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Abstract. We present GEMS-GER (Groundwater Levels, Environment, Meteorology, Site Properties), the first
benchmark dataset specifically designed for machine learning applications in long-term groundwater level mod-
eling in Germany. The dataset comprises 32 years of gapless weekly observations from 3207 monitoring wells,
enriched with meteorological forcing variables and more than 50 site-specific static attributes. All data have un-
dergone extensive preprocessing, including harmonization, outlier removal, and iterative imputation, to ensure
high quality and suitability for machine learning applications. The wells are spatially distributed across Germany
and cover diverse hydrogeological settings and aquifer types. To demonstrate the utility of the dataset, we pro-
vide three initial benchmark models: a single-well CNN model, a global LSTM model using dynamic inputs,
and a global LSTM model incorporating both dynamic and static features. The best-performing model achieves
satisfactory predictive performance (NSE > 0.5) for more than half (52 %) of the wells, which is generally con-
sidered a solid result in the context of groundwater-level modeling.

GEMS-GER is openly available under an open-access license via Zenodo, accompanied by detailed doc-
umentation (Ohmer et al., 2025; https://doi.org/10.5281/zenodo.15530171). By enabling standardized and re-
producible evaluation of data-driven groundwater models, the dataset offers a robust foundation for advancing
machine learning research in hydrogeology.

1 Background and Motivation

Groundwater is a vital resource in the global supply of drink-
ing water, agriculture, and ecosystems. In Germany, ground-
water, including water from springs, accounts for approxi-
mately 70 % of the drinking water supply (Destatis, 2025).
However, unlike surface water, it is a hidden resource that
cannot be directly observed, with data collection primarily
limited to discrete measurements from wells and springs.
This spatial and temporal discontinuity often hinders under-
standing system-wide processes and the ability to respond to

climatic or anthropogenic influences. Reliable forecasts en-
able decision-makers in policy and management to respond
proactively to potential risks such as water scarcity, over-
extraction, or contamination (De Graaf et al., 2019). More-
over, accurate groundwater level (GWL) predictions facili-
tate more effective water resource management by balanc-
ing ecological requirements with urban growth and industrial
development demands (Wunsch et al., 2021; Gomez et al.,
2024). These challenges also imply that future climate vari-
ability and change may further complicate groundwater pro-
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jections, underlining the need for robust and transparent data
foundations.

Despite its importance, groundwater level forecasting re-
mains challenging due to the groundwater systems’ hidden,
interconnected nature, which is influenced by various phys-
ical, geological, and climatic factors (Ahmadi et al., 2022;
Feng et al., 2024). While physics-based numerical models
can represent these processes in considerable detail, they are
associated with significant demands. They require extensive
and often costly input data, including physical properties that
are inherently uncertain. Their setup is complex, demanding
specialized expertise for tasks such as numerical discretiza-
tion and the definition of boundary and initial conditions,
along with time-intensive calibration and validation phases
(Chen et al., 2020).

Two intermediate model families bridge the gap be-
tween physics-based and data-driven approaches. Lumped-
conceptual models such as AquiMod (Mackay et al., 2014)
represent aquifer dynamics with simplified reservoirs, while
Transfer Function–Noise (TFN) models (e.g., Pastas; Collen-
teur et al., 2019; Zaadnoordijk et al., 2019; Collenteur et al.,
2023) use parametric transfer functions to link groundwater
levels to external stresses while accounting for noise. Both
approaches are computationally efficient and require rela-
tively little data; however, their site-specific calibration limits
transferability, underscoring the need for more generalizable
machine learning methods.

Machine Learning (ML) has proven to be a highly ef-
fective approach in hydrological modeling, particularly for
groundwater level prediction. ML addresses several limita-
tions of physics-based methods by capturing complex non-
linear relationships between hydro-climatic variables. Re-
cent advances such as transfer learning and cross-site model-
ing may extend these benefits to data-scarce regions, though
sparse observations continue to limit reliability and valida-
tion.

Early studies, such as Coulibaly et al. (2001) and Lallahem
et al. (2005), compared different Artificial Neural Network
(ANNs) architectures, demonstrating their capability to sim-
ulate monthly GWL using climatic and hydrological data. In
the following years, interest grew in various ANN models,
including feedforward neural networks (FFNNs) like multi-
layer perceptrons (MLPs) (Nayak et al., 2006; Krishna et al.,
2008) and radial basis function networks (RBFNNs) (Ying
et al., 2014; Chen et al., 2010), for GWL prediction across
diverse hydrogeological settings. According to a review by
Tao et al. (2022), the number of publications on AI meth-
ods in GWL modeling has significantly increased, particu-
larly since the mid-2000s, reflecting the growing recogni-
tion of ML’s ability to capture the complex, non-linear pat-
terns in GWL fluctuations. The field has evolved to incor-
porate more advanced ML techniques. For example, Adap-
tive Neuro-Fuzzy Inference Systems (ANFIS) (Kholghi and
Hosseini, 2009; Emamgholizadeh et al., 2014; Maiti and
Tiwari, 2014) have gained popularity by combining neural

learning with fuzzy logic. Similarly, support vector machines
(SVMs) and support vector regression (SVR) have frequently
been used for GWL forecasting (Huang et al., 2017; Guz-
man et al., 2019; Yoon et al., 2011). Another emerging trend
is the development of hybrid models that integrate various
techniques to harness their strengths and mitigate their weak-
nesses (Tao et al., 2022). For example, wavelet-based hybrid
models (Moosavi et al., 2013; Samani et al., 2022; Barze-
gar et al., 2017) combine wavelet analysis with AI algo-
rithms. Optimization-enhanced models employ metaheuris-
tic algorithms, such as Genetic Algorithms (Kasiviswanathan
et al., 2016; Sadat-Noori et al., 2020), to refine model pa-
rameters and architectures. Recently, deep learning archi-
tectures such as convolutional neural networks (CNNs) and
long short-term memory networks (LSTMs) (Wunsch et al.,
2021, 2022a; Heudorfer et al., 2024; Han et al., 2025; Solgi
et al., 2021; Yang and Zhang, 2022) have attracted increasing
attention for their ability to capture complex temporal depen-
dencies and long-term trends in GWL data.

Despite significant methodological progress, the field still
lacks standardized, large-scale benchmark datasets. Most
studies rely on localized data, which often fail to capture the
diversity of hydrogeological and climatic conditions, limiting
the transferability of results. In addition, many datasets are
not publicly available or lack proper documentation, imped-
ing reproducibility and validation. These limitations hinder
systematic comparison and generalization of existing mod-
els, highlighting the need to further explore their application
across diverse hydrogeological settings.

In contrast, using comprehensive, standardized, and mul-
tivariable datasets with long-term observations has become
a well-established practice in other areas of hydrology.
The CAMELS (Catchment Attributes and Meteorology for
Large-Sample Studies) dataset series is a notable example.
CAMELS was initially introduced with CAMELS-US (Ad-
dor et al., 2017) for the United States, integrating hydro-
logical, meteorological, and catchment-specific characteris-
tics. Over time, additional national and multinational vari-
ants have been developed to address region-specific needs.
On a global scale, the Caravan dataset (Kratzert et al., 2023)
unites regional CAMELS datasets into a standardized format,
facilitating global hydrological modeling and cross-regional
comparisons.

However, to our knowledge, no comparable dataset op-
timized for machine learning–based groundwater modeling
currently exists. To fill this gap, this study introduces a ma-
chine learning–ready, comprehensive, large-scale, and na-
tionally standardized dataset for groundwater level modeling
and prediction in Germany. It contains 32 years of gapless
weekly groundwater level time series from over 3000 moni-
toring wells, derived through preprocessing from more than
17 000 original wells. These time series are complemented
by meteorological forcing data and over 50 site-specific static
features per well, covering hydrogeological and hydrologi-
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cal properties, soil characteristics, land use, topography, and
monitoring well metadata.

The dataset is designed to optimally support the applica-
tion of machine learning models while meeting high stan-
dards for comparability, reproducibility, and generalizabil-
ity. It follows the established principles and structure of
the CAMELS datasets, adapting them to the requirements
of groundwater modeling. The overarching objective of this
work is to create a central data foundation that enables sys-
tematic comparison of machine learning models, validates
their generalizability across various hydrogeological and cli-
matic conditions, and ensures transparent research through
public availability and standardized documentation. The pro-
vision of this dataset represents a crucial contribution to ad-
vancing data-driven research in groundwater modeling.

In addition to ML, the dataset provides a valuable founda-
tion for a variety of hydrological and environmental applica-
tions. These include groundwater trend analysis, drought and
climate impact assessment, and the calibration and validation
of traditional hydrological models.

In addition to the dataset, we present the results of three
benchmark model types: (1) individual single-well models,
each trained separately for a specific monitoring well using
only dynamic inputs; (2) a global model trained on all wells,
also using dynamic inputs; and (3) a second global model
that incorporates both dynamic and static inputs.

The core objectives of the dataset and benchmark models
are:

– Establish a large-scale comprehensive dataset for
groundwater modeling, integrating 32 years of weekly
groundwater level data from Germany and meteorolog-
ical forcings and site-specific properties.

– Enable reproducible evaluation of machine learning
models for groundwater level prediction through a
dataset for direct performance comparisons, and give
some first benchmark model results.

– Bridge local and global groundwater research by pro-
viding a unified dataset for model development and val-
idation across spatial scales.

– Promote transparency and collaboration via public ac-
cess, documentation, and standardized data formats.

2 Data and Preprocessing

2.1 Data sources

The groundwater level data were obtained from the responsi-
ble authorities of the 16 German federal states, namely: Lan-
desanstalt für Umwelt Baden-Württemberg (LUBW), Bay-
erisches Landesamt für Umwelt (LfU), Senatsverwaltung für
Mobilität, Verkehr, Klimaschutz und Umwelt Berlin (Sen-
MVKU), Landesamt für Umwelt Brandenburg (LfU), Geol-
ogischer Dienst für Bremen (GDfB), Behörde für Umwelt,

Klima, Energie und Agrarwirtschaft Hamburg (BUKEA),
Hessisches Landesamt für Naturschutz, Umwelt und Ge-
ologie (HLNUG), Landesamt für Umwelt, Naturschutz und
Geologie Mecklenburg-Vorpommern (LUNG), Niedersäch-
sischer Landesbetrieb für Wasserwirtschaft, Küsten- und
Naturschutz (NLWKN), Landesamt für Natur, Umwelt und
Klimaschutz Nordrhein-Westfalen (LANUV), Landesamt
für Umwelt Rheinland-Pfalz (LfU), Landesamt für Umwelt-
und Arbeitsschutz Saarland (LUA), Sächsisches Landesamt
für Umwelt, Landwirtschaft und Geologie (LfULG), Lan-
desbetrieb für Hochwasserschutz und Wasserwirtschaft
Sachsen-Anhalt (LHW), Landesamt für Umwelt Schleswig-
Holstein (LfU), and Thüringer Landesamt für Umwelt, Berg-
bau und Naturschutz (TLUBN). The original dataset com-
prised groundwater level time series from more than 17 000
monitoring wells (see also Fig. 2, showing the number of
wells contributed by each federal state).

The meteorological data originate from two main sources.
Variables from the HYRAS dataset provided by the Ger-
man Meteorological Service (DWD) include mean, maxi-
mum, and minimum daily temperature (DWD, 2024a, b, c),
daily precipitation sum (DWD, 2024d), and relative humid-
ity (DWD, 2024e), as well as real, potential, and refer-
ence (FAO) evapotranspiration (DWD-CDC, 2024a, b, c),
soil moisture (DWD-CDC, 2024d), and soil temperature at
5 cm depth (DWD-CDC, 2024e). Additional variables (snow
water equivalent, snowfall, and snowmelt) were obtained
from ERA5-Land data (Muñoz-Sabater et al., 2021), which
also include hydrological fluxes such as surface and subsur-
face runoff. The latter are simulated from atmospheric forc-
ing using a land surface model. Table 1 provides an overview
of all included dynamic features and their data sources.

The site-specific static data include well metadata such as
coordinates, well depth, screen length (if available), aquifer
type, and pressure condition, which were also obtained from
the responsible authorities. For wells located in North Rhine-
Westphalia, spatial coordinates were anonymized by round-
ing to a horizontal resolution of 100 m in accordance with
applicable data protection regulations. In addition, we in-
corporated static features capturing hydrogeological and soil
characteristics (e.g., aquifer type, hydraulic conductivity, soil
type, recharge), topographic attributes (elevation, slope, as-
pect, flow direction), and land use information. An overview
of all static features and their corresponding data sources is
provided in Table 2. Mean climatic variables were not in-
cluded, as they can be easily derived from the dynamic inputs
through feature engineering.

2.2 Groundwater level data

2.2.1 Data Integration and Weekly Aggregation

As illustrated in Fig. 1a, the data preparation process in-
volved harmonizing datasets of varying formats and struc-
tures originating from the different data management sys-
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Table 1. Overview of the dynamic climate variables used and their properties.

Variable Description Unit Resolution Category Wkly. Agg. Source Reference

HYRAS_tasmax Max. temperature at 2 m °C 1 km× 1 km Climate mean DWD HYRAS (DWD, 2024a)
HYRAS_tas Mean temperature at 2 m °C 1 km× 1 km Climate mean DWD HYRAS (DWD, 2024b)
HYRAS_tasmin Min. temperature at 2 m °C 1 km× 1 km Climate mean DWD HYRAS (DWD, 2024c)
HYRAS_pr Precipitation sum mm 1 km× 1 km Climate sum DWD HYRAS (DWD, 2024d)
HYRAS_hurs Relative humidity % 1 km× 1 km Climate mean DWD HYRAS (DWD, 2024e)
DWD_evapo_p Potential evapotranspiration mm 1 km× 1 km Climate sum DWD (DWD-CDC, 2024a)
DWD_evapo_r Actual evapotranspiration mm 1 km× 1 km Climate sum DWD (DWD-CDC, 2024b)
DWD_evapo_fao Reference evapotranspiration (FAO) mm 1 km× 1 km Climate sum DWD (DWD-CDC, 2024c)
DWD_soil_moist Soil moisture %PAW 1 km× 1 km Climate mean DWD (DWD-CDC, 2024d)
DWD_soil_temp5cm Soil temperature at 5 cm depth °C 1 km× 1 km Climate mean DWD (DWD-CDC, 2024e)
ERA5_sm Total snowmelt (m w.e.) m 1°× 1° Climate sum ERA5-Land (Muñoz-Sabater et al., 2021)
ERA5_sf Total snowfall (mw.e.) m 1°× 1° Climate sum ERA5-Land (Muñoz-Sabater et al., 2021)
ERA5_sdwe Snow depth (mw.e.) m 1°× 1° Climate mean ERA5-Land (Muñoz-Sabater et al., 2021)
ERA5_ssro Sub-surface runoff sum m 1°× 1° Hydrology sum ERA5-Land (Muñoz-Sabater et al., 2021)
ERA5_sro Runoff sum m 1°× 1° Hydrology sum ERA5-Land (Muñoz-Sabater et al., 2021)

tems of the 16 federal states into a unified format. Subse-
quently, all time series were aggregated to weekly means
where higher temporal resolutions were available. For con-
sistency, the weekly aggregation was aligned to Mondays
across all datasets. In cases of individual measurements
within a week, values were also assigned to the correspond-
ing Monday to ensure temporal alignment.

2.2.2 Data Gap Filtering

Filtering criteria (Fig. 1b) were defined to balance data qual-
ity with spatial and temporal coverage:

– Time Period. The period from 1991 to 2022 was selected
to capture long-term trends while ensuring data recency.
More recent data were incomplete in many time series.

– Missing Values. Monitoring wells with more than
20 % missing data were excluded.

– Maximum Gap Length. Wells with continuous data gaps
exceeding 12 weeks were excluded to preserve the in-
tegrity of the time series.

2.2.3 Sudden Change Detection

Abrupt shifts in groundwater level time series (Fig. 1c) were
identified using the PELT (Pruned Exact Linear Time) algo-
rithm (Killick et al., 2012), implemented via the Ruptures
library (Truong et al., 2020). This method partitions time se-
ries into segments of consistent statistical properties by min-
imizing intra-segment variance through a cost function. The
analysis focused on significant step-like level changes over
the 32 year period. All detected changepoints were manu-
ally reviewed to assess their plausibility and potential ori-
gin. Only those shifts that could not be explained by natu-
ral groundwater fluctuations and were likely attributable to
anthropogenic influences such as data logger repositioning,
construction activity, or technical malfunction were consid-

ered grounds for excluding the affected time series from fur-
ther analysis.

2.2.4 Multi-Criteria Outlier Detection

To ensure reliable identification of implausible values, a
multi-criteria outlier detection approach (Fig. 1d) was imple-
mented. Five distinct algorithms were applied in parallel to
leverage their individual strengths and compensate for their
weaknesses. This ensemble strategy reflects a conservative
approach: only data points consistently identified as anoma-
lous were considered for removal, minimizing the risk of ex-
cluding valid measurements. A value was flagged as a poten-
tial outlier only if at least four out of five methods classified
it as implausible. These flagged data points were then sub-
jected to manual visual inspection to assess their plausibility.
Only those confirmed as clearly erroneous were ultimately
removed. The following detection methods were employed:

1. Isolation Forest. A tree-based method that evaluates
how easily a data point can be isolated from the rest of
the dataset, particularly effective for identifying global
anomalies (Liu et al., 2008, 2012).

2. Local Outlier Factor (LOF). Identifies local outliers by
comparing the density of a data point to that of its neigh-
bors (Breunig et al., 2000).

3. Seasonal Decomposition. Decomposes time series into
trend, seasonal, and residual components. Anomalies
were defined as residuals exceeding four standard de-
viations from the mean (Seabold and Perktold, 2010).

4. Long-term Z-Score Analysis. Based on a 26 week mov-
ing average, identifying points with Z-scores greater
than 3 as potential outliers.

5. Short-term Z-Score Analysis. Uses an 11 week mov-
ing average to detect short-term deviations. Z-scores
above 2.65 were flagged as outliers.
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Figure 1. Data preprocessing steps for the GEMS-GER groundwater dataset, including harmonization, completeness filtering, detection of
abrupt shifts (PELT), multi-method outlier identification, and iterative imputation. Only plausibility-checked and high-quality series were
retained (n= 3207). Each panel in the figure shows the state of the dataset at a specific processing step. Each column in the heatmaps
represents one standardized groundwater time series from a monitoring well, with the y-axis corresponding to time (1991–2023). Blue
indicates high groundwater levels, red indicates low levels, and black marks missing values.

Most outliers were associated with technical or anthro-
pogenic disturbances rather than natural groundwater dy-
namics. Common causes included sensor malfunctions or
recalibrations, data logger replacements, and short-term im-
pacts from construction, pumping, or maintenance activities
in the vicinity of the observation wells.

2.2.5 Data Imputation

Data gaps of a maximum of 12 weeks were imputed us-
ing the Iterative Imputer (Buuren and Groothuis-Oudshoorn,
2011; Buck, 1960) from the scikit-learn library (Pe-
dregosa et al., 2011), implementing a multivariate imputation
strategy based on the relationships between correlated mon-
itoring wells (Fig. 1e). The imputation relied on a Bayesian
Ridge estimator, which incorporates uncertainty in the pa-
rameter estimates and has been shown to perform well in
the presence of multicollinearity (MacKay, 1992; Tipping,
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2001). To account for temporal variability and to improve im-
putation accuracy, the dataset was partitioned into six over-
lapping blocks, each covering approximately 6 years, with a
three-month temporal overlap. Imputation was performed in-
dependently for each block. Monitoring wells that were ex-
cluded from the primary analysis (Fig. 1b) due to extended
data gaps were conditionally reintroduced as auxiliary pre-
dictors, provided they exhibited substantial correlation with
other wells during the respective time block. To ensure a min-
imum level of reliability, only those auxiliary wells with less
than 25 % missing values within the given block were in-
cluded. Although not included in subsequent analyses, these
auxiliary wells were assumed to provide additional contex-
tual information that could potentially support more accurate
estimation of missing values in the target wells. For each tar-
get monitoring well to be imputed, the 200 most highly cor-
related wells, based on overlapping time periods, were se-
lected as predictors. Imputation was performed in successive
6 year time blocks with a temporal overlap of three months
between adjacent blocks. The 6 year window balances the
need to capture seasonal patterns with ensuring sufficient
data availability in auxiliary wells. Longer periods would in-
crease the risk of excluding wells due to missing data. Over-
lapping imputations were averaged, and blocks were merged
into a continuous dataset. To ensure transparency, all imputed
values are explicitly marked in the dataset by a binary flag
(GWL_flag), allowing users to distinguish between raw ob-
servations and imputed values.

2.2.6 Results of Preprocessing and Dynamic
Groundwater Time Series Analysis

Figure 2 illustrates the evolution of the dataset through the
processing steps described in Sects. 2.2.1 (Data Integra-
tion and Weekly Aggregation), 2.2.2 (Data Gap Filtering),
and 2.2.5 (Data Imputation). The heatmaps illustrate the
number of groundwater monitoring wells per German federal
state throughout the preprocessing steps: before filtering, af-
ter filtering, and after imputation. Due to extensive data gaps
and the absence of sufficiently long time series, no moni-
toring wells from Bremen (HB), Hamburg (HH), or Saarland
(SL) were included in the final dataset. On average, 1.05 % of
the values were imputed, with imputation rates per well rang-
ing from 0 % to 1.2 %.

In total, 3207 weekly groundwater level time series were
retained and enriched with dynamic indicators. During Data
Gap Filtering (Sect. 2.2.2), 10 842 wells were excluded
due to insufficient data coverage. Sudden Change Detec-
tion (Sect. 2.2.3) led to the removal of 32 implausible wells.
Multi-Criteria Outlier Detection (Sect. 2.2.4) flagged 379 po-
tential outliers, of which 57 individual observations were dis-
carded following visual plausibility checks.

Figure 3 provides spatial context for assessing regional
groundwater dynamics. Figure 3a and b shows the ten Ma-
jor Hydrogeological Districts (MHDs), which encompass a

range of aquifer types, from porous, unconsolidated deposits
in the northern lowlands to fractured and karstified bedrock
systems in upland regions. The highest monitoring well den-
sity (number of wells per square kilometre) occurs in the
Northern and Central German Unconsolidated Rock District
(MHD1) and the Upper Rhine Graben with the Mainz Basin
(MHD3), both of which are characterized by thick sedimen-
tary sequences forming highly productive aquifers that are
critical for regional water supply.

To characterize groundwater dynamics across these di-
verse settings, a set of time series–based indicators was com-
puted. The indicators shown in Fig. 3c–i are described in
detail by Wunsch et al. (2022b) and Richter et al. (1996),
and quantify key aspects of groundwater variability. SD_diff
captures short-term fluctuations via the standard deviation
of first-order differences, reflecting the volatility of daily to
weekly changes. range_ratio is the ratio of mean annual to
total range, indicating the proportion of overall variability
explained by interannual fluctuations. ex_vals denotes the
relative frequency of identified peaks, serving as a proxy
for abrupt, high-magnitude events such as recharge pulses.
seasonal_behaviour quantifies the similarity between the
monthly mean cycle and a sinusoidal annual curve, mea-
suring the strength of seasonal dynamics. periodicity cap-
tures intra-annual regularity by correlating the series with its
weekly climatology. yearly_variance reflects the median of
annual variances, providing a robust estimate of typical sea-
sonal amplitude. Lastly, HPD (High Pulse Duration) mea-
sures the cumulative duration of groundwater levels above
the long-term mean, indicating the persistence of high-water
phases often linked to extended recharge periods.

Figure 4 shows an overview of selected dataset variables,
including spatial representations of both dynamic (aggre-
gated as long-term means) and static features. The dynamic
layers include mean groundwater level, mean annual precip-
itation, and potential evapotranspiration for the period 1991–
2022, while the static layers illustrate key site characteris-
tics such as soil group, porosity type, hydrogeological region,
organic matter content, land use, and groundwater recharge.
These visualizations highlight the spatial heterogeneity of in-
put variables and emphasize the multivariate nature of the
dataset.

2.3 Meteorological forcing data

Meteorological data were obtained from the respective
providers and extracted as point values at the exact locations
of the remaining groundwater monitoring wells. All time se-
ries were temporally aligned and resampled to a consistent
weekly resolution matching that of the groundwater data. De-
pending on the variable, either weekly means or sums were
applied during aggregation. Details on the variables used, in-
cluding their data sources and aggregation types, are summa-
rized in Table 1.
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Figure 2. Data availability by federal state after (top) Sect. 2.2.1 Data Integration and Weekly Aggregation, (middle) Sect. 2.2.2 Data Gap
Filtering, and (bottom) Sect. 2.2.5 Data Imputation. Each column in the heatmaps represents one standardized groundwater level time series
from a monitoring well, with the y-axis corresponding to time (1991–2023). Blue indicates high groundwater levels, red indicates low levels,
and black marks missing values. No monitoring wells from Bremen (HB), Hamburg (HH), or Saarland (SL) fulfilled the filtering criteria,
and thus no data remain for these states in the final dataset. State abbreviations: BB – Brandenburg, BE – Berlin, BW – Baden-Württemberg,
BY – Bavaria, HB – Bremen, HE – Hesse, HH – Hamburg, MV – Mecklenburg-Western Pomerania, NI – Lower Saxony, NW – North
Rhine-Westphalia, RP – Rhineland-Palatinate, SL – Saarland, SN – Saxony, ST – Saxony-Anhalt, SH – Schleswig-Holstein, TH – Thuringia.

2.4 Site-specific static data

All spatial datasets were first harmonized to a common coor-
dinate reference system (CRS), with EPSG:3035 – ETRS89-
extended/LAEA Europe. Selected raster layers underwent
additional preprocessing, including the generalization of the
digital elevation model from 1 m resolution (DTM1) to a
coarser 20 m resolution (DTM20). This resampling step was
performed to reduce high-frequency noise, improve the nu-
merical stability of terrain derivatives, and decrease compu-
tational demand, particularly for hydrologically relevant ter-
rain metrics derived using the SAGA GIS framework (e.g.,
slope, aspect, curvature, flow direction, and flow accumula-
tion). The 20 m resolution was considered a suitable com-
promise between preserving relevant topographic detail and
achieving robust parameterization at the landscape scale. In
cases where individual raster layers contained small data
gaps (i.e., isolated no-data cells), these were interpolated us-
ing the gdal_fillnodata utility with inverse distance
weighting (IDW). Finally, all spatial variables were extracted
at the geographic coordinates of the groundwater monitoring
wells for subsequent integration with time series data. The
resulting dataset covers both shallow and deep monitoring
wells under unconfined and confined conditions, as indicated
by the available depth and pressure state metadata.

2.5 Uncertainties and limitations

This dataset builds on multiple observational and model-
based sources. Accordingly, uncertainty is inherent to the in-
puts, arising from measurement error, sampling and scaling
effects, and model structure, and to some processing choices.

2.5.1 Uncertainties in groundwater level measurements

Groundwater level measurements are typically accurate
within a few centimeters, depending on sensor type, cali-
bration, and monitoring practice. Potential errors may re-
sult from sensor drift, manual reading inaccuracies, or in-
consistencies in reference datums. Additional uncertainties
stem from heterogeneous measurement intervals across the
network, ranging from hourly to irregular sampling. For
consistency, all series were resampled to weekly values
aligned to Mondays using interpolation and aggregation,
which may introduce minor temporal artifacts, particularly in
low-frequency records. Overall, these uncertainties are neg-
ligible compared to the seasonal (decimeters to meters) and
interannual variations represented in the dataset.
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Figure 3. Spatial distribution of the 3207 groundwater monitoring wells across the ten Major Hydrogeological Districts in Germany:
(1) North and Central German Unconsolidated Rock District, (2) Rhenish-Westphalian Lowland, (3) Upper Rhine Graben with Mainz Basin
and North Hessian Tertiary, (4) Alpine Foreland, (5) Central German Fault-block Land, (6) West and South German Scarplands and Fault-
block Land, (7) Alps, (8) West and Central German Basement, (9) Southeast German Basement, (10) Southwest German Basement. The
violin plots show the distribution of seven dynamic indicators across these regions, as described by Wunsch et al. (2022b) and Richter et al.
(1996): SD_diff (short-term variability), range_ratio (interannual vs. total variability), ex_vals (frequency of peaks), seasonal_behaviour (fit
to annual cycle), periodicity (weekly pattern recurrence), yearly_variance (amplitude of seasonal fluctuations), and HPD (persistence of high
groundwater levels).

2.5.2 Uncertainties in environmental and meteorological
attributes

Uncertainty in environmental and climate attributes reflects
the heterogeneity of their sources. For static variables,

main contributors are scale/resolution mismatch, category
simplifications, and temporal inconsistencies in multi-year
products. Topographic indices derived from digital eleva-
tion models are sensitive to resolution and preprocessing
choices (e.g., generalizing from 1 to 20 m). Model-derived
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Figure 4. Extracts of the dataset used in the study, showing dynamic variables (mean groundwater level 1991–2022, mean annual precipita-
tion, and potential evapotranspiration) and selected static raster layers (soil group, porosity type, hydrological region, organic matter content,
land use, and groundwater recharge).
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attributes (e.g. groundwater recharge) add further input- and
structure-related uncertainty; absolute magnitudes may de-
viate from observation-based syntheses and exhibit substan-
tial ensemble spread, with region-dependent dominance of
climate forcing vs. hydrological model structure and possi-
ble vegetation/CO2 effects (Reinecke et al., 2021; Berghuijs
et al., 2022). For dynamic climate and hydrological variables,
uncertainty arises primarily from the density, spatial distri-
bution, and representativeness of the underlying station net-
works (including temporal changes in coverage), with addi-
tional contributions from station measurement/homogeniza-
tion issues, the choice of interpolation and homogenization
procedures in gridded products (e.g., HYRAS), and struc-
tural/model assumptions in reanalyses (e.g., ERA5-Land).
These factors affect site-level accuracy and model transfer-
ability but are inherent to national–continental datasets. Fur-
ther details are provided in the source publications listed in
Tables 1 and 2.

3 Dataset Structure

The GEMS-GER (Groundwater Levels, Environment, Mete-
orology, Site Properties – Germany) dataset is structured into
two primary components: dynamic time series and static site
descriptors. In addition, it includes benchmark model outputs
to support reproducible model evaluation.

3.1 Dynamic time series data

The dynamic data, stored in the
GEMS-GER_data/dynamic/ directory, consist of
individual files for each of the 3207 monitoring wells,
named using the pattern MW_ID.csv. Each file contains
weekly aggregated groundwater level observations (GWL)
for Mondays from 1991 to 2022.

Alongside GWL, the files include a wide range of meteo-
rological and hydrological forcing variables as summarized
in Table 1. These include daily mean, maximum, and mini-
mum temperature, precipitation, and relative humidity from
the HYRAS dataset provided by the German Meteorologi-
cal Service (DWD), as well as real, potential, and reference
(FAO) evapotranspiration, soil moisture, and soil temperature
at 5 cm depth. Further variables such as snow water equiva-
lent, snowfall, snowmelt, and surface and subsurface runoff
are derived from the ERA5-Land dataset. A binary column,
GWL_flag, indicates whether a GWL value was directly ob-
served (True) or imputed (False).

An example plot of selected dynamic timeseries (ground-
water level, precipitation, temperature, evapotranspiration
and runoff) is shown in the Appendix for well MW_1
(Fig. A1). Corresponding illustrations for all wells are in-
cluded in the dataset in the GEMS-GER_figures/ direc-
tory.

3.2 Static site descriptors

The static data, located in the
GEMS-GER_data/static/ direc-
tory, are provided in a single file,
static_features_MW_1toMW_3207.csv, con-
taining temporally invariant attributes for each monitoring
well. These include hydrogeological, hydrological, soil, land
use, and geomorphological descriptors, as listed in Table 2.

3.3 Benchmark model performance

Model performance metrics for the three bench-
mark models introduced in Sect. 4 are stored in the
GEMS-GER_data/model_performance/ directory.
Each file contains the median values of four standard metrics
(NSE, RMSE, R2, and Bias) across ten model runs:

– model_performance_single.csv – Single-
well CNN models

– model_performance_global_dynonly.csv –
Global LSTM (dynamic inputs only)

– model_performance_global_dynstat.csv –
Global LSTM (dynamic+ static inputs)

4 Benchmark models

We implemented three types of benchmark models:
(i) single-well models for each monitoring well, using dy-
namic inputs only, (ii) a global model (i.e., one model for all
monitoring wells, also referred to as a regional model) us-
ing dynamic inputs only, and (iii) a global model using both
dynamic and static inputs.

The single-well models are based on a Convolutional Neu-
ral Network (CNN) architecture, which has previously shown
good performance in modeling groundwater level time series
(Wunsch et al., 2021, 2022a; Gomez et al., 2024). The global
models are largely based on the Long Short-Term Memory
(LSTM) architecture used in Heudorfer et al. (2024), with
minor modifications. The model using only dynamic inputs
is a straightforward LSTM, while the model incorporating
both dynamic and static inputs consists of two branches: an
LSTM branch for dynamic inputs and a Multi-Layer Percep-
tron (MLP) branch for static inputs, which are concatenated
prior to the output layer.

We deliberately refrained from hyperparameter optimiza-
tion and employed relatively simple, yet established and
proven architectures. The goal was not to achieve optimal
prediction performance, but to provide a robust and transpar-
ent benchmark for future modeling studies.

These models also help identify monitoring wells where
performance based solely on dynamic meteorological in-
puts is insufficient. This may indicate the relevance of
other dynamic drivers (e.g., groundwater abstraction, surface

https://doi.org/10.5194/essd-18-77-2026 Earth Syst. Sci. Data, 18, 77–95, 2026



88 M. Ohmer et al.: GEMS-GER groundwater ML benchmark dataset

water interactions), or specific hydrogeological conditions,
such as thick unsaturated zones or deep aquifers with low-
permeability confining layers. In such cases, the 52 week in-
put window may be too short to capture relevant dynamics.

Furthermore, comparing the three benchmark models en-
ables an assessment of how model performance improves
through the integration of additional data in the global model
compared to single-well models, and the specific contribu-
tion of static features.

All models were evaluated on the last 10 years of the time
period (2013–2022). The remaining data were used for train-
ing (1991–2007) and validation with early stopping (2008–
2012). The input sequence length of the dynamic inputs is
52 weeks (i.e., 1 year) for all models. All metrics were com-
puted on the median prediction of an ensemble of ten model
initializations.

4.1 Model Setup

4.1.1 Single-well models

The single-well models consist of a Convolutional Neural
Network (CNN) with the following architecture: one hidden
Convolutional layer with 256 filters and a kernel size of 3,
followed by a MaxPooling layer, a Flatten layer, a Dense
layer with 32 units, and a final Dense output layer with a
single unit. The models are trained using the Adam opti-
mizer with a learning rate of 0.001. Training is performed
for a maximum of 30 epochs, with early stopping (patience
of 5 epochs). A batch size of 16 is used. All available dy-
namic input features are provided to the models.

4.1.2 Global models

Both global models use all available dynamic input features.
The model architecture consists of a single Long Short-Term
Memory (LSTM) layer with 128 units and a dropout rate
of 0.3. Training is conducted using a batch size of 512 for
a maximum of 20 epochs, with early stopping (patience of
5 epochs). A learning rate scheduler is applied, targeting a
final learning rate of 0.001. The global model that also incor-
porates static input features includes a second model branch
in addition to the LSTM component. This branch processes
the static inputs via a Dense layer with 128 units. The outputs
of the LSTM and static input branches are concatenated and
followed by a Dense layer with 256 units and a final Dense
output layer with a single unit. Among the available static
features, geographic coordinates, depth, screen information,
and pressure state were excluded. These attributes were in-
cluded in the dataset for completeness but were presumed
to be of limited relevance for model performance due to their
sparse availability across monitoring wells. Categorical static
features were label-encoded.

4.2 Model Results

The summarized model results are presented in Ta-
ble 3 and Fig. 5. Detailed performance metrics for each
monitoring well and model are available in the file
model_performance.csv included in the dataset. For
clarity, all NSE values are based on the complete series,
including imputed data (< 1 % on average, max. 3.8 % in
the test period). Given this negligible share, we report only
one consistent set of metrics; users can, however, recompute
observed-only scores using the provided GWL_flag.

The highest median Nash–Sutcliffe Efficiency (NSE)
across all wells was achieved by the single-well models,
with a value of 0.52, closely followed by the global model
with both dynamic and static inputs (median NSE= 0.50).
These values represent acceptable performance in the con-
text of groundwater modeling, where prediction accuracy is
constrained by several factors: subsurface heterogeneity in
aquifer properties, complex and spatially variable recharge
processes, and unobserved anthropogenic influences such as
pumping activities and land-use changes that are rarely avail-
able as model inputs.

In all model variants, the mean NSE values are substan-
tially lower than the medians, suggesting that model per-
formance is strongly affected by a subset of poorly per-
forming wells. The highest maximum NSE of 0.94 was
also achieved by the single-well models, followed by the
global model that incorporates both dynamic and static in-
puts (NSE max= 0.91).

A comparison of the two global model variants shows,
as expected, that the inclusion of static input features leads
to improved performance. The global model with both dy-
namic and static inputs achieves a mean and median NSE
of 0.39 and 0.50, respectively, compared to 0.32 and 0.44 for
the model using dynamic inputs only. In terms of the num-
ber of wells with acceptable performance (NSE > 0.5), the
model with static inputs performs significantly better, pro-
ducing 1583 wells (approximately 49 %) above this thresh-
old, compared to 1270 wells (around 40 %) for the model
with dynamic inputs only. The highest number of wells with
acceptable performance is again achieved by the single-well
models, with 1669 wells (52 %). Moreover, the single-well
models also yield the largest number of wells with very high
predictive performance (NSE > 0.8), totaling 191 wells. This
is followed by the global model with static inputs, which
achieves this level of performance for 112 wells.

Wells with negative NSE values (NSE < 0), indicating
poor model performance, number 404 for the single-well
models (just under 13 %), 471 for the global model using
dynamic inputs only (15 %), and 396 for the global model
including static inputs (approximately 12 %).

All three model variants share a common subset of 256
wells in this low-performance group, suggesting that the
groundwater dynamics at these sites cannot be adequately
captured using the available input features. As discussed pre-
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Table 3. Overview of the model results.

Model NSE min NSE mean NSE median NSE max

Single −3.47 0.41 0.52 0.94
Global Dyn only −6.78 0.32 0.44 0.88
Global Dyn+Stat −4.31 0.39 0.50 0.91

RMSE min RMSE mean RMSE median RMSE max

Single 0.03 0.40 0.28 7.67
Global Dyn only 0.03 0.43 0.30 6.93
Global Dyn+Stat 0.02 0.42 0.29 7.17

R2 min R2 mean R2 median R2 max

Single < 0.01 0.48 0.53 0.93
Global Dyn only < 0.01 0.46 0.47 0.91
Global Dyn+Stat < 0.01 0.49 0.53 0.93

Bias min Bias mean Bias median Bias max

Single −4.44 0.03 0.01 6.34
Global Dyn only −5.29 −0.01 −0.01 5.51
Global Dyn+Stat −5.21 0.01 0.01 5.80

No. NSE≤ 0 No. 0 < NSE≤ 0.5 No. 0.5 < NSE≤ 0.8 No. NSE > 0.8

Single 404 1134 1478 191
Global Dyn only 471 1466 1241 29
Global Dyn+Stat 396 1228 1471 112

Figure 5. Comparison of NSE scores across model variants, as boxplots and CDF. For plotting reasons, the lower limits of values are set
to −2 and −1, respectively, so that some outliers are not shown.

viously, potential reasons for this include anthropogenic in-
fluences such as groundwater abstraction, surface sealing, or
infiltration from surface waters, as well as hydrogeological
factors like thick unsaturated zones or confined aquifers.

Limited model performance is likely driven primarily by
unobserved external factors, such as groundwater abstrac-
tion, surface water interactions, or land-use changes, whereas
remaining data uncertainties and model simplifications likely
play a secondary role
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Figure 6. NSE values for all wells and model variants, and the delta NSE between the single-well and global model with dynamic and static
inputs (positive/blue values indicate that the global model is better, negative/red values indicate that the single-well model is better).

Figure 6 displays the spatial distribution of NSE values
across all wells and model variants, as well as the difference
in performance (1NSE) between the single-well model and
the global model with static input features.

At first glance, the spatial patterns of NSE values appear
similar across the three model variants, with only minor dif-
ferences. In particular, wells with low model performance are
distributed comparably. A prominent example is the northern
part of the Upper Rhine Graben (Hessisches Ried), where ex-
tensive groundwater management through extraction and in-
filtration likely affects model performance. Another example
is the Berlin metropolitan area, where dewatering activities
influenced several groundwater level time series during con-
struction projects within the observation period.

The comparison of the single-well model and the global
model with static inputs in terms of 1NSE reveals that, for
the majority of wells, performance differences are relatively
small. Most wells exhibit 1NSE values within a range of
± 0.1–0.2, indicated by light colors in the map. This sug-
gests that model performance is generally more sensitive to
the quality and characteristics of the input data than to the
specific model architecture.

Nonetheless, there are distinct cases where one of the
models outperforms the other significantly. Wells where the
single-well model performs markedly better are shown in
dark red, those where the global model performs better ap-
pear in dark blue. These differences are likely related to the
specific groundwater level dynamics at each site. This hy-
pothesis is supported by the observation that wells with sim-
ilar 1NSE values, both negative and positive, often cluster
spatially. This pattern suggests that regional characteristics,
potentially linked to hydrogeological conditions, influence

whether the single-well or the global model performs better
in a given area.

5 Code and data availability

The complete GEMS-GER dataset is publicly avail-
able under an open-access license via Zenodo:
https://doi.org/10.5281/zenodo.15530171 (Ohmer et al.,
2025). It includes groundwater level time series, meteo-
rological and hydrological forcings, static site descriptors,
and model performance metrics as described in this paper.
All associated code, documentation, and update announce-
ments are maintained in the project’s Zenodo repository:
https://doi.org/10.5281/zenodo.17855212 (Ohmer and
Liesch, 2025), ensuring transparency, traceability, and
reproducibility.

6 Conclusions

Forecasting groundwater levels (GWL) remains a challeng-
ing task due to the complex and interconnected processes
governing groundwater systems. Machine learning (ML) has
shown great potential in addressing these challenges by cap-
turing non-linear relationships in hydro-climatic data, even
when observational data are sparse.

Despite significant progress in recent years, the field still
lacks standardized, large-scale datasets. Most existing stud-
ies rely on localized and often inaccessible data, which limits
reproducibility and hampers the transferability of results. To
address this gap, the present study introduces a comprehen-
sive and standardized dataset for ML-based GWL modeling
in Germany. It comprises 32 years of weekly groundwater
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level observations from over 3000 monitoring wells, along
with meteorological and site-specific static attributes. The
dataset is publicly available and is intended to support sys-
tematic model comparisons, foster transparency and repro-
ducibility, and promote further research through standardized
documentation.

In addition, we provide three initial benchmark models:
(i) single-well models, (ii) a global model using only dy-
namic inputs, and (iii) a global model that incorporates both
dynamic and static input features. These models serve as a
starting point for future model development and evaluation.

We deliberately refrain from further analysis of the rela-
tionships between model performance and groundwater dy-
namics, hydrogeological conditions, or land use, as this lies
beyond the scope of the current study. Future work may in-
clude spatial or spatiotemporal validation experiments (e.g.,
holding out entire well clusters or regions) to further assess
the contribution of static covariates to model transferability.
We leave it to future research to enhance the models using the
provided benchmark dataset, with the hope that it will lead to
valuable insights in the field of ML-based groundwater level
prediction.

Appendix A

Figure A1. An example plot of selected dynamic time series (groundwater level, precipitation, temperature, evapotranspiration, and runoff)
is shown for Monitoring Well MW_1. Corresponding illustrations for all wells are included in the dataset in the GEMS-GER_figures/
directory.
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