.,
Waite, A. M., Stemmann, L., and Kiko, R.: Global Distri-
bution of Zooplankton Biomass Estimated by In Situ Imag-
ing and Machine Learning, Frontiers in Marine Science, 9,
https://doi.org/10.3389/fmars.2022.894372, 2022.

Du, A, Gu, Z., Yu, Z., Zheng, H., and Zheng, B.: Plank-
ton Image Classification Using Deep Convolutional Neu-
ral Networks with Second-order Features, in: Global
Oceans 2020: Singapore - U.S. Gulf Coast, Global
Oceans 2020: Singapore — U.S. Gulf Coast, 5 pp.,
https://doi.org/10.1109/IEEECONF38699.2020.9389034,

2020.

Dyck, L. E. van, Kwitt, R., Denzler, S. J., and Gruber, W. R.: Com-
paring Object Recognition in Humans and Deep Convolutional
Neural Networks — An Eye Tracking Study, Frontiers in Neuro-
science, 15, 750639, https://doi.org/10.3389/fnins.2021.750639,
2021.

Eerola, T., Batrakhanov, D., Barazandeh, N. V., Kraft, K.,
Haraguchi, L., Lensu, L., Suikkanen, S., Seppild, J., Tammi-
nen, T., and Kilvidinen, H.: Survey of automatic plankton image
recognition: challenges, existing solutions and future perspec-
tives, Artif. Intell. Rev., 57, 114, https://doi.org/10.1007/s10462-
024-10745-y, 2024.

https://doi.org/10.5194/essd-18-945-2026

Eftekhari, N., Pitois, S., Masoudi, M., Blackwell, R. E., Scott, J.,
Giering, S. L. C., and Fry, M.: Improving in Situ Real-Time Clas-
sification of Long-Tail Marine Plankton Images for Ecosystem
Studies, in: Computer Vision — ECCV 2024 Workshops, Cham,
121-134, https://doi.org/10.1007/978-3-031-92387-6_8, 2025.

Elineau, A., Desnos, C., Jalabert, L., Olivier, M., Romagnan,
J.-B., Costa Brandao, M., Lombard, F., Llopis, N., Cour-
boules, J., Caray-Counil, L., Serranito, B., Irisson, J.-O.,
Picheral, M., Gorsky, G., and Stemmann, L.: ZooScanNet: plank-
ton images captured with the ZooScan, SEANOE [data set],
https://doi.org/10.17882/55741, 2024.

Ellen, J., Hongyu Li, and Ohman, M. D.: Quantifying Cali-
fornia current plankton samples with efficient machine learn-
ing techniques, in: OCEANS 2015 - MTS/IEEE Wash-
ington, OCEANS 2015 - MTS/IEEE Washington, 9 pp.,
https://doi.org/10.23919/0CEANS.2015.7404607, 2015.

Ellen, J. S. and Ohman, M. D.: Beyond transfer learning: Lever-
aging ancillary images in automated classification of plank-
ton, Limnology and Oceanography: Methods, 22, 943-952,
https://doi.org/10.1002/1om3.10648, 2024.

Ellen, J. S., Graff, C. A, and Ohman, M. D.: Improving
plankton image classification using context metadata,
Limnology and Oceanography: Methods, 17, 439-461,
https://doi.org/10.1002/1lom3.10324, 2019.

Faillettaz, R., Picheral, M., Luo, J. Y., Guigand, C., Cowen,
R. K., and Irisson, J.-O.: Imperfect automatic image
classification  successfully describes plankton distribu-
tion patterns, Methods in Oceanography, 15-16, 60-77,
https://doi.org/10.1016/J1.MI10.2016.04.003, 2016.

Falkowski, P.: Ocean Science: The power of plankton, Nature, 483,
S17-S20, https://doi.org/10.1038/483S17a, 2012.

Fernandez-Delgado, M., Cernadas, E., Barro, S., and Amorim, D.:
Do we need hundreds of classifiers to solve real world classifica-
tion problems?, The Journal of Machine Learning Research, 15,
3133-3181, 2014.

Geraldes, P, Barbosa, J., Martins, A., Dias, A., Maga-
lhdes, C., Ramos, S., and Silva, E.: In situ real-time
Zooplankton Detection and Classification, in: OCEANS
2019 - Marseille, OCEANS 2019 - Marseille, 6 pp.,
https://doi.org/10.1109/0CEANSE.2019.8867552, 2019.

Gonzilez, P., Alvarez, E., Diez, J., Lopez-Urrutia, A., and del Coz,
J. J.: Validation methods for plankton image classification sys-
tems, Limnology and Oceanography: Methods, 15, 221-237,
https://doi.org/10.1002/lom3.10151, 2017.

Gonzilez, P., Castafio, A., Peacock, E. E., Diez, J., Del Coz, J.
J., and Sosik, H. M.: Automatic plankton quantification us-
ing deep features, Journal of Plankton Research, 41, 449463,
https://doi.org/10.1093/plankt/tbz023, 2019.

Gorsky, G., Ohman, M. D., Picheral, M., Gasparini, S., Stemmann,
L., Romagnan, J.-B., Cawood, A., Pesant, S., Garcia-Comas, C.,
and Prejger, F.: Digital zooplankton image analysis using the
ZooScan integrated system, Journal of Plankton Research, 32,
285-303, https://doi.org/10.1093/plankt/fbp124, 2010.

Greer, A. T., Woodson, C. B., Smith, C. E., Guigand, C. M.,
and Cowen, R. K.: Examining mesozooplankton patch struc-
ture and its implications for trophic interactions in the northern
Gulf of Mexico, Journal of Plankton Research, 38, 1115-1134,
https://doi.org/10.1093/plankt/fbw033, 2016.

Earth Syst. Sci. Data, 18, 945-967, 2026


https://doi.org/10.7289/v5d21vjd
https://doi.org/10.1109/OCEANSKOBE.2018.8559156
https://openaccess.thecvf.com/content_CVPR_2019/html/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.html
https://doi.org/10.3354/meps139281
https://doi.org/10.1109/OCEANSAP.2016.7485680
https://doi.org/10.1007/978-3-319-54526-4_8
https://doi.org/10.3389/fmars.2022.894372
https://doi.org/10.1109/IEEECONF38699.2020.9389034
https://doi.org/10.3389/fnins.2021.750639
https://doi.org/10.1007/s10462-024-10745-y
https://doi.org/10.1007/s10462-024-10745-y
https://doi.org/10.1007/978-3-031-92387-6_8
https://doi.org/10.17882/55741
https://doi.org/10.23919/OCEANS.2015.7404607
https://doi.org/10.1002/lom3.10648
https://doi.org/10.1002/lom3.10324
https://doi.org/10.1016/J.MIO.2016.04.003
https://doi.org/10.1038/483S17a
https://doi.org/10.1109/OCEANSE.2019.8867552
https://doi.org/10.1002/lom3.10151
https://doi.org/10.1093/plankt/fbz023
https://doi.org/10.1093/plankt/fbp124
https://doi.org/10.1093/plankt/fbw033

964 T. Panaiotis et al.: Benchmark of plankton images classification

Grosjean, P, Picheral, M., Warembourg, C., and Gorsky,
G.: Enumeration, measurement, and identification of
net zooplankton samples using the ZOOSCAN digi-
tal imaging system, ICES J. Mar. Sci., 61, 518-525,
https://doi.org/10.1016/j.icesjms.2004.03.012, 2004.

Guo, C., Wei, B., and Yu, K..: Deep Transfer Learning
for Biology Cross-Domain Image Classification, Jour-
nal of Control Science and Engineering, 2021, 2518837,
https://doi.org/10.1155/2021/2518837, 2021a.

Guo, J. and Guan, J.: Classification of Marine Plankton Based
on Few-shot Learning, Arab. J. Sci. Eng., 46, 9253-9262,
https://doi.org/10.1007/s13369-021-05786-2, 2021.

Guo, J., Ma, Y., and Lee, J. H. W.: Real-time automated identifica-
tion of algal bloom species for fisheries management in subtrop-
ical coastal waters, Journal of Hydro-environment Research, 36,
1-32, https://doi.org/10.1016/j.jher.2021.03.002, 2021b.

Guyon, 1. and Elisseeff, A.: An introduction to variable and feature
selection, Journal of machine learning research, 3, 1157-1182,
2003.

Guyon, I, Weston, J.,, Barnhill, S., and Vapnik, V.
Gene Selection for Cancer Classification using Sup-
port Vector Machines, Machine Learning, 46, 389-422,
https://doi.org/10.1023/A:1012487302797, 2002.

Hassan, M., Salbitani, G., Carfagna, S., and Khan, J. A.:
Deep learning meets marine biology: Optimized fused fea-
tures and LIME-driven insights for automated plankton clas-
sification, Computers in Biology and Medicine, 192, 110273,
https://doi.org/10.1016/j.compbiomed.2025.110273, 2025.

Hastie, T., Tibshirani, R., and Friedman, J.: The elements of statis-
tical learning: data mining, inference, and prediction, Springer
Science & Business Media, ISBN-13 978-0387952840, 2009.

He, H. and Garcia, E. A.: Learning from Imbalanced Data, IEEE
Transactions on Knowledge and Data Engineering, 21, 1263—
1284, https://doi.org/10.1109/TKDE.2008.239, 2009.

Hu, Q. and Davis, C.. Automatic plankton image recog-
nition with co-occurrence matrices and Support Vector
Machine, Marine Ecology Progress Series, 295, 21-31,
https://doi.org/10.3354/meps295021, 2005.

Hutchinson, G. E.: The Paradox of the Plankton, The American Nat-
uralist, 95, 137-145, 1961.

Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L., and Stem-
mann, L.: Machine Learning for the Study of Plankton and Ma-
rine Snow from Images, Annu. Rev. Mar. Sci., 14, 277-301,
https://doi.org/10.1146/annurev-marine-041921-013023, 2022.

Jalabert, L., Signoret, G., Caray-Counil, L., Vilain, M., Martins,
E., Lombard, F., Picheral, M., and Irisson, J.-O.: FlowCAMNet:
plankton images captured with the FlowCAM, SEANOE [data
set], https://doi.org/10.17882/101961, 2024.

Kareinen, J., Eerola, T., Kraft, K., Lensu, L., Suikkanen,
S., and Kalvidinen, H.: Self-Supervised Pretraining for
Fine-Grained Plankton = Recognition, arXiv [preprint],
https://doi.org/10.48550/arXiv.2503.11341, 9 May 2025.

Kelleher, J. D., Mac Namee, B., and D’arcy, A.: Fundamen-
tals of machine learning for predictive data analytics: al-
gorithms, worked examples, and case studies, MIT Press,
ISBN 9780262044691, 2020.

Kerr, T., Clark, J. R., Fileman, E. S., Widdicombe,
C. E., and Pugeault, N.: Collaborative Deep Learn-
ing Models to Handle Class Imbalance in FlowCam

Earth Syst. Sci. Data, 18, 945-967, 2026

Plankton Imagery, IEEE Access, 8, 170013-170032,
https://doi.org/10.1109/ACCESS.2020.3022242, 2020.

Kraft, K., Velhonoja, O., Eerola, T., Suikkanen, S., Tammi-
nen, T., Haraguchi, L., Ylostalo, P., Kielosto, S., Johans-
son, M., Lensu, L., Kélvidinen, H., Haario, H., and Seppili,
J.: Towards operational phytoplankton recognition with auto-
mated high-throughput imaging, near-real-time data process-
ing, and convolutional neural networks, Front. Mar. Sci., 9,
https://doi.org/10.3389/fmars.2022.867695, 2022.

Krawczyk, B.: Learning from imbalanced data: open chal-
lenges and future directions, Prog. Artif. Intell., 5, 221-232,
https://doi.org/10.1007/s13748-016-0094-0, 2016.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E.: ImageNet Classifi-
cation with Deep Convolutional Neural Networks, in: Advances
in Neural Information Processing Systems 25, edited by: Pereira,
F, Burges, C. J. C., Bottou, L., and Weinberger, K. Q., Curran
Associates, Inc., 1097-1105, 2012.

Kyathanahally, S. P., Hardeman, T., Merz, E., Bulas, T., Reyes, M.,
Isles, P., Pomati, F., and Baity-Jesi, M.: Deep Learning Clas-
sification of Lake Zooplankton, Frontiers in Microbiology, 12,
https://doi.org/10.3389/fmicb.2021.746297, 2021.

Kyathanahally, S. P., Hardeman, T., Reyes, M., Merz, E., Bu-
las, T., Brun, P., Pomati, F, and Baity-Jesi, M.: Ensem-
bles of data-efficient vision transformers as a new paradigm
for automated classification in ecology, Sci. Rep., 12, 18590,
https://doi.org/10.1038/s41598-022-21910-0, 2022.

Langeland Teigen, A., Saad, A., and Stahl, A.: Leverag-
ing Similarity Metrics to In-Situ Discover Planktonic Inter-
species Variations or Mutations, in: Global Oceans 2020:
Singapore — U.S. Gulf Coast, Global Oceans 2020: Sin-
gapore — U.S. Gulf Coast, Biloxi, MS, USA, 8 pp.,
https://doi.org/10.1109/IEEECONF38699.2020.9388998, 2020.

Le Cun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P,
Guyon, I., Henderson, D., Howard, R. E., and Hubbard, W.:
Handwritten digit recognition: applications of neural network
chips and automatic learning, [IEEE Communications Magazine,
27, 41-46, https://doi.org/10.1109/35.41400, 1989.

Lee, H., Park, M., and Kim, J.: Plankton classification on im-
balanced large scale database via convolutional neural net-
works with transfer learning, in: 2016 IEEE International
Conference on Image Processing (ICIP), 2016 IEEE Interna-
tional Conference on Image Processing (ICIP), 3713-3717,
https://doi.org/10.1109/ICIP.2016.7533053, 2016.

Legendre, P. and Legendre, L.: Numerical ecology, Elsevier, 990
pp., ISBN-13 978-0444538680, 2012.

Li, X. and Cui, Z.: Deep residual networks for plank-
ton classification, in: OCEANS 2016 MTS/IEEE Mon-
terey, OCEANS 2016 MTS/IEEE Monterey, 4 pp.,
https://doi.org/10.1109/0CEANS.2016.7761223, 2016.

Li, X., Long, R., Yan, J., Jin, K., and Lee, J.: TANet: A
Tiny Plankton Classification Network for Mobile De-
vices, Mobile Information Systems, 2019, 6536925,
https://doi.org/10.1155/2019/6536925, 2019.

Lin, T.-Y.,, Goyal, P, Girshick, R., He, K., and Dolldr, P.:
Focal Loss for Dense Object Detection, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 42, 318-327,
https://doi.org/10.1109/TPAMI.2018.2858826, 2020.

Liu, J, Du, A.,, Wang, C., Yu, Z., Zheng, H., Zheng, B.,
and Zhang, H.: Deep Pyramidal Residual Networks for

https://doi.org/10.5194/essd-18-945-2026


https://doi.org/10.1016/j.icesjms.2004.03.012
https://doi.org/10.1155/2021/2518837
https://doi.org/10.1007/s13369-021-05786-2
https://doi.org/10.1016/j.jher.2021.03.002
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1016/j.compbiomed.2025.110273
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.3354/meps295021
https://doi.org/10.1146/annurev-marine-041921-013023
https://doi.org/10.17882/101961
https://doi.org/10.48550/arXiv.2503.11341
https://doi.org/10.1109/ACCESS.2020.3022242
https://doi.org/10.3389/fmars.2022.867695
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.3389/fmicb.2021.746297
https://doi.org/10.1038/s41598-022-21910-0
https://doi.org/10.1109/IEEECONF38699.2020.9388998
https://doi.org/10.1109/35.41400
https://doi.org/10.1109/ICIP.2016.7533053
https://doi.org/10.1109/OCEANS.2016.7761223
https://doi.org/10.1155/2019/6536925
https://doi.org/10.1109/TPAMI.2018.2858826

T. Panaiotis et al.: Benchmark of plankton images classification 965

Plankton Image Classification, in: 2018 OCEANS - MT-
S/IEEE Kobe Techno-Oceans (OTO), 2018 OCEANS
— MTS/IEEE Kobe Techno-Oceans (OTO), 5 pp.,
https://doi.org/10.1109/0CEANSKOBE.2018.8559106, 2018.

Lombard, E., Boss, E., Waite, A. M., Vogt, M., Uitz, J., Stemmann,
L., Sosik, H. M., Schulz, J., Romagnan, J.-B., Picheral, M., Pearl-
man, J., Ohman, M. D., Niehoff, B., Mdller, K. O., Miloslavich,
P, Lara-Lpez, A., Kudela, R., Lopes, R. M., Kiko, R., Karp-Boss,
L., Jaffe, J. S., Iversen, M. H., Irisson, J.-O., Fennel, K., Hauss,
H., Guidi, L., Gorsky, G., Giering, S. L. C., Gaube, P., Gallager,
S., Dubelaar, G., Cowen, R. K., Carlotti, F., Brisefio-Avena, C.,
Berline, L., Benoit-Bird, K., Bax, N., Batten, S., Ayata, S. D.,
Artigas, L. F., and Appeltans, W.: Globally Consistent Quantita-
tive Observations of Planktonic Ecosystems, Front. Mar. Sci., 6,
https://doi.org/10.3389/fmars.2019.00196, 2019.

Lumini, A. and Nanni, L.: Deep learning and transfer learning fea-
tures for plankton classification, Ecological Informatics, 51, 33—
43, https://doi.org/10.1016/j.ecoinf.2019.02.007, 2019.

Luo, J. Y., Irisson, J.-O., Graham, B., Guigand, C., Sarafraz,
A., Mader, C.,, and Cowen, R. K.: Automated plank-
ton image analysis using convolutional neural networks,
Limnology and Oceanography: Methods, 16, 814-827,
https://doi.org/10.1002/1om3.10285, 2018.

Luo, T., Kramer, K., Samson, S., Remsen, A., Goldgof, D. B.,
Hall, L. O., and Hopkins, T.: Active learning to recognize mul-
tiple types of plankton, in: Proceedings of the 17th Interna-
tional Conference on Pattern Recognition, ICPR 2004, Proceed-
ings of the 17th International Conference on Pattern Recog-
nition, 2004. ICPR 2004, Cambridge, UK, Vol. 3, 478-481,
https://doi.org/10.1109/ICPR.2004.1334570, 2004.

Malde, K. and Kim, H.: Beyond image classification: zooplank-
ton identification with deep vector space embeddings, arXiv
[preprint], https://doi.org/10.48550/arXiv.1909.11380, 2019.

Malde, K., Handegard, N. O., Eikvil, L., and Salberg,
A.-B.: Machine intelligence and the data-driven future
of marine science, ICES J. Mar. Sci., 77, 1274-1285,
https://doi.org/10.1093/icesjms/fsz057, 2020.

Maracani, A., Pastore, V. P, Natale, L., Rosasco, L., and
Odone, F.: In-domain versus out-of-domain transfer learn-
ing in plankton image classification, Sci. Rep., 13, 10443,
https://doi.org/10.1038/s41598-023-37627-7, 2023.

Masoudi, M., Giering, S. L. C., Eftekhari, N., Massot-Campos,
M., Irisson, J.-O., and Thornton, B.: Optimizing Plank-
ton Image Classification With Metadata-Enhanced Represen-
tation Learning, IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 17, 17117-17133,
https://doi.org/10.1109/ISTARS.2024.3424498, 2024.

McCarthy, K., Zabar, B., and Weiss, G.: Does cost-sensitive
learning beat sampling for classifying rare classes?,
in: Proceedings of the Ist international workshop on
Utility-based data mining, New York, NY, USA, 69-77,
https://doi.org/10.1145/1089827.1089836, 2005.

Moreno-Torres, J. G., Raeder, T., Alaiz-Rodriguez, R.,
Chawla, N. V., and Herrera, F.: A unifying view on dataset
shift in classification, Pattern Recognition, 45, 521-530,
https://doi.org/10.1016/j.patcog.2011.06.019, 2012.

Ohman, M. D., Davis, R. E., Sherman, J. T., Grindley, K. R., Whit-
more, B. M., Nickels, C. F, and Ellen, J. S.: Zooglider: An
autonomous vehicle for optical and acoustic sensing of zoo-

https://doi.org/10.5194/essd-18-945-2026

plankton, Limnology and Oceanography: Methods, 17, 69-86,
https://doi.org/10.1002/1om3.10301, 2019.

Olson, R. J. and Sosik, H. M.: A submersible imaging-in-flow
instrument to analyze nano-and microplankton: Imaging Flow-
Cytobot, Limnology and Oceanography: Methods, 5, 195-203,
https://doi.org/10.4319/1om.2007.5.195, 2007.

Orenstein, E. C. and Beijbom, O.: Transfer Learning and
Deep Feature Extraction for Planktonic Image Data Sets,
in: 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), 2017 IEEE Winter Conference
on Applications of Computer Vision (WACV), 1082-1088,
https://doi.org/10.1109/WACV.2017.125, 2017.

Orenstein, E. C., Beijbom, O., Peacock, E. E., and Sosik, H. M.:
WHOI-Plankton — A Large Scale Fine Grained Visual Recog-
nition Benchmark Dataset for Plankton Classification, arXiv
[preprint], https://doi.org/10.48550/arXiv.1510.00745, 2015.

Orenstein, E. C., Kenitz, K. M., Roberts, P. L. D., Franks, P. J. S.,
Jaffe, J. S., and Barton, A. D.: Semi- and fully supervised quan-
tification techniques to improve population estimates from ma-
chine classifiers, Limnology and Oceanography: Methods, 18,
739753, https://doi.org/10.1002/lom3.10399, 2020a.

Orenstein, E. C., Ratelle, D., Brisefio-Avena, C., Carter, M. L.,
Franks, P. J. S., Jaffe, J. S., and Roberts, P. L. D.: The Scripps
Plankton Camera system: A framework and platform for in situ
microscopy, Limnology and Oceanography: Methods, 18, 681—
695, https://doi.org/10.1002/1om3.10394, 2020b.

Orenstein, E. C., Ayata, S.-D., Maps, F., Becker, E. C., Benedetti,
F., Biard, T., de Garidel-Thoron, T., Ellen, J. S., Ferrario, F,,
Giering, S. L. C., Guy-Haim, T., Hoebeke, L., Iversen, M.
H., Kigrboe, T., Lalonde, J.-F., Lana, A., Laviale, M., Lom-
bard, F., Lorimer, T., Martini, S., Meyer, A., Moller, K. O,
Niehoff, B., Ohman, M. D., Pradalier, C., Romagnan, J.-B.,
Schroder, S.-M., Sonnet, V., Sosik, H. M., Stemmann, L. S.,
Stock, M., Terbiyik-Kurt, T., Valcarcel-Pérez, N., Vilgrain, L.,
Wacquet, G., Waite, A. M., and Irisson, J.-O.: Machine learn-
ing techniques to characterize functional traits of plankton from
image data, Limnology and Oceanography, 67, 1647-1669,
https://doi.org/10.1002/In0.12101, 2022.

Owen, B. M., Tweedley, J. R., Moheimani, N. R., Hallett, C.
S., Cosgrove, J. J., and Silberstein, L. P. O.: What is “ac-
curacy”? Rethinking machine learning classifier performance
metrics for highly imbalanced, high variance, zero-inflated
species count data, Limnology and Oceanography: Methods,
https://doi.org/10.1002/lom3.70009, 2025.

Panaiotis, T. and Amblard, E.: ThelmaPana/plankton_classif, Zen-
odo [code], https://doi.org/10.5281/zenodo.17937437, 2025.

Panaiotis, T., Caray—Counil, L., Woodward, B., Schmid, M. S.,
Daprano, D., Tsai, S. T., Sullivan, C. M., Cowen, R. K., and Iris-
son, J.-O.: Content-Aware Segmentation of Objects Spanning a
Large Size Range: Application to Plankton Images, Frontiers in
Marine Science, 9, https://doi.org/10.3389/fmars.2022.870005,
2022.

Panaiotis, T., Caray-Counil, L., Jalabert, L., and Irisson, J.-
O.: ISIISNet: plankton images captured with the ISIIS (In-
situ Ichthyoplankton Imaging System), SEANOE [data set],
https://doi.org/10.17882/101950, 2024.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-

Earth Syst. Sci. Data, 18, 945-967, 2026


https://doi.org/10.1109/OCEANSKOBE.2018.8559106
https://doi.org/10.3389/fmars.2019.00196
https://doi.org/10.1016/j.ecoinf.2019.02.007
https://doi.org/10.1002/lom3.10285
https://doi.org/10.1109/ICPR.2004.1334570
https://doi.org/10.48550/arXiv.1909.11380
https://doi.org/10.1093/icesjms/fsz057
https://doi.org/10.1038/s41598-023-37627-7
https://doi.org/10.1109/JSTARS.2024.3424498
https://doi.org/10.1145/1089827.1089836
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1002/lom3.10301
https://doi.org/10.4319/lom.2007.5.195
https://doi.org/10.1109/WACV.2017.125
https://doi.org/10.48550/arXiv.1510.00745
https://doi.org/10.1002/lom3.10399
https://doi.org/10.1002/lom3.10394
https://doi.org/10.1002/lno.12101
https://doi.org/10.1002/lom3.70009
https://doi.org/10.5281/zenodo.17937437
https://doi.org/10.3389/fmars.2022.870005
https://doi.org/10.17882/101950

966 T. Panaiotis et al.: Benchmark of plankton images classification

son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style,
High-Performance Deep Learning Library, arXiv [preprint],
https://doi.org/10.48550/arXiv.1912.01703, 3 December 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in
Python, Journal of Machine Learning Research, 12, 2825-2830,
2011.

Péron, F. and Lesueur, C. A.: Tableau des caracteres génériques et
spécifiques de toutes les especes de méduses connues jusqu’a
ce jour, in: Annales du Muséum d’Histoire Naturelle, 325-366,
1810.

Picheral, M., Guidi, L., Stemmann, L., Karl, D. M., Iddaoud, G., and
Gorsky, G.: The Underwater Vision Profiler 5: An advanced in-
strument for high spatial resolution studies of particle size spec-
tra and zooplankton, Limnology and Oceanography: Methods, 8,
462-473, https://doi.org/10.4319/1om.2010.8.462, 2010.

Picheral, M., Colin, S., and Irisson, J.-O. : EcoTaxa, a tool for the
taxonomic classification of images, https://ecotaxa.obs-vlfr.fr/
(last access: 13 November 2020), 2017.

Picheral, M., Catalano, C., Brousseau, D., Claustre, H., Coppola,
L., Leymarie, E., Coindat, J., Dias, F., Fevre, S., Guidi, L., Iris-
son, J. O., Legendre, L., Lombard, F., Mortier, L., Penkerch, C.,
Rogge, A., Schmechtig, C., Thibault, S., Tixier, T., Waite, A.,
and Stemmann, L.: The Underwater Vision Profiler 6: an imag-
ing sensor of particle size spectra and plankton, for autonomous
and cabled platforms, Limnology and Oceanography: Methods,
20, 115-129, https://doi.org/10.1002/lom3.10475, 2022.

Picheral, M., Courchet, L., Jalabert, L., Motreuil, S., Carray-
Counil, L., Ricour, F., and Petit, F: UVP6Net: plank-
ton images captured with the UVP6, SEANOE [data set],
https://doi.org/10.17882/101948, 2024.

Pollina, T., Larson, A. G., Lombard, F., Li, H.,, Le Guen,
D., Colin, S., de Vargas, C., and Prakash, M.: Plankto-
Scope: Affordable Modular Quantitative Imaging Platform
for Citizen Oceanography, Frontiers in Marine Science, 9,
https://doi.org/10.3389/fmars.2022.949428, 2022.

Py, O., Hong, H., and Zhongzhi, S.: Plankton classification with
deep convolutional neural networks, in: 2016 IEEE Informa-
tion Technology, Networking, Electronic and Automation Con-
trol Conference, 2016 IEEE Information Technology, Network-
ing, Electronic and Automation Control Conference, 132-136,
https://doi.org/10.1109/ITNEC.2016.7560334, 2016.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and Dosovit-
skiy, A.: Do Vision Transformers See Like Convolutional Neural
Networks?, in: Advances in Neural Information Processing Sys-
tems, 12116-12128, 2021.

Robinson, K. L., Sponaugle, S., Luo, J. Y. Gleiber, M.
R., and Cowen, R. K.: Big or small, patchy all: Resolu-
tion of marine plankton patch structure at micro- to sub-
mesoscales for 36 taxa, Science Advances, 7, eabk2904,
https://doi.org/10.1126/sciadv.abk2904, 2021.

Rodrigues, F. C. M., Hirata, N. S., Abello, A. A., Leandro, T., La
Cruz, D., Lopes, R. M., and Hirata Jr, R.: Evaluation of Transfer
Learning Scenarios in Plankton Image Classification, in: VISI-
GRAPP (5: VISAPP), 359-366, 2018.

Earth Syst. Sci. Data, 18, 945-967, 2026

Romagnan, J.-B., Panaiotis, T., Bourriau, P., Danielou, M.-M.,
Doray, M., Dupuy, C., Forest, B., Grandremy, N., Huret,
M., Le Mestre, S., Nowaczyk, A., Petitgas, P., Pineau, P,
Rouxel, J., Tardivel, M., and Irisson, J.-O.: ZooCAMNet: plank-
ton images captured with the ZooCAM, SEANOE [data set],
https://doi.org/10.17882/101928, 2024.

Rubbens, P, Brodie, S., Cordier, T., Destro Barcellos, D., Devos,
P., Fernandes-Salvador, J. A., Fincham, J. I., Gomes, A., Han-
degard, N. O., Howell, K., Jamet, C., Kartveit, K. H., Mous-
tahfid, H., Parcerisas, C., Politikos, D., Sauzede, R., Sokolova,
M., Uusitalo, L., Van den Bulcke, L., van Helmond, A. T. M.,
Watson, J. T., Welch, H., Beltran-Perez, O., Chaffron, S., Green-
berg, D. S., Kiihn, B., Kiko, R., Lo, M., Lopes, R. M., Mdéller,
K. O., Michaels, W., Pala, A., Romagnan, J.-B., Schuchert, P.,
Seydi, V., Villasante, S., Malde, K., and Irisson, J.-O.: Machine
learning in marine ecology: an overview of techniques and ap-
plications, ICES Journal of Marine Science, 80, 1829-1853,
https://doi.org/10.1093/icesjms/fsad100, 2023.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A. C., and Fei-Fei, L.: ImageNet Large Scale Visual
Recognition Challenge, Int. J. Comput. Vis., 115, 211-252,
https://doi.org/10.1007/s11263-015-0816-y, 2015.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C.:
MobileNetV2: Inverted Residuals and Linear Bottlenecks, Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 4510-4520, 2018.

Schmid, M. S., Cowen, R. K., Robinson, K., Luo, J. Y., Brisefio-
Avena, C., and Sponaugle, S.: Prey and predator overlap at the
edge of a mesoscale eddy: fine-scale, in-situ distributions to in-
form our understanding of oceanographic processes, Sci. Rep.,
10, 1-16, https://doi.org/10.1038/s41598-020-57879-x, 2020.

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to
Imagel: 25 years of image analysis, Nat. Methods, 9, 671-675,
https://doi.org/10.1038/nmeth.2089, 2012.

Schroder, S.-M., Kiko, R., Irisson, J.-O., and Koch, R.: Low-
Shot Learning of Plankton Categories, in: Pattern Recog-
nition, vol. 11269, edited by: Brox, T., Bruhn, A., and
Fritz, M., Springer International Publishing, Cham, 391-404,
https://doi.org/10.1007/978-3-030-12939-2_27, 2019.

Schroder, S.-M., Kiko, R., and Koch, R.: MorphoCluster: Efficient
Annotation of Plankton Images by Clustering, Sensors, 20, 3060,
https://doi.org/10.3390/s20113060, 2020.

Ser-Giacomi, E., Zinger, L., Malviya, S., De Vargas, C., Karsenti,
E., Bowler, C., and De Monte, S.: Ubiquitous abundance distri-
bution of non-dominant plankton across the global ocean, Nat.
Ecol. Evol., 2, 1243-1249, https://doi.org/10.1038/s41559-018-
0587-2, 2018.

Shorten, C. and Khoshgoftaar, T. M.: A survey on Image Data
Augmentation for Deep Learning, Journal of Big Data, 6, 60,
https://doi.org/10.1186/540537-019-0197-0, 2019.

Sieracki, C. K., Sieracki, M. E., and Yentsch, C. S.: An
imaging-in-flow system for automated analysis of marine mi-
croplankton, Marine Ecology Progress Series, 168, 285-296,
https://doi.org/10.3354/meps 168285, 1998.

Smith, L. N.. A disciplined approach to neural net-
work hyper-parameters: Part 1 - learning rate, batch
size, momentum, and weight decay, arXiv [preprint],
https://doi.org/10.48550/arXiv.1803.09820, 24 April 2018.

https://doi.org/10.5194/essd-18-945-2026


https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.4319/lom.2010.8.462
https://ecotaxa.obs-vlfr.fr/
https://doi.org/10.1002/lom3.10475
https://doi.org/10.17882/101948
https://doi.org/10.3389/fmars.2022.949428
https://doi.org/10.1109/ITNEC.2016.7560334
https://doi.org/10.1126/sciadv.abk2904
https://doi.org/10.17882/101928
https://doi.org/10.1093/icesjms/fsad100
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1038/s41598-020-57879-x
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1007/978-3-030-12939-2_27
https://doi.org/10.3390/s20113060
https://doi.org/10.1038/s41559-018-0587-2
https://doi.org/10.1038/s41559-018-0587-2
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.3354/meps168285
https://doi.org/10.48550/arXiv.1803.09820

T. Panaiotis et al.: Benchmark of plankton images classification 967

Soda, P.: A multi-objective optimisation approach for class
imbalance learning, Pattern Recognition, 44, 1801-1810,
https://doi.org/10.1016/j.patcog.2011.01.015, 2011.

Sosik, H. M. and Olson, R. J.: Automated taxonomic classi-
fication of phytoplankton sampled with imaging-in-flow cy-
tometry, Limnology and Oceanography: Methods, 5, 204-216,
https://doi.org/10.4319/1om.2007.5.204, 2007.

Sosik, H. M., Peacock, E. E., and Brownlee, E. F.: WHOI-Plankton.
Annotated Plankton Images — Data Set for Developing and Eval-
uating Classification Methods, MBLWHOI Library [data set],
https://doi.org/10.1575/1912/7341, 2015.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., and
Salakhutdinov, R.: Dropout: a simple way to prevent neural net-
works from overfitting, The Journal of Machine Learning Re-
search, 15, 1929-1958, 2014.

Sun, Y., Wong, A. K. C., and Kamel, M. S.: Classification of im-
balanced data: a review, Int. J. Patt. Recogn. Artif. Intell., 23,
687-719, https://doi.org/10.1142/S0218001409007326, 2009.

Tan, M. and Le, Q.: EfficientNetV2: Smaller Models and Faster
Training, in: Proceedings of the 38th International Confer-
ence on Machine Learning, International Conference on Ma-
chine Learning, 10096-10106, https://proceedings.mlr.press/
v139/tan21a.html (last access: 15 December 2025), 2021.

Tang, X., Stewart, W. K., Huang, H., Gallager, S. M., Davis,
C. S., Vincent, L., and Marra, M.: Automatic Plankton Im-
age Recognition, Artificial Intelligence Review, 12, 177-199,
https://doi.org/10.1023/A:1006517211724, 1998.

Tappan, H. and Loeblich, A. R.: Evolution of the
oceanic plankton, Earth-Science Reviews, 9, 207-240,
https://doi.org/10.1016/0012-8252(73)90092-5, 1973.

Uchida, K., Tanaka, M., and Okutomi, M.: Coupled convolution
layer for convolutional neural network, Neural Networks, 105,
197-205, https://doi.org/10.1016/j.neunet.2018.05.002, 2018.

Van Horn, G. and Perona, P.: The Devil is in the Tails:
Fine-grained Classification in the Wild, arXiv [preprint],
https://doi.org/10.48550/arXiv.1709.01450, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I.: Attention is All
you Need, in: Advances in Neural Information Processing Sys-
tems, 2017.

https://doi.org/10.5194/essd-18-945-2026

Venkataramanan, A., Laviale, M., Figus, C., Usseglio-Polatera,
P, and Pradalier, C.: Tackling Inter-class Similarity and
Intra-class Variance for Microscopic Image-Based Classi-
fication, in: Computer Vision Systems, Cham, 93-103,
https://doi.org/10.1007/978-3-030-87156-7_8, 2021.

Walt, S. van der, Schonberger, J. L., Nunez-Iglesias, J., Boulogne,
F, Warner, J. D., Yager, N., Gouillart, E., and Yu, T.:
scikit-image: image processing in Python, Peer], 2, e453,
https://doi.org/10.7717/peerj.453, 2014.

Ware, D. M. and Thomson, R. E.: Bottom-Up Ecosys-
tem Trophic Dynamics Determine Fish Production
in the Northeast Pacific, Science, 308, 1280-1284,
https://doi.org/10.1126/SCIENCE.1109049, 2005.

Yan, J., Li, X., and Cui, Z.: A More Efficient CNN Architecture for
Plankton Classification, in: Computer Vision, Springer, Singa-
pore, 198-208, https://doi.org/10.1007/978-981-10-7305-2_18,
2017.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H.: How transfer-
able are features in deep neural networks?, Advances in neural
information processing systems, 27, 2014.

Zebin, T., Scully, P. J., Peek, N., Casson, A. J., and Ozanyan,
K. B.: Design and Implementation of a Convolutional Neu-
ral Network on an Edge Computing Smartphone for Hu-
man Activity Recognition, IEEE Access, 7, 133509-133520,
https://doi.org/10.1109/ACCESS.2019.2941836, 2019.

Zeiler, M. D. and Fergus, R.: Visualizing and Understanding Convo-
lutional Networks, in: Computer Vision — ECCV 2014, 818833,
https://doi.org/10.1007/978-3-319-10590-1_53, 2014.

Zhang, C., Zhang, M., Zhang, S., Jin, D., Zhou, Q., Cai, Z., Zhao,
H., Liu, X., and Liu, Z.: Delving Deep into the Generalization of
Vision Transformers under Distribution Shifts, arXiv [preprint],
https://doi.org/10.48550/arXiv.2106.07617, 8 March 2022.

Zheng, H., Wang, R., Yu, Z., Wang, N., Gu, Z., and Zheng, B.: Au-
tomatic plankton image classification combining multiple view
features via multiple kernel learning, BMC Bioinformatics, 18,
570, https://doi.org/10.1186/s12859-017-1954-8, 2017.

Earth Syst. Sci. Data, 18, 945-967, 2026


https://doi.org/10.1016/j.patcog.2011.01.015
https://doi.org/10.4319/lom.2007.5.204
https://doi.org/10.1575/1912/7341
https://doi.org/10.1142/S0218001409007326
https://proceedings.mlr.press/v139/tan21a.html
https://proceedings.mlr.press/v139/tan21a.html
https://doi.org/10.1023/A:1006517211724
https://doi.org/10.1016/0012-8252(73)90092-5
https://doi.org/10.1016/j.neunet.2018.05.002
https://doi.org/10.48550/arXiv.1709.01450
https://doi.org/10.1007/978-3-030-87156-7_8
https://doi.org/10.7717/peerj.453
https://doi.org/10.1126/SCIENCE.1109049
https://doi.org/10.1007/978-981-10-7305-2_18
https://doi.org/10.1109/ACCESS.2019.2941836
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.48550/arXiv.2106.07617
https://doi.org/10.1186/s12859-017-1954-8

	Abstract
	Introduction
	Material and method
	Datasets
	Imaging tools
	Image processing
	Datasets assembling and composition

	Classification models
	Classic approach
	Convolutional neural network
	Hybrid approaches
	Class weights
	Model evaluation


	Results
	Training time
	Benchmark performance of MobileNetV2, our reference model
	Rare classes are where CNN outperform classical approaches
	Small CNN are sufficient for plankton image classification
	The features are more important than the classifier
	Performance on coarser groups

	Discussion
	Costs and benefits of using CNN
	Importance of the quality and number of features
	Alternative approaches for plankton image classification

	Data availability
	Code availability
	Conclusion and perspectives
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

