Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-371-2026
https://doi.org/10.5194/essd-18-371-2026
Data description paper
 | 
14 Jan 2026
Data description paper |  | 14 Jan 2026

An hourly 0.02° total precipitable water dataset for all-weather conditions over the Tibetan Plateau through the fusion of observations of geostationary and multi-source microwave satellites

Qixiang Sun, Husi Letu, Yongqian Wang, Peng Zhang, Hong Liang, Chong Shi, Shuai Yin, Jiancheng Shi, and Dabin Ji

Related authors

A high-resolution (0.05°) global seamless continuity record (2002–2023) of near-surface soil freeze-thaw states via passive microwave and optical satellite data
Defeng Feng, Tianjie Zhao, Jingyao Zheng, Yu Bai, Youhua Ran, Xiaokang Kou, Lingmei Jiang, Ziqian Zhang, Pei Yu, Jinbiao Zhu, Jie Pan, Jiancheng Shi, and Yuei-An Liou
Earth Syst. Sci. Data, 17, 6273–6293, https://doi.org/10.5194/essd-17-6273-2025,https://doi.org/10.5194/essd-17-6273-2025, 2025
Short summary
Characterization of liquid cloud profiles using global collocated active radar and passive polarimetric cloud measurements
Yutong Wang, Huazhe Shang, Chenqian Tang, Jian Xu, Tianyang Ji, Wenwu Wang, Lesi Wei, Yonghui Lei, Jiancheng Shi, and Husi Letu
Atmos. Chem. Phys., 25, 16167–16187, https://doi.org/10.5194/acp-25-16167-2025,https://doi.org/10.5194/acp-25-16167-2025, 2025
Short summary
Snow water equivalent retrieval and analysis over Altay using 12 d repeat-pass Sentinel-1 interferometry
Jingtian Zhou, Yang Lei, Jinmei Pan, Cunren Liang, Zhang Yunjun, Weiliang Li, Chuan Xiong, Jiancheng Shi, and Wei Ma
The Cryosphere, 19, 5361–5388, https://doi.org/10.5194/tc-19-5361-2025,https://doi.org/10.5194/tc-19-5361-2025, 2025
Short summary
The newly developed Multi-ensemble Biomass-burning Emissions Inventory (MBEI): Characterizing and unraveling spatiotemporal uncertainty in global biomass burning emissions
Xinlu Liu, Zhongyi Sun, Chong Shi, Peng Wang, Tangzhe Nie, Qingnan Chu, Huazhe Shang, Lu Sun, Dabin Ji, Meng Guo, Kunpeng Yi, Zhenghong Tan, Lan Wu, Xinchun Lu, and Shuai Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-588,https://doi.org/10.5194/essd-2025-588, 2025
Revised manuscript under review for ESSD
Short summary
A new dataset of rain cells based on observations of Tropical Rainfall Measuring Mission (TRMM) precipitation radar, visible/infrared scanner and microwave imager
Zhenhao Wu, Jian Shang, Chunguan Cui, Peng Zhang, Songyan Gu, Lin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 17, 5137–5148, https://doi.org/10.5194/essd-17-5137-2025,https://doi.org/10.5194/essd-17-5137-2025, 2025
Short summary

Cited articles

Abbasi, B., Qin, Z., Du, W., Fan, J., Zhao, C., Hang, Q., Zhao, S., and Li, S.: An algorithm to retrieve total precipitable water vapor in the atmosphere from FengYun 3D Medium Resolution Spectral Imager 2 (FY-3D MERSI-2) data, Remote Sensing, 12, 3469, https://doi.org/10.3390/rs12213469, 2020. 
Alshawaf, F., Fersch, B., Hinz, S., Kunstmann, H., Mayer, M., and Meyer, F. J.: Water vapor mapping by fusing InSAR and GNSS remote sensing data and atmospheric simulations, Hydrol. Earth Syst. Sci., 19, 4747–4764, https://doi.org/10.5194/hess-19-4747-2015, 2015. 
Bao, F., Letu, H., Shang, H., Ri, X., Chen, D., Yao, T., Wei, L., Tang, C., Yin, S., Ji, D., Lei, Y., Shi, C., Peng, Y., and Shi, J.: Advancing cloud classification over the Tibetan Plateau: A new algorithm reveals seasonal and diurnal variations, Geophysical Research Letters, 51, e2024GL109590, https://doi.org/10.1029/2024GL109590, 2024. 
Bao, S., Letu, H., Zhao, J., Shang, H., Lei, Y., Duan, A., Chen, B., Bao, Y., He, J., Wang, T., Ji, D., Tana, G., and Shi, J.: Spatiotemporal distributions of cloud parameters and their response to meteorological factors over the Tibetan Plateau during 2003–2015 based on MODIS data, International Journal of Climatology, 39, 532–543, https://doi.org/10.1002/joc.5826, 2019. 
Bonafoni, S., Mattioli, V., Basili, P., Ciotti, P., and Pierdicca, N.: Satellite-based retrieval of precipitable water vapor over land by using a neural network approach, IEEE Transactions on Geoscience and Remote Sensing, 49, 3236–3248, https://doi.org/10.1109/TGRS.2011.2114870, 2011. 
Download
Short summary
The Tibetan Plateau plays a vital role in Asia’s water cycle, but tracking water vapor in this mountainous region is difficult, especially under cloudy conditions. We developed a new satellite-based method to generate hourly water vapor data at 0.02-degree resolution from 2016 to 2022, now available at https://doi.org/10.11888/Atmos.tpdc.301518, which improves accuracy and reveals fine-scale moisture transport critical for understanding rainfall and extreme weather.
Share
Altmetrics
Final-revised paper
Preprint