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Abstract. The Tibetan Plateau (TP), known as the “Asian Water Tower”, plays a critical role in the regulation of
the water cycle in the region. Obtaining high spatiotemporal resolution, and all-weather total precipitable water
(TPW) data is essential for understanding water vapor transport mechanisms, improving precipitation forecast-
ing, and managing regional water resources over the TP. However, existing single-sensor remote sensing tech-
niques cannot provide high spatiotemporal resolution TPW data under cloudy conditions. Multi-source fusion
approaches often produce anomalous distributions in the fused TPW data due to inter-sensor biases, particularly
over the complex terrain of the TP. This study proposed a multi-source remote sensing TPW fusion frame-
work that integrates TPW products from eight microwave satellites and the Himawari-8/9 (H8/9) geostationary
satellite to produce an all-weather TPW data with the highest spatiotemporal resolution at present. Methodologi-
cally, two correction strategies were developed. First, a bias correction approach was proposed using H8/9 TPW
data as a reference to calibrate multi-source microwave remote sensing TPW and reduce inter-sensor discrepan-
cies. Second, an adaptive correction method was created to improve the accuracy and spatial continuity of the
fused TPW data under cloudy conditions. Based on the newly developed fusion framework, an all-weather TPW
dataset with hourly temporal and 0.02° spatial resolution covering the TP from 2016 to 2022 was produced for
the first time. The new dataset has been published by the National Tibetan Plateau Data Center and is available
at: https://doi.org/10.11888/Atmos.tpdc.301518 (Ji et al., 2025b). Taking the 2017 product as an example, it was
verified against GNSS TPW. The RMSE of the fused TPW product at the hourly scale was 3.79 mm, which
was 10.82 % and 6.19 % lower than MIMIC-TPW?2 and ERAS, respectively. Compared to ERAS with a spatial
resolution of 0.25°, the fused product achieves a 12.5-fold improvement in spatial resolution, which make it
possible to significantly grasp the transportation of water vapor in the valley of Yarlung Zsangbo River. It also
demonstrates higher reliability in station-sparse regions, providing high-quality, high-resolution vapor data to
support vapor flux estimation and forecasting of extreme weather events over the TP.
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1 Introduction

The Tibetan Plateau (TP), known as the “Asian Water
Tower”, plays a crucial role in the reception, storage, and re-
distribution of water vapor across Asia (Dong et al., 2024;
Xu et al., 2008; Yao et al., 2012). Atmospheric water vapor
over the TP shapes the spatial distribution of precipitation
and surface runoff across both the TP and downstream re-
gions (Shen et al., 2021; Chen and Yao, 2023). The result-
ing changes in hydrological processes provide essential sup-
port for downstream water resource management, ecosystem
stability, and agricultural irrigation scheduling (Immerzeel et
al., 2010; Yang et al., 2012). Under cloudy conditions, inter-
actions between water vapor and cloud microphysical pro-
cesses further modify the surface shortwave radiation budget
(Letu et al., 2023). However, the combined influence of com-
plex terrain and strong local circulations over the TP results
in pronounced spatiotemporal heterogeneity in water vapor
distribution, often manifested as frequent small-scale vapor
convergence and convective initiation. Capturing these fine-
scale processes requires high-resolution water vapor data.
Such data enhance the estimation of vapor fluxes and sup-
port quantitative analysis of the interaction between humidity
and precipitation (Zhang et al., 2024; Feng and Zhou, 2012;
Trenberth and Guillemot, 1998). They also help identify lo-
calized vapor accumulation zones and convective triggers, ul-
timately improving the accuracy of hydrological assessments
and forecasts of severe weather events (Chen and Yao, 2023).

Currently, studies of the spatiotemporal variation of wa-
ter vapor over the TP rely on three main types of total water
vapor content data: in-situ observations, reanalysis products,
and satellite remote sensing data. These data sources provide
different levels of spatial coverage, temporal resolution, and
accuracy. In situ observations, such as the Integrated Global
Radiosonde Archive (IGRA, Durre et al., 2006), SumiNet
(Ware et al., 2000), and the Crustal Movement Observa-
tion Network of China (CMONOC, Shi et al., 2008), re-
trieve water vapor through radiosondes or the Global Nav-
igation Satellite System (GNSS), with typical errors of less
than 2 mm. However, these observational networks have lim-
ited spatial coverage, and stations are especially sparse over
the TP, making it difficult to capture the spatial gradients
of water vapor. Reanalysis datasets, such as the European
Centre for Medium-Range Weather Forecasts Reanalysis v5
(ERAS), provide temporally and spatially continuous wa-
ter vapor data, but its spatial resolution is relatively coarse
(about 31km, Hersbach et al., 2020). Satellite retrieval of
total column water vapor mainly relies on three techniques:
near-infrared (NIR), thermal infrared (TIR), and microwave
(MW). These methods differ based on the type of sensor and
the spectral bands. Satellite sensors such as the Moderate
Resolution Imaging Spectroradiometer (MODIS) or Medium
Resolution Spectral Imager (MERSI), when using their near-

Earth Syst. Sci. Data, 18, 371-395, 2026

Q. Sun et al.: An hourly 0.02° total precipitable water dataset

infrared channels, retrieve total column water vapor based on
the differential absorption principle (Abbasi et al., 2020; Ma
et al., 2022b; Wang et al., 2021; Xu and Liu, 2022), achiev-
ing a spatial resolution of 1 km with an accuracy of 5 %—10 %
(Gao and Kaufman, 2003). This type of retrieval can only be
applied under clear-sky conditions and is further limited to
daytime due to its reliance on solar radiation. TIR-based re-
trievals of total column water vapor typically employ split-
window algorithms, which utilize thermal infrared channels
such as 7.0, 11.0, and 12.0 ym (Dalu, 1986; Guillory et al.,
1993; Labbi and Mokhnache, 2015; Liu et al., 2017). The
TIR-based retrieval methods are applicable to both geosta-
tionary and polar-orbiting satellites, allowing observations
during both day and night. However, TIR radiation can-
not penetrate clouds, so the TIR-based retrieval approaches
are unable to retrieve water vapor beneath cloud cover. Mi-
crowave remote sensing operates at longer wavelengths, al-
lowing it to penetrate clouds and retrieve water vapor under
all-weather conditions. Satellite-based microwave sensors in-
clude microwave radiometers and microwave sounders. Over
land, retrievals are challenged by surface emissivity variabil-
ity (Duetal., 2015). Jietal. (2017) proposed an optimized re-
trieval algorithm for land surfaces based on AMSR-E bright-
ness temperatures at 18.7 and 23.8 GHz. The method intro-
duces a new water vapor sensitive parameter derived from
the polarization difference ratio, improves surface emissivity
estimation, and incorporates digital elevation model (DEM)
data to correct for terrain effects, thereby enhancing retrieval
accuracy under complex surface conditions. In recent years,
machine learning methods have been widely applied to the
retrieval of atmospheric parameters, offering both high speed
and accuracy (Shi et al., 2021; Tang et al., 2025). For exam-
ple, over land, microwave radiometer-based retrievals of wa-
ter vapor using machine learning have achieved errors rang-
ing from 2.70 to 3.84 mm (Bonafoni et al., 2011; Gao et
al., 2022; Jiang et al., 2022b; Xia et al., 2023). Microwave
sounders, which typically include water vapor sensitive chan-
nels near 22.235 and 183 GHz, can also retrieve water va-
por using algorithms such as one-dimensional variational
(1IDVAR) methods (Liu and Weng, 2005). Over land, these
retrievals yield errors of approximately 5.03 to 5.94 mm
(Boukabara et al., 2010). However, the coarse spatial resolu-
tion of these sounders (e.g., approximately 17 km for DMSP-
F17) limits their effectiveness for high-resolution water va-
por applications over the TP.

Although various atmospheric water vapor data sources
have their own advantages, a single data source is still dif-
ficult to meet the demand for high-resolution, all-weather
total atmospheric water vapor content inversion in the TP
region. Among them, different types of remote sensing ob-
servations have complementary characteristics. For exam-
ple, infrared remote sensing provides high spatial resolution
under clear skies, while microwave remote sensing enables
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all-weather retrieval of atmospheric parameters. Therefore,
by developing multi-source remote sensing observations fu-
sion methods and complementing the advantages of multi-
ple data sources, it is possible to achieve all-weather high-
spatiotemporal-resolution total atmospheric water vapor con-
tent (also known as total precipitable vapor, hereinafter re-
ferred to as TPW) data reconstruction.

In the pursuit of obtaining all-weather, high-resolution
TPW data, improving spatial resolution and filling observa-
tional gaps under cloudy conditions in complex terrain con-
tinue to be pivotal challenges in TPW data fusion studies.
In recent years, researchers have mainly adopted methods
such as spatial interpolation, spatiotemporal fusion, and ma-
chine learning to enhance the spatial resolution of TPW data
and supplement the missing data under clouds (Li and Long,
2020; Zhao et al., 2022; Zhang et al., 2019a). The basic idea
of spatial interpolation methods is to utilize the spatial distri-
bution characteristics of existing observation points and infer
the TPW data in unobserved areas based on the spatial cor-
relation or distance weights between adjacent points. Com-
mon techniques include inverse distance weighting (IDW),
Kriging interpolation, and Spherical Cap Harmonic Analysis
(SCH) (Li, 2004; Alshawaf et al., 2015; Zhang et al., 2019a),
which have been widely applied in the fusion of GNSS,
InSAR, and reanalysis data to reconstruct high-accuracy,
all-weather TPW datasets. However, these interpolation ap-
proaches also face limitations: (1) When large-scale cloud
systems cover most of the observation areas and station ob-
servations are sparse, the reliability of interpolation meth-
ods will decrease, which may lead to boundary errors and
spatial smoothing effects; (2) Spatial interpolation methods
are mainly based on statistical relationships and do not fully
consider atmospheric motion such as water vapor transport
and convective development. The core idea of spatiotempo-
ral fusion methods is to match high spatial resolution but
low temporal resolution polar-orbiting satellite data (such
as MODIS TPW products) with high temporal resolution
but low spatial resolution reanalysis data (such as ERAS5) to
obtain all-weather high-resolution water vapor data (Li and
Long, 2020). However, during the monsoon season, cloud
cover becomes particularly severe in regions such as the
Hengduan Mountains in southeastern TP, with cloud cov-
erage exceeding 70 % (Bao et al., 2019; Bao et al., 2024).
This significantly limits the availability of high spatial res-
olution optical remote sensing observations, thereby con-
straining the applicability of spatiotemporal fusion methods.
Zhao et al. (2022) proposed a two-step TPW fusion method
and tested it in Yunnan Province, China. The first step re-
constructed high spatial resolution TPW data using polyno-
mial fitting and spherical harmonic functions, in combina-
tion with ERA-Interim and the Global Pressure and Temper-
ature 2 wet model (GPT2w). The second step integrated high
temporal resolution GNSS observations to achieve hourly
0.1°resolution TPW data reconstruction. Compared to ear-
lier studies (Li and Long, 2020), this method resolves the
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issue of the lack of continuous temporal observations in the
high-resolution TPW data sequence during fusion. However,
this approach depends on GNSS station observations, and
the sparse distribution of such stations in complex terrain re-
gions like the TP (Zhang et al., 2021a) limits its applicability.
In recent years, machine learning algorithms such as neural
networks (NN), random forests (RF), and various gradient
boosting tree (GBT) models have been introduced into TPW
data fusion studies, giving rise to a range of alternative fu-
sion strategies (Du et al., 2025; Lu et al., 2022; Ma et al.,
2022a, c, 2023; Sun et al., 2024; Xiong et al., 2021; Zhang
and Yao, 2021). These methods integrate multi-source water
vapor data, together with auxiliary variables such as eleva-
tion, vegetation index, time, latitude, longitude, and meteoro-
logical data to construct nonlinear mapping relationships for
reconstructing all-weather, high-accuracy TPW data. How-
ever, most existing approaches rely on GNSS or reanalysis
data as reference inputs. The former suffers from sparse sta-
tion coverage over the TP, while the latter has coarse spa-
tial resolution (> 30 km), making them insufficient for accu-
rately characterizing high-resolution water vapor structures
in complex terrain regions. In contrast, Sun et al. (2024) pro-
posed a two-step fusion framework that does not rely on
GNSS or reanalysis data as reference inputs: the first step
derives all-weather, high-resolution microwave-based TPW
data using newly developed water vapor sensitive indicators,
and the second step improves the accuracy of microwave re-
mote sensing retrievals under cloudy conditions by fusing
high-precision NIR TPW observations. This method reduced
TPW retrieval errors by 18.79 % compared to single-sensor
observations over China, including most of the TP, and suc-
cessfully reconstructed high-resolution water vapor fields be-
neath clouds in regions with sparse GNSS coverage. In addi-
tion, Du et al. (2025) proposed a TPW fusion approach that
integrates NIR, TIR, and MW observations, and applied it in
Australia. This study employed an iterative tropospheric de-
composition (ITD) technique to separate TPW into stratified
and turbulent components for high-resolution reconstruc-
tion, achieving ultra-fine spatial resolution TPW estimates at
0.001°. However, like the limitations in Sun et al. (2024),
the temporal resolution of the reconstruction results remains
low, and it cannot provide hourly TPW data. In summary, al-
though the aforementioned methods have achieved notable
advances in high-spatial-resolution TPW estimation, ensur-
ing temporal continuity while maintaining spatial accuracy
in topographically complex and data-sparse regions such as
the TP remains a key challenge in current TPW fusion re-
search.

In terms of enhancing the temporal continuity of TPW
data, researchers mainly adopt extrapolation interpolation
methods, using multi-source satellite observations or com-
bining reanalysis data to fill in the gaps in observation
time, achieving higher-frequency water vapor monitoring.
The core idea of the extrapolation and interpolation method
that only uses multi-source microwave data is to utilize the
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TPW data from multiple microwave satellites and perform
interpolation through statistical methods, motion compensa-
tion techniques, or extrapolation to fill gaps between satellite
overpasses (Ermakov et al., 2016; Kidder and Jones, 2007).
Kidder and Jones (2007) matched observations from differ-
ent microwave satellites and applied a cumulative probabil-
ity distribution function (CPDF) correction to reduce inter-
sensor inconsistencies. This approach optimized the tempo-
ral interpolation process of TPW and enabled the generation
of all-weather TPW datasets at 0.25°resolution with 1-3h
intervals. Ermakov et al. (2016) employed motion estima-
tion and compensation techniques to address orbital gaps
in merged multi-source microwave observations. They es-
timated TPW displacement trends using well-matched data
blocks from adjacent scenes and extrapolated to fill missing
regions, producing TPW datasets with 0.125° spatial resolu-
tion and 1.5 h temporal intervals. The characteristic of such
extrapolation filling methods lies in not relying on numeri-
cal model data. Moreover, there are also methods that uti-
lize reanalysis data (Wimmers and Velden, 2011; Sun et al.,
2021; Ma et al. 2022a). Sun et al. (2021) proposed an op-
timal interpolation (OI) approach, using ERA-Interim data
as the background field and incorporating TPW observa-
tions from multiple microwave satellites to generate a daily
0.25° TPW product with multi-year global ocean coverage.
Additionally, Wimmers and Velden (2011) proposed an ad-
vection method that combines multi-source microwave ob-
servations and Global Forecast System (GFS) forecast wind
field data to produce the Morphed Integrated Microwave Im-
agery at CIMSS TPW product version 2 (MIMIC-TPW2),
a global hourly 0.25° TPW product. The core assumption
of these methods is that TPW is mainly transported by the
horizontal wind field, and the displacement vectors calcu-
lated based on wind field data are used to extrapolate the
movement of water vapor and reconstruct the gaps in multi-
source microwave remote sensing water vapor observations.
This method performs well in tracking large-scale weather
systems, especially for tropical cyclones and atmospheric
rivers. Advection methods also face limitations due to sim-
plified flow assumptions and source-sink interactions (Wim-
mers and Velden, 2011). Moreover, in complex terrain areas
such as the TP, local circulations (such as valley winds and
thermally-driven turbulence) have a significant impact on the
water vapor transport path. Reanalysis wind fields often lack
sufficient resolution to capture local circulations, leading to
inaccurate extrapolation paths for water vapor transport over
the TP. Overall, existing methods have made progress in im-
proving temporal continuity. However, they remain limited
by insufficient spatial resolution, which hinders the detailed
analysis of local water vapor transport processes. In addition,
due to differences in observation times and the low tempo-
ral resolution of multi-source microwave sensors, systematic
biases arise among datasets, often resulting in artifacts or in-
consistencies in the fused TPW fields. In contrast, geostation-
ary satellites (e.g., Himawari-8/9, H8/9) provide stable, high-
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resolution TPW observations with spatial resolution around
2km and temporal resolution of 10 min. Yet, current TPW
fusion methods have not fully exploited the advantages of-
fered by these observations.

To address the above limitations, this study proposes a
novel TPW fusion framework that fully exploits the comple-
mentary strengths of microwave remote sensing’s all-weather
capability and the high spatiotemporal resolution of geo-
stationary satellite observations, aiming to generate TPW
data with both all-weather coverage and high resolution.
Specifically, a virtual satellite constellation is constructed
to jointly process data from eight polar- and inclined-orbit
satellites and the Himawari-8/9 (H8/9) geostationary satel-
lite. To address the systematic bias among multi-source mi-
crowave observations, a new correction method is developed
that uses H8/9 TPW as the reference to calibrate the mi-
crowave retrievals from multiple satellites, enabling hourly
fusion across data sources. In terms of spatial resolution,
the effects of complex topography over the TP are consid-
ered by introducing surface elevation and related auxiliary
information into the downscaling process, thereby enhanc-
ing the spatial resolution of the fused TPW data. In ad-
dition, an adaptive correction method is proposed to miti-
gate bias in high-resolution TPW data under cloudy con-
ditions. Based on this framework, an hourly TPW dataset
with a spatial resolution of 0.02°was generated over the
TP for the period 2016-2022, and has been publicly re-
leased through the National Tibetan Plateau Data Cen-
ter (https://doi.org/10.11888/Atmos.tpdc.301518, Ji et al.,
2025b).

The remainder of this paper is organized as follows: Sect. 2
introduces the data sources and preprocessing steps; Sect. 3
describes the design and implementation of the fusion algo-
rithm in detail; Sect. 4 validates the performance of the pro-
posed algorithm and analyzes the characteristics of the gen-
erated dataset; Sect. 5 discusses the advantages of the algo-
rithm and dataset and their application potential in meteo-
rological and hydrological research; Sect. 6 summarizes the
main achievements of this study and looks forward to future
research directions.

2 Study area and data

2.1 Study area

The study area is the Tibetan Plateau, delineated by the vec-
tor boundary provided by Zhang et al. (2021b), with latitu-
dinal and longitudinal extents ranging from 25 to 40° N and
from 67 to 105°E, as shown in Fig. 1. This area is the high-
est and largest plateau in the world, with a relatively low at-
mospheric water vapor content. Moreover, influenced by the
complex terrain and diurnal thermal changes, the water vapor
in this area is easily blocked, accumulated and lifted, show-
ing a strong local non-uniformity and vertical gradient (Xu
et al., 2008). There are 44 GNSS stations distributed in this
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Figure 1. Study area.

area, which can provide high-precision TPW data and offer
reliable support for the accuracy verification of the multi-
source remote sensing fusion TPW product in this study.

2.2 Data

The datasets used for TPW fusion and validation in this
study include TPW estimates from eight microwave remote
sensing satellites and from the Himawari-8/9 Advanced Hi-
mawari Imager (H8/9 AHI), GNSS TPW data, IGRA ra-
diosonde TPW data, scientific expedition ground-based TPW
observations, MIMIC-TPW2 data, ERA5 TPW data, and
auxiliary datasets. Among them, remote sensing TPW data
from the eight microwave satellites and H8/9 serve as key
inputs for reconstructing all-weather TPW data with high
spatial and temporal resolution. GNSS TPW data, IGRA ra-
diosonde TPW data and scientific expedition ground-based
TPW observations provide accurate ground-based water va-
por observations and serve as reference data for validating
the proposed fusion algorithm. MIMIC-TPW2 and ERAS5
TPW are global water vapor products and are mainly used
for comparison with the TPW produced by our algorithm to
evaluate its performance improvement. In addition, auxiliary
data such as the vector boundary of the TP, elevation data,
and spatiotemporal metadata are also employed. The details
of each dataset are described below.

2.2.1 Microwave remote sensing TPW data from 8
satellites

The TPW data from eight microwave remote sensing satel-
lites used in this study serve as key inputs for constructing
all-weather, high spatiotemporal resolution TPW data. These
eight satellite datasets include TPW data from the Global
Change Observation Mission—Water/Advanced Microwave
Scanning Radiometer 2 (GCOM-W/AMSR?2) and from the
Microwave Integrated Retrieval System (MIRS), both capa-
ble of providing coarse resolution total atmospheric water va-
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por data under all-weather conditions. The specific sources
and characteristics of these two types of data are introduced
below:

The AMSR2 TPW data, provided by our research team,
is a global daily all-weather product with a 0.25° spa-
tial resolution, and is freely available via the National Ti-
betan Plateau Data Center (https://cstr.cn/18406.11.Atmos.
tpdc.272832, last access: 20 January 2023; Ji et al., 2021,
2022). The atmospheric water vapor content over land is re-
trieved from AMSR?2 brightness temperatures at 18.7 and
23.8 GHz using the improved TPW retrieval algorithm de-
veloped by Ji et al. (2017). Verified by Suomi GPS TPW,
the root mean square error (RMSE) of AMSR2 TPW data
over global land is in the range of 3.5-5.2 mm. In this study,
AMSR?2 TPW data over the TP were extracted using the vec-
tor boundary defined by Zhang et al. (2021b), and primarily
serve as all-weather inputs for the fusion algorithm.

In addition, the microwave remote sensing TPW data from
MIRS includes data from seven satellites, namely National
Oceanic and Atmospheric Administration-18/19 (NOAA-
18/19), Meteorological Operational Satellite-A/B (MetOp-
A/B), Defense Meteorological Satellite Program-F17/18
(DMSP-F17/18), and Global Precipitation Measurement
Core Observatory (GPM core). Among them, NOAA-18/19
and MetOp-A/B are equipped with Advanced Microwave
Sounding Unit (AMSU) and Microwave Humidity Sounder
(MHS) payloads, DMSP-F17/18 is equipped with Special
Sensor Microwave Imager/Sounder (SSMIS) payload, and
GPM core is equipped with GPM Microwave Imager (GMI)
payload. MIRS utilizes all available channels from these in-
struments, including water vapor—sensitive frequencies near
22.235 and 183 GHz. These channels respond to water vapor
at different altitudes, enabling MIRS to retrieve atmospheric
humidity profiles effectively — even under cloudy condi-
tions. The MIRS TPW is calculated by vertically integrat-
ing the retrieved humidity profiles. Validation against IGRA
radiosonde data shows that MIRS TPW data retrieved from
different sensors exhibit RMSEs of 5.03-5.94 mm over land
arcas (Boukabara et al., 2010). Table 1 summarizes the mi-
crowave sensors used in MIRS TPW retrieval and their local
overpass times across the TP, which typically range from 1
to 3 h apart. Users can access and download MIRS TPW data
from NOAA’s Comprehensive Large Array-data Steward-
ship System (https://www.aev.class.noaa.gov/saa/products/
search?sub_id=0anddatatype_family=MIRS_ORB, last ac-
cess: 23 October 2024). As with the AMSR2 TPW data, the
MIRS TPW data were preprocessed and used as key inputs
to provide coarse-resolution, hourly, all-weather water vapor
information in the fusion algorithm.

2.2.2 Himawari-8/9 geostationary satellite infrared
remote sensing TPW data

Currently, the H8/9 geostationary satellite does not provide
official TPW product. This study adopted a neural network-
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Table 1. Microwave Remote Sensing TPW Data for the Fusion Algorithm (1 March 2017).

Serial Sensor Name Sensor Type Satellite Observation Time (local time) Spatial
Number Platform Resolution
1 AMSR-2 Microwave Radiometer GCOM-W  01:30 p.m. (descending node, polar orbit)  0.25°

2 AMSU+MHS  Microwave Sounder NOAA-18 04:50 p.m. (descending node, polar orbit) 17 km

3 AMSU+MHS  Microwave Sounder NOAA-19  06:50 p.m. (descending node, polar orbit) 17 km

4 AMSU+MHS  Microwave Sounder MetOp-A 06:46 p.m. (descending node, polar orbit) 17 km

5 AMSU+MHS  Microwave Sounder MetOp-B 07:46 p.m. (descending node, polar orbit) 17 km

6 SSMIS Microwave Sounder DMSP-F17  08:46 p.m. (descending node, polar orbit) 17 km

7 SSMIS Microwave Sounder DMSP-F18  09:30 p.m. (descending node, polar orbit) 17 km

8 GMI Microwave Imager GPM core — (Inclined orbit) 9km

based rapid retrieval algorithm for TPW over the TP pro-
posed by Jiang et al. (2022a). Based on this algorithm, a high
accuracy TPW dataset was produced under clear-sky condi-
tions over the region spanning 80-105° E and 25-40° N from
2016 to 2022, with hourly temporal and 0.02° spatial reso-
lution (https://cstr.cn/18406.11.Atmos.tpdc.301522, last ac-
cess: 5 November 2024; Wang and Liu, 2024). The retrieval
algorithm uses not only traditional split-window channels but
also optimizes the channel combination by selecting water
vapor sensitive bands from the H8/9 AHI sensor (specifically
11.2, 12.3, 7.0, and 7.3 pm), thereby improving retrieval ac-
curacy in low-moisture conditions (TPW <2cm) and over
complex surfaces. During data generation, a 24 h cloud de-
tection algorithm developed by Shang et al. (2024) based on
the characteristics of H8/9 channels was integrated to provide
precise cloud masks, thereby minimizing the impact of inac-
curate cloud identification on the accuracy of TPW inversion
under clear-sky conditions. To improve computational effi-
ciency, a neural network model was introduced to accelerate
radiative transfer calculations. Verified against GNSS TPW
data, the RMSE of this dataset under clear-sky conditions
over the TP is approximately 2 mm, with a correlation coef-
ficient of 0.95, demonstrating its high accuracy. In this study,
the H8/9 TPW product was fused with TPW data retrieved
from eight microwave remote sensing satellites, serving as
a key source of high-resolution, clear-sky water vapor infor-
mation for all-weather TPW reconstruction over the TP.

2.2.3 GNSS TPW data

The GNSS TPW data used in this study were generated based
on the retrieval method proposed by Zhang et al. (2019b).
This method relies on continuous GNSS observations from
the CMONOC. By utilizing GNSS signals and surface pres-
sure, Zenith Total Delay (ZTD) is derived through real-time
Precise Point Positioning (PPP), while Zenith Hydrostatic
Delay (ZHD) is calculated using the Saastamoinen model.
The zenith wet delay (ZWD), which is related to TPW,
is then derived as the difference between ZTD and ZHD
(ZWD =ZTD — ZHD). To convert ZWD into TPW, Zhang
et al. (2019b) introduced the Gridded-Mixed Tm (GM-Tm)
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model, which estimates the weighted mean temperature (Tm)
based on surface temperature, station coordinates, and day of
year. The conversion factor IT is computed as a function of
Tm, and TPW is then calculated using the relationship TPW
= [Ix ZWD. This method avoids the need for vertical tem-
perature profiles and enables accurate and real-time TPW re-
trieval from GNSS observations. Moreover, the method also
incorporates a parallel computing framework to support real-
time TPW production at 215 GNSS stations across China,
with a temporal resolution of 5 min. Validation results show
that the retrieved TPW has root mean square errors (RMSEs)
of 1.7 and 2.0 mm when compared with radiosonde-derived
TPW (RS-TPW) and NCEP-II reanalysis TPW (NCEP-II-
TPW), respectively, indicating good accuracy and stability.
In this study, TPW data for 44 GNSS stations over the TP in
2017 were generated using this method and used to validate
the results from the multi-source fusion algorithm.

2.2.4 |IGRA radiosonde TPW data

The Integrated Global Radiosonde Archive (IGRA) pro-
vides vertical profiles of temperature, humidity, and
pressure at multiple levels. In this study, the TPW derived
from IGRA observations in 2022 was used to indepen-
dently validate the fused TPW dataset. The IGRA data
were obtained from the National Climatic Data Center
(https://www.ncei.noaa.gov/products/weather-balloon/
integrated-global-radiosonde-archive, last access: 5 October
2025; Durre et al., 2006).

2.2.5 Scientific Expedition ground-based TPW
observations

Two types of ground-based observations from the scientific
expedition were employed to further evaluate the fused TPW
data:

1. Microwave radiometer (MWR) observations: continu-
ous tropospheric observations (0—10 km) were obtained
from the MWR network deployed across the Plateau
during 2021-2022 (Chen and Ma, 2022; Chen et al.,
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2024b). The instruments provide profiles of tempera-
ture and humidity at 58- or 83-layer vertical resolutions,
from which total precipitable water is derived. Observa-
tion sites include MAWORS, NADOR, Mangai, Naqu,
Changdu, Leshan, QOMS, SETS, and Kabu.

2. GNSS TPW observations in the central Himalayas: A
five-station north—south GNSS chain was established
along the Yadong—Lhasa fault zone (XYDX, DNLG,
SMDX, JZLZ, and LKZZ), providing high-accuracy
(£0.1 mm) TPW retrievals from 2015 to 2019 (Wang et
al., 2019; Yang, 2023). These data were used to validate
the fused TPW performance in steep terrain regions of
the central Himalayas.

2.2.6 MIMIC-TPW2 data

The MIMIC-TPW?2 data, released by the Cooperative Insti-
tute for Meteorological Satellite Studies (CIMSS) at the Uni-
versity of Wisconsin-Madison, is a global, hourly, and 0.25°
TPW product generated by fusing MIRS TPW data from
multiple microwave sensors. The core algorithm of this data
is the advection fusion method proposed by Wimmers and
Velden (2011). This method simulates water vapor advection
trajectories using the NCEP GFS wind field and fuses MIRS
TPW data via extrapolation. In this study, this data is used for
lateral comparison with the TPW fused using the algorithm
in this study. The MIMIC-TPW?2 data can be obtained from
https://bin.ssec.wisc.edu/pub/mtpw2 (last access: 14 March
2025).

2.2.7 ERA5 TPW data

ERAS TPW data, released by the European Centre for
Medium-Range Weather Forecasts (ECMWF), is a widely
used global reanalysis product. It is based on the Integrated
Forecast System (IFS) Cycle 41r2 and the four-dimensional
variational (4D-Var) assimilation framework, integrating
multi-source observational data to generate hourly, 0.25° res-
olution global water vapor fields. As an important benchmark
for climate research, ERAS TPW has been applied in stud-
ies of water vapor transport (Sun et al., 2022), the relation-
ship between precipitation and water vapor budget (Wu et
al., 2023), and the diagnosis of extreme precipitation events
over the TP (Chen et al., 2020). This study compares ERAS
TPW with new algorithm products to assess the improvement
potential of the latter in the highly heterogeneous region of
the TP. The data can be accessed through the ECMWF Cli-
mate Data Store (https://cds.climate.copernicus.eu/datasets/
reanalysis-era5-single-levels?tab=overview, last access: 27
December 2024).

2.2.8 Auxiliary data

The auxiliary data used in this study mainly include the vec-
tor boundary of the TP, elevation data, and geographic coor-
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dinates and time. The vector boundary was derived by Zhang
et al. (2021b) through analysis of the Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global Digi-
tal Elevation Model (ASTER GDEM) and Google Earth im-
agery, and was used to extract multi-source remote sensing
TPW data within the study area. Elevation data were obtained
from the Earth Topography 2022 (ETOP0O2022) surface el-
evation dataset with a spatial resolution of 15 arcsec, pro-
vided by NOAA (NOAA National Centers for Environmen-
tal Information, 2022). In addition, geographic coordinates,
time, and elevation were used as auxiliary variables to rep-
resent longitudinal and latitudinal variation, diurnal cycles,
and vertical terrain effects of water vapor, and were further
employed for error correction and downscaling modeling of
the fused TPW data.

3 Methodology

To achieve all-weather, high-resolution atmospheric water
vapor fusion, this study constructed a virtual satellite constel-
lation composed of eight microwave remote sensing satellites
(including GCOM-W, NOAA-18/19, MetOp-A/B, DMSP-
F17/18, and GPM Core) and H8/9 geostationary meteoro-
logical satellite. This virtual constellation integrates the ob-
servational advantages of different types of remote sensing
data: the microwave remote sensing data from multiple satel-
lites can provide global coverage and all-weather coarse-
resolution TPW data with a time interval of approximately
3h; while H8/9 provide stable and continuous TPW data
with a 2km spatial resolution every hour under clear-sky
conditions. By fully integrating the advantages of the two
types of remote sensing observations, a set of high-precision
TPW fusion algorithms suitable for complex terrain and
cloudy conditions was developed, including key technologies
such as systematic bias calibration among multi-source mi-
crowave remote sensing TPW, spatial downscaling of coarse-
resolution TPW, and adaptive correction of high-resolution
TPW under cloudy conditions. Based on these techniques,
the all-weather TPW data over the TP can be generated, fea-
turing 0.02° spatial and hourly temporal resolution. The de-
tailed algorithmic framework and implementation steps are
described below.

3.1 Construction of the virtual satellite constellation

The concept of a virtual satellite constellation was proposed
by the Committee on Earth Observation Satellites (CEOS) in
2005 as a technical framework for enhancing Earth system
monitoring by integrating observations from multiple satel-
lite platforms. Its core idea lies in combining the strengths of
different orbits and sensor types to form a synergistic obser-
vation network with broad coverage and high spatiotempo-
ral resolution. This study selected microwave remote sens-
ing TPW data from eight polar and inclined orbit satel-
lites, including DMSP-F17/F18, NOAA-18/19, Metop-A/B,
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Figure 2. Flowchart of the multi-source remote sensing TPW fusio

GCOM-W1, and GPM. The microwave payloads of these
satellites have global coverage and all-weather observation
capabilities. Meanwhile, high-resolution clear-sky observa-
tion data from H8/9 AHI was utilized to compensate for the
deficiencies of microwave observations in regional details.
By constructing a virtual constellation and processing multi-
source satellite data collaboratively, input data with uniform
spatiotemporal resolution were provided for subsequent fu-
sion algorithms.

In this study, the construction of the virtual constellation
aimed to address the consistency issues of multi-source satel-
lite data in terms of observation time and spatial resolution.
In terms of spatial uniformity, based on the latitude and lon-
gitude information of the observation pixels of each satel-
lite, bilinear interpolation was used to reproject the multi-
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n algorithm.

source data onto 0.25 and 0.02° equal latitude and longi-
tude grids. Among them, the multi-source microwave re-
mote sensing TPW data were uniformly reprojected onto a
0.25° grid to ensure consistent spatial resolution among dif-
ferent data sources. H8/9 TPW data, which provide stable
high-resolution observations, were first reprojected onto a
0.02° grid to provide high-resolution water vapor informa-
tion and then resampled to a 0.25° grid to serve as a ref-
erence for calibrating algorithm errors and time deviations
among multi-source microwave remote sensing TPW data.
In terms of temporal uniformity, the data were divided into
hourly intervals based on the actual UTC overpass times
of each satellite. Data within 30 min before and after each
hour were assigned to that hour, resulting in the construc-
tion of hourly microwave remote sensing TPW data. Taking
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the hourly matching results of different satellites over the TP
on 1 March 2017, as an example (Fig. 3), the maximum dif-
ference in scanning times among the satellites was approx-
imately 3h. The spatiotemporal distribution of the multi-
source microwave remote sensing TPW data after hourly mo-
saicking is shown in Fig. 4a. In contrast, the H8/9 satellite
continuously observes the entire disk region at 10 min inter-
vals. By directly extracting the observation data at the in-
teger hour, hourly H8/9 TPW data can be generated. The
spatiotemporal distribution of the processed H8/9 TPW data
is shown in Fig. 4b. In the fusion framework, the hourly
HS8/9 TPW data provide the baseline observations. At time
steps without microwave data, the hourly TPW fields are
derived from H8/9 and subsequently reconstructed through
spatiotemporal interpolation under cloudy conditions. When
multi-source microwave data are available, they are bias-
corrected and used to fill the cloudy gaps in the H8/9 re-
trievals. If missing values remain, the reconstruction step was
repeated until full hourly coverage was achieved.

3.2 Bias correction and fusion of multi-source TPW at
coarse resolution

Due to differences in sensor types, orbital configurations, and
retrieval algorithms, TPW data from multi-source microwave
remote sensing satellites exhibit significant systematic bi-
ases, which affect the consistency and accuracy of the fused
product. To effectively integrate TPW observations from var-
ious satellites, it is necessary to perform bias correction and
data reconstruction to eliminate inter-sensor biases and tem-
poral inconsistencies and to ensure the generation of spa-
tiotemporally continuous TPW fields. Among the satellite
data used, H8/9 TPW data can provide stable hourly observa-
tions and have advantages in temporal resolution and obser-
vation consistency. Therefore, this study selects it as the ref-
erence and performs bias correction on the reprojected multi-
source microwave remote sensing TPW data at a resolution
of 0.25°. After bias correction, multi-source microwave re-
mote sensing data were used to fill the observation gaps of
H8/9 under cloudy conditions. However, the hourly TPW
data after filling still have some spatial missing data, espe-
cially in areas with large-scale missing data of H8/9 due
to severe cloud cover. Therefore, interpolation and filtering
methods were further introduced to complete the remaining
missing data areas, resulting in the spatiotemporally continu-
ous, hourly, 0.25° resolution coarse TPW data, which serves
as the input for subsequent high-resolution TPW reconstruc-
tion. The specific operations are as follows:

Bias calibration of multi-source microwave remote sens-
ing TPW data. Considering the advantages of H8/9 data,
such as high-quality observation data, high spatiotemporal
resolution, and stable observation accuracy, it is selected as
the reference for correcting microwave remote sensing TPW
data. To address the temporal and algorithmic discrepancies
among multi-source microwave data, this study employs the
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random forest algorithm (Breiman, 2001) to develop a cor-
rection model. The target data is H8/9 TPW data under clear-
sky conditions, and the model training input data include mi-
crowave remote sensing TPW data, longitude, latitude, el-
evation, and time, etc. The model was trained and updated
separately for each satellite and for each month of every year
to account for seasonal variations. For example, the correc-
tion model for NOAA-19 in January 2017 was trained using
11 565 valid collocated clear-sky samples with H8 TPW. The
correction model was constructed under clear-sky conditions
and applied to all-weather conditions. This month-by-month,
satellite-specific training ensures that systematic bias correc-
tion was dynamically adapted to both temporal and sensor-
related variations.

Reconstruction of coarse-resolution hourly TPW data in
missing areas. Due to the spatial coverage gaps between
microwave remote sensing satellite orbits, multi-source mi-
crowave remote sensing observations cannot provide effec-
tive coverage in every hour in the same area. Meanwhile,
HS8/9 infrared remote sensing observations from geostation-
ary satellites have a large number of missing data under
cloud cover. To address these missing data, the bias-corrected
multi-source microwave remote sensing TPW data were used
to fill the missing data of H8/9 under cloud cover. The spa-
tiotemporal distribution of the filled TPW data is shown in
Fig. 4c. The spatiotemporal coverage of the filled data has
been greatly improved. Although there are still some areas
with missing data, the situation of long-term consecutive
missing data in the same area has been effectively avoided.
For the remaining missing regions after mosaicking, a com-
bined temporal—spatial interpolation strategy was adopted to
achieve continuous hourly coverage. Specifically, linear in-
terpolation was applied along the time dimension between
two adjacent valid observations when the temporal gap was
less than or equal to 24 h, while longer gaps or edge seg-
ments remained missing. Missing pixels in each hourly 2D
TPW field were then interpolated spatially using a bilinear
method, but only when more than 50 % of the pixels within
the surrounding 1° x 1° neighborhood were valid. Pixels
lacking sufficient valid neighbors were left unfilled. When
residual missing values remained after spatial interpolation,
the temporal and spatial interpolation procedures were itera-
tively repeated until no further gaps were present. Finally, a
Savitzky—Golay filter was applied to smooth local variations
in the reconstructed field, resulting in hourly, 0.25° resolu-
tion fused TPW data. The reconstruction result is shown in
Fig. 4d. The percentage of multi-source remote sensing ob-
servations covering the TP at the hourly scale in 2017 was
statistically analyzed (Fig. 4e). The average coverage rate
of multi-source microwave remote sensing TPW data were
27.2 %, and that of H8/9 TPW data were 20.1 %. After mo-
saicking, the overall coverage rate increased to 41.7 %, and
after interpolation and reconstruction, the total coverage rate
reached 100 %. Compared to single-satellite observations,
this study successfully overcame the spatiotemporal limi-
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Figure 3. Hourly matching results of multi-source microwave remote sensing satellites over the Tibetan Plateau on 1 March 2017 (UTC

time).

tations inherent in single-satellite observations by integrat-
ing data from geostationary satellites and multi-source mi-
crowave remote sensing satellites, thereby significantly en-
hancing the spatial and temporal coverage.

3.3 Downscaling of coarse-resolution TPW

Although the coarse-resolution hourly TPW data derived
from the previous multi-source fusion can achieve all-
weather coverage, its relatively low spatial resolution lim-
its its ability to capture the local variation characteristics of
water vapor over the complex terrain of the TP. Especially
in valleys and slopes, the coarse-resolution data can easily
mask the influence of terrain on water vapor distribution. To
enhance the spatial resolution of the reconstructed TPW data
in the topographically complex regions, this study introduced
auxiliary information such as elevation, longitude, latitude,
and time to conduct a preliminary downscaling of the coarse-
resolution reconstructed TPW data. On this basis, the prelim-
inary results were further corrected by combining the high-
resolution observations of H8/9 under clear-sky conditions.

Preliminary spatial downscaling of coarse-resolution re-
constructed TPW data. To enhance the spatial resolution
of coarse-resolution reconstructed TPW data in regions
with significant topographic variation, a spatial downscaling
model was developed using the random forest algorithm. The
0.25° coarse-resolution reconstructed TPW data served as the
target variable, while elevation, latitude, longitude, and time
were used as input features to account for the effects of spa-
tial location, topographic characteristics, and temporal varia-
tion on TPW distribution. The model was trained using input
and output data at the 0.25° resolution, and subsequently ap-
plied to input variables at 0.02° resolution to produce prelim-
inary hourly high-resolution TPW data on all-weather con-
ditions. Following the temporal sampling strategy proposed
by Sun et al. (2024), training samples were selected within
a =3 h window centered on each target hour. For instance,
on 1 January 2017, the DEM-based downscaling model was
trained using 27 360 valid samples.
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Refining the preliminary downscaling with H8/9 high-
resolution TPW data. Although the spatial resolution of the
preliminary downscaling results was improved, there might
still be spatial detail deviations due to the lack of actual high-
resolution water vapor observation information. Therefore,
the H8/9 TPW data under clear-sky conditions was further in-
troduced as a reference to correct the preliminary downscal-
ing results. Before constructing the correction model, quality
control was conducted on the training data samples. Specif-
ically, the differences between the preliminarily downscaled
TPW and H8/9 TPW were calculated, and only the sam-
ples with differences within £3 standard deviations from the
mean were retained. Subsequently, with H8/9 TPW as the
target variable and the preliminary downscaling TPW as the
input variable, combined with auxiliary information such as
longitude, latitude, elevation, and time, a random forest al-
gorithm was used to construct the correction model. This
model was trained under clear-sky conditions and applied
to all-weather conditions to correct the spatial distribution
of the preliminary downscaled TPW data, obtaining hourly,
0.02° resolution downscaling TPW data (DS TPW). For in-
stance, on 1 January 2017, the H8-based correction model
was trained using 487 986 valid samples.

3.4 Adaptive correction of high-resolution TPW under
cloudy conditions

The previous step has reconstructed the all-weather hourly,
0.02° resolution DS TPW data. Since the existing correction
model was developed under clear-sky conditions, and wa-
ter vapor distributions differ between clear and cloudy skies,
the DS TPW values may exhibit biases when applied under
cloudy conditions. This deviation mainly stems from the lim-
ited applicability of the model relationship established under
clear-sky conditions to cloudy conditions. Consequently, it
is necessary to introduce a further correction mechanism to
enhance the accuracy of TPW data under cloudy conditions.
Based on DS TPW and H8/9 TPW, this study developed an
adaptive correction method for high-resolution TPW by ex-
ploiting boundary differences between clear and cloudy sky,
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Figure 4. Spatial and temporal distribution of multi-source remote sensing TPW data over the TP ((a) Multi-source microwave remote
sensing mosaicked TPW data; (b) H8/9 TPW data; (c) Mosaicked TPW data from multi-source microwave remote sensing and H8/9;
(d) Coarse-resolution reconstructed TPW data; (e) Hourly multi-source remote sensing observation coverage percentage over the TP in

2017).

thereby improving accuracy under cloudy conditions. This
method assumes spatiotemporal continuity in the water va-
por field and uses H8/9 TPW observations from clear-sky
boundary areas to dynamically estimate regional bias, which
is then applied for pixel-wise adaptive correction of DS TPW
under cloudy conditions.

This adaptive correction begins at the boundary between
clear-sky and cloudy regions. A 5 x 5 window is used to se-
lect H8/9 and DS TPW data, and the mean values of valid
pixels (values greater than 0) are calculated respectively to
construct the regional deviation termed as follows:

H8/9
=l s g

i,j =M JJ
where (i, j) is the pixel position to be corrected under the
H8/9
cloudy conditions, u; and /L represent the mean values
of the valid pixels within the 5 x 5 window centered at pixel
(i, j) in H8/9 TPW and DS TPW, respectively. The calculated
§ reflects the systematic deviation of H8/9 TPW data from
DS TPW data at the clear-sky boundary. By applying the cal-
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culated deviation term § to correct the DS TPW at the pixel
position under the cloudy conditions, the correction formula
is as follows:

TPW ™ = 5; ; + TPWP? )

In this equation, TPWpg refers to the original downscaled
TPW value at the cloudy pixel, and TPWcyip is the corrected
TPW. The correction process starts from the clear-sky bound-
ary and gradually extends into the cloud region, dynamically
computing local bias and applying correction at each pixel.
This method has adaptive capabilities, allowing for flexi-
ble determination of the correction magnitude based on the
observation conditions of different regions, thereby improv-
ing the spatial consistency and accuracy of TPW data un-
der cloudy conditions. Finally, the corrected high-resolution
TPW data under cloudy conditions were used to fill miss-
ing areas in the H8/9 TPW dataset, resulting in hourly fused
TPW data with a spatial resolution of 0.02°.
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3.5 Dataset

Based on the aforementioned multi-source data fusion
method, this study produced a TPW dataset over the TP
using TPW retrievals from eight polar and inclined orbit
satellites and the H8/9 geostationary satellite. The dataset
covers the period from 2016 to 2022 and features hourly
temporal resolution and 0.02° spatial resolution with all-
weather coverage. The dataset has been published by the
National Tibetan Plateau Data Center and is available
at: https://doi.org/10.11888/Atmos.tpdc.301518 (Ji et al.,
2025b). This product can be applied to improve studies on
water vapor transport, precipitation forecasting, and data as-
similation in numerical models over the TP region.

3.6 Evaluation metrics

To evaluate the accuracy of the fused TPW dataset, ground-
based GNSS TPW observations from the CMONOC stations
across TP were used as reference data. The validation focuses
on four statistical indicators: the correlation coefficient (R),
bias, root mean square error (RMSE), and relative root mean
square error (RRMSE). These metrics are calculated using
the following equations:

N
> G = ) (vi — iy)
R = i=1 3)

N 5 N 5
z(xi — x)* ; (yi — 1y)

. 1Y
Bias =} (xi =) )
i=1
1 & 5
RMSE= | ; ;= i) Q)
E
RRMSE = x 100 % (6)
My

In Egs. (3)—(6), x; and y; denote the ith values of the fused
TPW and the GNSS TPW, respectively; w, and u, represent
their corresponding mean values; and N is the total number
of matched sample pairs used in the evaluation.

4 Results

4.1 Accuracy verification of fusion results

4.1.1 Validation of TPW under clear-sky and cloudy
conditions

To evaluate the performance of the fusion algorithm un-
der different sky conditions, the 2017 GNSS TPW observa-
tions were used to validate the H8 TPW, the multi-source
MW TPW, and the fused TPW data. During validation, each
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GNSS station was matched with the nearest remote sens-
ing grid cell, and GNSS measurements at hourly timestamps
were used to validate the corresponding fused TPW. The cor-
responding results are summarized in Table 2. Under clear-
sky conditions, the H8 TPW shows the highest correlation
coefficient of 0.95, followed by 0.89 for the MW TPW. The
biases are 0.38 mm for H8 and —1.82mm for MW. The
RMSE values are 1.94 mm for H8 and 3.79 mm for MW,
confirming that the H§ TPW product provides the most re-
liable estimates under clear-sky conditions and justifying its
use as the reference for bias correction. Under cloudy con-
ditions, the fused TPW maintains a correlation coefficient
of 0.95, higher than 0.88 for the MW TPW. The biases are
—2.78 mm for the fused TPW and —4.31 mm for MW, and
the RMSE values are 4.92 and 6.44 mm, respectively. These
results demonstrate that the fusion algorithm effectively re-
duces bias and error under cloudy conditions, leading to a
notable improvement in accuracy compared with the original
MW observations.

4.1.2 Comparison with other TPW products

To further evaluate the fusion algorithm, GNSS TPW data
from 2017 were selected as reference, and the fused TPW
product generated for the same year was validated under all-
weather conditions at three temporal scales: hourly, daily,
and monthly. The “hourly” scale refers to direct validation of
the hourly fused TPW data, while the “daily” and “monthly”
scales represent validations based on daily- and monthly-
averaged TPW values derived from the hourly product. In
addition, ERAS reanalysis data and the multi-source remote
sensing fusion product MIMIC-TPW2, both of which pro-
vide hourly TPW estimates, were included for comparative
validation. Figure 5a—c show the hourly validation results.
The RMSE of the fused TPW is 3.79 mm, which is 10.82 %
and 6.19 % lower than that of MIMIC-TPW2 (4.25 mm) and
ERAS (4.04 mm), respectively. The Bias of the fused TPW is
—1.15 mm, smaller than that of MIMIC-TPW2 (—2.02 mm)
and ERAS5 (—2.22 mm). Figure 5d—f show the verification
results at the daily scale. The RMSE of the fused TPW
drops to 3.50 mm, which is 10.26 % and 9.60 % lower than
that of MIMIC-TPW2 (3.90 mm) and ERAS5 (3.87 mm), re-
spectively. Figure 5g—i show the verification results at the
monthly scale. The RMSE of the fused TPW reduces to
3.19 mm, which is 12.84 % and 15.16 % lower than that
of MIMIC-TPW?2 (3.66 mm) and ERAS (3.76 mm), respec-
tively.

The previous text indicates that the overall accuracy of the
fused TPW is superior to that of ERAS TPW and MIMIC-
TPW?2 at different temporal scales. However, due to the com-
plex terrain of the TP, where water vapor exhibits substantial
regional heterogeneity, it is essential to evaluate whether the
fused data maintains stable and reliable performance across
different subregions. Therefore, station-scale validation is
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Table 2. Comparison of hourly TPW from H8 TPW, MW TPW, and fused TPW against GNSS observations in 2017.

‘Weather conditions

Data type R Bias(mm) RMSE (mm) RRMSE (%) N
Clear sky H8 TPW 0.95 0.38 1.94 27.24 143670
MW TPW 0.89 —1.82 3.79 54.37 42367
Cloudy MW TPW 0.88 —4.31 6.44 55.44 46 545
Fused TPW  0.95 —2.78 4.92 4232 142063
(a) (b) (c)
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Figure 5. Scatterplot comparisons of GNSS TPW with fused TPW, ERAS TPW, and MIMIC-TPW?2 under all-sky conditions at hourly (first
row), daily (second row), and monthly (third row) scales. (a, d, g: fused TPW; b, e, h: ERAS TPW; ¢, {, i: MIMIC-TPW2 TPW).

conducted by comparing the fused TPW with ERA5 TPW
and MIMIC-TPW2.

Figure 6 presents the distributions of RMSE and RRMSE
for the fused TPW, ERAS5 TPW, and MIMIC-TPW2 across
GNSS stations under all-weather conditions. The left col-
umn (Fig. 6a, c, e) shows the RMSE, while the right col-
umn (Fig. 6b, d, f) shows the RRMSE, with the three rows
corresponding to the fused TPW, ERAS TPW, and MIMIC-
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TPW2, respectively. As shown in the Fig. 6, the fused TPW
exhibits relatively lower RMSE at most stations, particu-
larly in the southwestern region. In contrast, ERAS TPW
and MIMIC-TPW?2 display larger errors in areas with sparse
stations and at high-elevation sites in the western Plateau.
In terms of RRMSE, the fused TPW shows lower errors in
southern and northeastern parts of the TP. Particularly in
station-sparse areas such as the Himalayas, ERAS TPW and
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MIMIC-TPW?2 exhibit larger RRMSE. By comparison, the
fused TPW, which combines geostationary and multi-source
microwave remote sensing observations, consistently deliv-
ers low-error and stable water vapor estimates even in regions
with sparse stations and complex terrain.

4.1.3 Additional validation using radiosonde and
scientific expedition data

To further evaluate the performance of the fused TPW
dataset, additional validations were conducted using (1)
IGRA radiosonde TPW data from 2022, (2) microwave ra-
diometer (MWR) observations obtained from the scientific
expedition over the Tibetan Plateau in 2022, and (3) GNSS
TPW observations from the central Himalayas in 2017. Ta-
ble 3 shows the metrics comparisons between the fused TPW,
ERAS, and MIMIC-TPW2.

For the IGRA validation, ERAS exhibits the highest
correlation of 0.98, followed by the fused TPW at 0.96
and MIMIC-TPW2 at 0.89. In terms of accuracy, ERAS5
also achieves the smallest RMSE of 1.55mm and the
lowest RRMSE of 19.93 %, while the fused TPW shows
slightly larger values of 2.15 mm and 27.66 %, and MIMIC-
TPW2 shows the largest error of 3.26 mm and 41.93 %.
The higher accuracy of ERAS in this comparison may be
partly attributed to its assimilation of radiosonde observa-
tions from the Global Telecommunication System (GTS) net-
work, which includes the IGRA stations (Durre et al., 2006;
Hersbach et al., 2020). The biases are 0.08 mm for the fused
TPW, —0.3d mm for ERAS5, and —0.38 mm for MIMIC-
TPW2, indicating that the fused product has the smallest ab-
solute bias among the three datasets. For the MWR valida-
tion, the correlation coefficients are 0.86 for the fused TPW,
0.92 for ERAS, and 0.84 for MIMIC-TPW2. The RMSEs
are 6.21, 6.34, and 7.16 mm for ERAS, the fused TPW, and
MIMIC-TPW2, respectively, with corresponding RRMSEs
of 66.63 %, 68.06 %, and 76.88 %. All three datasets show a
clear dry bias, —4.35 mm for ERAS, —3.63 mm for the fused
TPW, and —4.69 mm for MIMIC-TPW2. For the GNSS ob-
servations in the central Himalayas, the fused TPW shows a
correlation of 0.92, higher than ERAS5 at 0.91 and MIMIC-
TPW?2 at 0.86. Its RMSE (3.37 mm) and RRMSE (23.05 %)
are the smallest among the three datasets, compared with
4.63mm (31.71 %) for ERAS5 and 4.96 mm (33.98 %) for
MIMIC-TPW2, indicating that the fused product achieves
the highest accuracy in this region. The biases are consis-
tently dry across all datasets, with the fused TPW show-
ing the smallest magnitude at —1.83 mm, compared with
—3.28 mm for ERAS and —3.77 mm for MIMIC-TPW2.

According to these validation results, the accuracy is gen-
erally higher when evaluated using IGRA data, but becomes
lower when using the scientific expedition data such as MWR
and GNSS from the central Himalayas. Compared with
global public datasets like IGRA, these expedition observa-
tions are located in more remote regions of the Plateau and
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are crucial for analyzing and validating water vapor transport
across the TP. However, all datasets still show relatively large
errors in such areas, and further improvements in fusion ac-
curacy are needed for complex and data-sparse regions.

4.1.4 Validation of the fused TPW dataset for all years

To comprehensively evaluate the reliability of the fused TPW
dataset, statistical validation was performed against GNSS
observations from 2016 to 2022 under three weather condi-
tions: all-weather, clear-sky, and cloudy-sky. The results are
presented in Table 4 (all-weather), Table 5 (clear-sky), and
Table 6 (cloudy-sky).

Under all-weather conditions (Table 4), the fused TPW
dataset exhibited stable performance throughout the study
period, with correlation coefficients remaining within 0.91—
0.92, RMSE values within 3.37 and 4.24 mm, and slightly
dry biases around —0.99 to —1.49 mm. Note that fewer val-
idation samples were available in 2019 and 2020 due to re-
duced GNSS observations, rather than changes in the fused
dataset. Under clear-sky conditions (Table 5), the correlation
coefficient ranged from 0.92 to 0.96. The Bias was between
—0.06 and 0.43 mm. The RMSE was from 1.80 to 2.41 mm,
and the RRMSE ranged from 24.72 % to 35.40 %. The accu-
racy under clear-sky conditions is higher than that under all-
weather conditions. Under cloudy-sky conditions (Table 6),
the correlation coefficient ranged from 0.90 to 0.95. The
RMSE ranged from 4.23 to 5.81 mm, with a relatively higher
value in 2020. However, the RRMSE in 2020 was 40.84 %,
which fell within the fluctuation range of 40.59 % to 43.51 %
observed in other years without abnormal deviation. Over-
all, the fused TPW dataset showed relatively stable accuracy
across different years and weather conditions.

4.2 Spatiotemporal distribution analysis of the fused
TPW

To evaluate the capability of the fused TPW data to capture
the spatiotemporal distribution characteristics of water va-
por over the TP, a comparative analysis was conducted us-
ing hourly TPW fields from the fused TPW, ERA5 TPW, and
MIMIC-TPW?2 datasets from 05:00 to 11:00 UTC on 8 June
2017. As shown in Fig. 7, the first column shows the fused
TPW, the second column shows ERAS TPW, and the third
column shows MIMIC-TPW2. The three datasets exhibited
generally consistent spatial patterns. The TPW in the area
west of the Qiangtang Plateau (Area A) is relatively low,
while in the northeastern Tarim Basin (Area B), the eastern
Sanjiangyuan region of the plateau (Area C), the southeast-
ern Yarlung Zsangbo Grand Canyon (Area D), and the south-
ern edge of the Himalayas (Area E), the TPW is relatively
abundant. However, the fused TPW shows a finer depiction
of water vapor transport processes, clearly capturing local-
ized moisture enhancement and transport pathways. For in-
stance, in the Sanjiangyuan region (Region C), abundant wa-
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Figure 6. Comparison of RMSE (first column) and RRMSE (second column) at the station scale for the fused TPW, ERAS5 TPW, and
MIMIC-TPW?2 under all-weather conditions (a, b: fused TPW; ¢, d: ERA5 TPW; e, f: MIMIC-TPW2).

Table 3. Validation of the fused TPW, ERAS TPW, and MIMIC-TPW?2 products using independent observations from IGRA, ground-based

MWR, and GNSS over the central Himalayas.

Observation Type Validated Product R Bias(mm) RMSE (mm) RRMSE (%) N
IGRA (2022; Durre et al., 2006) Fused TPW 0.96 0.08 2.15 27.66 5059
ERAS5 TPW 0.98 —0.34 1.55 19.93 5059
MIMIC-TPW2 0.89 —0.38 3.26 41.93 5059
MWR (2022 data; Chen and Ma, 2022)  Fused TPW 0.86 —3.63 6.34 68.06 19280
ERAS5 TPW 0.92 —4.35 6.21 66.63 19280
MIMIC-TPW2 0.84 —4.69 7.16 76.88 19280
GNSS (2017 data, Central Himalayas; Fused TPW 0.92 —1.83 3.37 23.05 16623
Yang, 2023) ERA5 TPW 0.91 —3.28 4.63 31.71 16623
MIMIC-TPW2 0.86 —-3.77 4.96 3398 16623

ter vapor is gradually transported northward from the south-
east, resulting in accumulation and intensification over time.
In contrast, the spatial resolution of ERA5 TPW is insuffi-
cient to resolve fine-scale water vapor patterns over complex
terrain, leading to overly smooth distributions and weak rep-
resentation of localized variations. Similarly, MIMIC-TPW2
has coarse spatial resolution and provides a less clear depic-
tion of moisture transport. Moreover, it exhibits noticeable
noise in some areas, with abnormal over- and underestima-
tions particularly evident in the eastern part of the TP.

To further evaluate the monthly stability of the fused
TPW data, a comparative analysis was conducted between
the fused TPW, ERA5 TPW, and MIMIC-TPW?2 datasets
at the monthly scale. Figure 8a, d, g, j respectively show
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the monthly average spatial distribution of the fused TPW
in March, June, September, and December 2017, combined
with ERAS TPW (Fig. 8b, e, h, k) and MIMIC-TPW2
(Fig. 8c, f, i, 1). In terms of overall spatial distribution, the
three datasets exhibit similar spatial distribution characteris-
tics of water vapor over the TP in different months, with rel-
atively low TPW values in the plateau’s interior and higher
TPW values along water vapor transport pathways such as
the Tarim Basin and the southeastern region of the plateau.
The fused TPW clearly depicts the spatial gradient of water
vapor each month, particularly in complex terrain areas like
the Himalayas and Hengduan Mountains, where local water
vapor variations are well captured. While the large-scale dis-
tribution of ERAS TPW aligns with that of the fused TPW, its
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Table 4. Statistical validation of the fused TPW dataset against GNSS observations under all-weather conditions for all years (2016-2022).

Year R Bias(mm) RMSE (mm) RRMSE (%) N
2016 091 —1.49 3.98 43.09 253194
2017 0091 —1.39 3.82 40.38 285733
2018  0.92 —1.23 3.82 40.43 311143
2019 091 —1.02 3.37 39.99 174298
2020 0091 —1.39 4.24 38.68 201789
2021 092 —0.99 3.50 38.69 300686
2022 092 —1.04 3.56 39.37 279514

Table 5. Statistical validation of the fused TPW dataset against GNSS observations under clear-sky conditions for all years (2016-2022).

Year R Bias (mm) RMSE (mm) RRMSE (%) N
2016  0.92 —0.06 2.41 35.40 124831
2017  0.95 0.38 1.94 27.24 143670
2018  0.95 0.27 2.00 27.37 142859
2019 095 0.30 1.85 27.74 78 360
2020 0.95 0.28 2.00 2472 106901
2021  0.96 0.43 1.82 26.81 138246
2022 0.96 0.30 1.80 26.52 136784

lower spatial resolution results in smoother representations
of water vapor gradients. In most regions, the water vapor
distribution of MIMIC-TPW?2 is comparable to the other two
datasets; however, in lake areas such as Qinghai Lake (A),
Nam Co, and Serling Co (B), MIMIC-TPW2 shows TPW
higher than the surrounding TPW.

In the above-mentioned monthly-scale spatial distribution
comparison results, the TPW values of MIMIC-TPW?2 over
lake areas such as Qinghai Lake may be overestimated. To
verify this phenomenon, the GNSS station QHGC located
near Qinghai Lake was selected to provide reference TPW
data. The hourly TPW data of MIMIC-TPW2, ERAS TPW,
and the fused TPW during 21-27 March, 11-17 June, 1-
7 September, and 1-7 December 2017 were extracted and
compared with the GNSS TPW data, as shown in Fig. 9. It is
evident that MIMIC-TPW?2 consistently shows higher TPW
values than the other datasets during several periods, partic-
ularly in summer. For example, in June (Fig. 9b), MIMIC-
TPW?2 exceeds 30 mm on 12 and 16 June, while the corre-
sponding GNSS TPW remains below 20 mm. Similar over-
estimations by MIMIC-TPW?2 are also observed in March,
September, and December. Compared to MIMIC-TPW?2, the
fused TPW is more consistent with GNSS TPW, indicat-
ing its ability to effectively capture TPW variations. While
both the fused TPW and MIMIC-TPW?2 rely on similar
microwave-based observations, the new fusion algorithm in
this study additionally incorporates high-accuracy TPW from
geostationary satellites and applies a bias correction strategy
to reduce errors in areas such as lakes.
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4.3 Case study

The meridional atmospheric water vapor transport across the
Yarlung Zsangbo Grand Canyon has a significant impact on
the precipitation in the southeastern part of the TP (Chen et
al., 2024a). However, under the complex terrain conditions of
the TP, the water vapor transport process shows obvious local
characteristics and is difficult to accurately identify through
low-resolution data. The fused TPW product, with its high
spatiotemporal resolution and all-weather coverage, is ex-
pected to improve the depiction of such moisture transport
processes. To evaluate its practical performance, we analyzed
water vapor transport over the upper Yarlung Zsangbo River
and surrounding areas (Fig. 10a—b) from 09:00 to 18:00 UTC
on 8 June 2017, based on the fused TPW data. In addition,
we compared the fused TPW with ERAS TPW and MIMIC-
TPW?2 to assess their capabilities in resolving regional mois-
ture distributions and transient transport features over short
time intervals.

Figure 10c—f show the fused TPW, which clearly illus-
trates an east-to-west transport of water vapor forming a con-
tinuous transport corridor along the Yarlung Zsangbo River.
The ERAS TPW (Fig. 10g—j) show a broadly similar dis-
tribution pattern to the fused TPW, but due to its coarser
spatial resolution, the transport features appear blurred, with
smoothed moisture gradients that fail to capture localized
transport processes. The MIMIC-TPW?2 data (Fig. 10k—n)
exhibit more unstable water vapor distributions, with pro-
nounced gradient fluctuations in localized areas and less
clearly defined transport pathways. In contrast, the fused
TPW, enhanced by multi-source bias correction and by
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Table 6. Statistical validation of the fused TPW dataset against GNSS observations under cloudy-sky conditions for all years (2016-2022).

Year R Bias(mm) RMSE (mm) RRMSE (%) N
2016 091 —2.74 4.95 43.51 140840
2017  0.95 —2.78 4.92 42.32 142063
2018  0.92 —2.50 4.85 43.10 168284
2019 0.92 —2.10 4.23 42.81 95938
2020 0.90 —3.28 5.81 40.84 94988
2021 092 —2.20 4.46 40.59 162440
2022 092 —2.33 4.66 41.63 142730

adaptive calibration for cloudy conditions, provides high-
resolution and spatially continuous water vapor fields, en-
abling the capture of water vapor transport processes over
complex terrain.

5 Discussion

5.1 Technical innovations of the TPW fusion framework

Most existing TPW fusion methods rely on ground-based
GNSS stations or reanalysis data as references, using spa-
tiotemporal interpolation or machine learning to improve
resolution and continuity. However, in regions like the TP,
where ground stations are sparse and terrain is complex,
these methods face limitations such as insufficient data cov-
erage, low resolution, and persistent systematic errors, which
restrict their accuracy in capturing local vapor transport and
intense precipitation processes. This study is the first to
propose a high spatiotemporal resolution multi-source re-
mote sensing TPW fusion framework for the TP based en-
tirely on satellite observations, combining data from eight
microwave remote sensing satellites and H8/9 geostationary
satellite. The fusion framework exploits the complementary
strengths of different sensors: the all-weather capability of
microwave sensors and the high-resolution, high-frequency
observations from H8/9. It comprises sequential modules for
multi-source bias correction, spatial downscaling, and adap-
tive correction under cloudy conditions. Using this frame-
work, all-weather TPW dataset covering the TP were gen-
erated, with hourly temporal and 0.02° spatial resolution.
Technically, the algorithm addresses two major challenges:
(1) systematic differences among microwave sensors and
(2) the accuracy degradation caused by applying clear-sky-
based models in cloudy conditions. Both issues were ad-
dressed through targeted correction strategies. To overcome
systematic discrepancies among microwave TPW datasets,
we developed a satellite-specific bias correction method us-
ing H8/9 TPW as a high-accuracy reference. At the coarse-
resolution scale, individual correction models were trained
for each sensor based on spatiotemporally matched obser-
vations, which significantly reduced bias of inter-sensors.
These corrected TPW was mosaicked at spatial resolution of
0.25° and was further downscaled to generate an hourly TPW
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with a spatial resolution of 0.02°. Moreover, in the absence of
reliable high-resolution references under cloudy conditions,
applying clear-sky-based correction and downscaling models
often introduces bias. To address this problem, we proposed
a novel adaptive correction scheme based on the assumption
of spatiotemporal continuity in the vapor field. Discrepancies
between H8/9 TPW and the downscaled TPW along clear-
sky boundaries were used to iteratively adjust TPW values
under cloudy conditions. This step significantly improves the
spatial continuity and accuracy of TPW under cloudy condi-
tions.

5.2 Limitations and future improvements of the fusion
algorithm

Although the proposed fusion algorithm successfully recon-
structs continuous all-weather TPW fields with high tempo-
ral and spatial resolution over the Tibetan Plateau, several
limitations remain to be addressed.

First, in the western part of the Tibetan Plateau, the orig-
inal satellite observations show extensive data gaps because
of the limited geostationary coverage and the sparse over-
passes of microwave sensors. As a result, the available infor-
mation for spatiotemporal interpolation is relatively insuffi-
cient, which may lead to reduced reconstruction accuracy in
these regions. Future work will incorporate additional satel-
lite observations — such as data from Fengyun-4A/B (FY-
4A/B) and other geostationary missions — to improve the spa-
tial and temporal coverage of the input datasets, thereby en-
hancing the quality of reconstructed TPW fields in regions
with limited observations.

Second, in regions with persistent and extensive cloud
cover, the adaptive correction may experience reduced ef-
fectiveness due to the scarcity of valid clear-sky reference
pixels from Himawari-8/9 (H8/9). This can lead to locally
increased uncertainties, particularly in areas with frequent
deep convective systems such as the southern Plateau. Fu-
ture improvements will focus on introducing additional phys-
ical constraints, including cloud microphysical parameters
retrieved from infrared or microwave cloud products, and as-
similating short-term numerical weather prediction (NWP)
fields to enhance correction robustness and continuity under
prolonged cloudy conditions.
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Figure 7. Spatiotemporal comparison of fused TPW, ERAS TPW, and MIMIC-TPW2 from 05:00 to 11:00 UTC on 8 June 2017 (first column:
fused TPW; second column: ERAS5 TPW; third column: MIMIC-TPW2).

Third, the current algorithm has been optimized for the
Tibetan Plateau, focusing on high-resolution water vapor re-
construction to support regional atmospheric and hydrolog-
ical studies. Future development can extend this framework
toward a near-global scale by integrating multi-geostationary
satellite observations to achieve hourly TPW coverage across
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most low- and mid-latitude regions, similar to the study by
Shi et al. (2025). For high-latitude areas where geostationary
satellites lack coverage, clear-sky TPW retrievals from polar-
orbiting optical sensors such as MODIS and MERSI can be
incorporated as complementary sources.
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In the long term, developing a globally consistent, high-
resolution, and purely satellite-based TPW fusion framework
will establish a solid observational foundation for quantita-
tive studies of atmospheric moisture transport, energy bal-
ance, and land—atmosphere coupling, and will further sup-
port the refinement of precipitation (Cui et al., 2025; Ji et al.,
2025a), cloud property (Tana et al., 2023, 2025), and radia-
tion estimation (Letu et al., 2023) algorithms across multiple
spatial and temporal scales.

5.3 Advantages and application prospects of the
high-resolution fused TPW dataset

Based on the newly developed fusion algorithm, this study
produced an all-weather TPW dataset over the TP from 2016
to 2022, with hourly temporal resolution and 0.02° spa-
tial resolution. Compared with other existing products, this
dataset demonstrates advantages in spatial resolution under
cloudy conditions, spatiotemporal continuity, and accuracy.
Compared with infrared-based TPW retrievals from H8/9
geostationary satellite, this dataset incorporates all-weather
TPW data from multiple microwave satellites, thereby ad-
dressing the lack of TPW data under cloudy conditions.
Compared with products that fuse multi-source microwave
TPW data such as MIMIC-TPW?2, the new dataset produced
in this study has effectively reduced abnormal values over
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lake areas, along with improved accuracy and spatial conti-
nuity. Compared with ERAS reanalysis data, this fused data
has improved the spatial resolution by approximately 12.5
times, making it more suitable for describing the detailed
structure of atmospheric water vapor under the complex ter-
rain conditions of the TP, including small-scale transport
paths, water vapor gradients, and local accumulation pro-
cesses. In summary, this dataset is more suitable for the de-
mand for high spatiotemporal resolution water vapor obser-
vations over the TP in terms of spatiotemporal coverage and
accuracy characteristics than other datasets. It can be used
for the calculation of water vapor flux and its divergence,
water vapor budget analysis, identification of precursors to
heavy precipitation, providing initial field information for re-
gional numerical models, and improving regional water cy-
cle research and water resource change monitoring (Yao et
al., 2019).

6 Data availability

The new TPW dataset
tional

is published by the Na-
Tibetan Plateau Data Center and is avail-
able at: https://doi.org/10.11888/Atmos.tpdc.301518
(Ji et al., 2025b). The AMSR2 TPW data, self-
developed by our research team, is accessible at
https://cstr.cn/18406.11.Atmos.tpdc.272832  (updated on
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20 January 2023; Ji et al., 2021, 2022). The Himawari-
8/9 TPW data, another self-produced dataset of ours, is
available at https://data.tpdc.ac.cn (updated on 11 Novem-
ber 2024; Wang and Liu, 2024). MIRS TPW products
are available through https://www.aev.class.noaa.gov/saa/
products/search?sub_id=0anddatatype_family=MIRS_ORB
(last access: 23 October 2024; Boukabara et al., 2010,
2011). The MIMIC-TPW2 dataset is obtainable from
https://bin.ssec.wisc.edu/pub/mtpw2  (last access: 14
March 2025; Wimmers and Velden, 2011). ERA5 TPW
data can be downloaded from the Copernicus Climate
Data Store via https://cds.climate.copernicus.eu (last
access: 27 December 2024; Hersbach et al., 2020).
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IGRA data can be downloaded from the National Cli-
matic Data Center (https://www.ncei.noaa.gov/products/
weather-balloon/integrated-global-radiosonde-archive,

last access: 5 December 2025; Durre et al.,, 2006).
Elevation data is sourced from NOAA National Cen-
ters for Environmental Information (NOAA, 2022) at
https://doi.org/10.25921/fd45-gt74. The vector data of the
study area is provided by the TPDC (Zhang, 2019c) at
https://doi.org/10.11888/Geogra.tpdc.270099.
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Figure 10. Hourly spatial distributions of fused TPW, ERAS5 TPW, and MIMIC-TPW?2 over the upper Yarlung Zsangbo River and surround-
ing areas (a: regional location; b: terrain context generated from DEM; c—f: fused TPW; g—j: ERAS TPW; k-n: MIMIC-TPW?2).

7 Conclusions

This study proposed a novel multi-source remote sensing
data fusion framework based on the concept of a virtual satel-
lite constellation, which integrated TPW under all-weather
conditions from eight microwave remote sensing satellites
(DMSP-F17/F18, NOAA-18/19, MetOp-A/B, GCOM-W1,
and GPM Core) and TPW with high-temporal-resolution un-
der clear-sky conditions from the H8/9 geostationary satel-
lites. The framework fully exploits the all-weather capa-
bility of microwave remote sensing observations and the
stable, high resolution infrared observations from geosta-
tionary satellites. It also develops key techniques for ad-
dressing challenges in complex terrain and cloudy condi-
tions over the TP, including multi-source data synchroniza-
tion, systematic bias correction for multi-source TPW, spa-
tial downscaling, and adaptive calibration under cloudy con-
ditions. Based on the proposed algorithm, an all-weather
TPW dataset was generated for the TP, covering the period
from 2016 to 2022, with a spatial resolution of 0.02° and
an hourly temporal resolution. The dataset has been pub-
licly released through the National Tibetan Plateau Data Cen-
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ter (https://doi.org/10.11888/Atmos.tpdc.301518, Ji et al.,
2025b).

To evaluate the accuracy of the fused TPW product, this
study used the fused TPW data in 2017 was validated against
GNSS TPW data under all-weather conditions. As a com-
parison, the ERAS TPW and MIMIC-TPW?2 were also val-
idated against GNSS TPW. At hourly, daily, and monthly
time scales, the RMSEs of the fused TPW are 3.79, 3.50
and 3.19 mm respectively. Compared with MIMIC-TPW2,
the errors are reduced by 10.82 %, 10.26 %, 12.84 %, and
compared with ERAS, they are reduced by 6.19 %, 9.60 %,
15.16 %. In topographically complex and station-sparse re-
gions such as the Himalayas, the fused TPW shows lower
errors at station scale. In terms of spatial distribution and wa-
ter vapor transport representation, the fused TPW, after bias
correction, effectively reduced abnormal values over lake re-
gions such as Qinghai Lake compared to MIMIC-TPW2.
Compared with ERAS TPW, the spatial resolution of the
fused TPW is improved by approximately 12.5 times, en-
abling a clearer depiction of water vapor gradients and trans-
port pathways in complex terrain. During episodes of en-
hanced moisture transport, the fused TPW effectively cap-
tured local moisture buildup in the Yarlung Zsangbo River

Earth Syst. Sci. Data, 18, 371-395, 2026


https://doi.org/10.11888/Atmos.tpdc.301518

392

Canyon and clearly depicted the associated vapor transport
pathways.

The high-resolution TPW dataset developed in this study
can be applied to the estimation of water vapor flux, wa-
ter balance analysis, heavy precipitation forecasting, and re-
gional water resource monitoring over the TP. In the fu-
ture, by incorporating multi-geostationary satellite network
observations, the proposed algorithm can be extended to
global hourly TPW reconstruction at kilometer-scale resolu-
tion, providing essential data support for the refined monitor-
ing of large-scale weather systems, the analysis of convective
system evolution, and global water cycle research.
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