Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-77-2026
https://doi.org/10.5194/essd-18-77-2026
Data description paper
 | 
05 Jan 2026
Data description paper |  | 05 Jan 2026

GEMS-GER: a machine learning benchmark dataset of long-term groundwater levels in Germany with meteorological forcings and site-specific environmental features

Marc Ohmer, Tanja Liesch, Bastian Habbel, Benedikt Heudorfer, Mariana Gomez, Patrick Clos, Maximilian Nölscher, and Stefan Broda

Related authors

Strategies for Incorporating Static Features into Global Deep Learning Models
Tanja Liesch and Marc Ohmer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4048,https://doi.org/10.5194/egusphere-2025-4048, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Never Train a Deep Learning Model on a Single Well? Revisiting Training Strategies for Groundwater Level Prediction
Marc Ohmer and Tanja Liesch
EGUsphere, https://doi.org/10.5194/egusphere-2025-4055,https://doi.org/10.5194/egusphere-2025-4055, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Spatiotemporal optimization of groundwater monitoring networks using data-driven sparse sensing methods
Marc Ohmer, Tanja Liesch, and Andreas Wunsch
Hydrol. Earth Syst. Sci., 26, 4033–4053, https://doi.org/10.5194/hess-26-4033-2022,https://doi.org/10.5194/hess-26-4033-2022, 2022
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [preprint], https://doi.org/10.48550/arXiv.1603.04467, 2016. a
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a
Ahmadi, A., Olyaei, M., Heydari, Z., Emami, M., Zeynolabedin, A., Ghomlaghi, A., Daccache, A., Fogg, G. E., and Sadegh, M.: Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis, Water, 14, 949, https://doi.org/10.3390/w14060949, 2022. a
Barzegar, R., Fijani, E., Asghari Moghaddam, A., and Tziritis, E.: Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models, Science of The Total Environment, 599–600, 20–31, https://doi.org/10.1016/j.scitotenv.2017.04.189, 2017. a
Berghuijs, W. R., Luijendijk, E., Moeck, C., van der Velde, Y., and Allen, S. T.: Global Recharge Data Set Indicates Strengthened Groundwater Connection to Surface Fluxes, Geophysical Research Letters, 49, e2022GL099010, https://doi.org/10.1029/2022GL099010, 2022. a
Download
Short summary
We present a public dataset of weekly groundwater levels from more than 3000 wells across Germany, spanning 32 years. It combines weather data and site-specific environmental information to support forecasting groundwater changes. Three benchmark models of varying complexity show how data and modeling approaches influence predictions. This resource promotes open, reproducible research and helps guide future water management decisions.
Share
Altmetrics
Final-revised paper
Preprint