Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-345-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-18-345-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comprehensive rock glacier inventory for the Peruvian Andes (PRoGI): dataset, characterization and topoclimatic attributes
Katy Medina
CORRESPONDING AUTHOR
Research Center for Environmental Earth Science and Technology (ESAT), Santiago Antunez de Mayolo National University (UNASAM), Huaraz, 02002, Peru
Faculty of Environmental Sciences, Santiago Antunez de Mayolo National University (UNASAM), Huaraz, 02002, Peru
Departamento de Geografí, Universidad Complutense de Madrid, 28040 Madrid, Spain
Hairo León
Research Center for Environmental Earth Science and Technology (ESAT), Santiago Antunez de Mayolo National University (UNASAM), Huaraz, 02002, Peru
Faculty of Environmental Sciences, Santiago Antunez de Mayolo National University (UNASAM), Huaraz, 02002, Peru
Edwin Badillo-Rivera
Research Center for Environmental Earth Science and Technology (ESAT), Santiago Antunez de Mayolo National University (UNASAM), Huaraz, 02002, Peru
Faculty of Environmental Engineering and Natural Resources, National University of Callao, Bellavista, 07011, Peru
Research Center Climate Change and Disaster Risk Management, National University of Callao, Bellavista, 07011, Peru
Edwin Loarte
Research Center for Environmental Earth Science and Technology (ESAT), Santiago Antunez de Mayolo National University (UNASAM), Huaraz, 02002, Peru
Faculty of Environmental Sciences, Santiago Antunez de Mayolo National University (UNASAM), Huaraz, 02002, Peru
Xavier Bodín
Laboratoire EDYTEM, Université Savoie Mont Blanc, CNRS, Le Bourget-du-Lac, 73370, France
José Úbeda
Departamento de Geografí, Universidad Complutense de Madrid, 28040 Madrid, Spain
Departamento de Ciencias de la Tierra, Guías de Espeleología y Montaña, Casilla del Mortero, 28189 Torremocha de Jarama, Spain
Related authors
No articles found.
Melanie Stammler, Jan Blöthe, Diego Cusicanqui, Simon Ebert, Rainer Bell, Xavier Bodin, and Lothar Schrott
EGUsphere, https://doi.org/10.5194/egusphere-2025-4630, https://doi.org/10.5194/egusphere-2025-4630, 2025
Short summary
Short summary
Dry Andean (debris-covered) glaciers and rock glaciers are essential to river runoff by contributing meltwaters in this extremely arid area. We quantify surface lowering for 19 glaciers and 3 debris-covered glaciers, and unchanged velocities for 47 rock glaciers in a ground-truthed and Pléiades satellite imagery based integrative glacier-permafrost study on catchment-scale for 2019-2025. For this period, our findings indicate glacial decline next to permafrost stability.
Diego Cusicanqui, Pascal Lacroix, Xavier Bodin, Benjamin Aubrey Robson, Andreas Kääb, and Shelley MacDonell
The Cryosphere, 19, 2559–2581, https://doi.org/10.5194/tc-19-2559-2025, https://doi.org/10.5194/tc-19-2559-2025, 2025
Short summary
Short summary
This study presents a robust methodological approach to detect and analyse rock glacier kinematics using Landsat 7/Landsat 8 imagery. In the semiarid Andes, 382 landforms were monitored, showing an average velocity of 0.37 ± 0.07 m yr⁻¹ over 24 years, with rock glaciers moving 23 % faster. Results demonstrate the feasibility of using medium-resolution optical imagery, combined with radar interferometry, to monitor rock glacier kinematics with widely available satellite datasets.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Benjamin Lehmann, Robert S. Anderson, Xavier Bodin, Diego Cusicanqui, Pierre G. Valla, and Julien Carcaillet
Earth Surf. Dynam., 10, 605–633, https://doi.org/10.5194/esurf-10-605-2022, https://doi.org/10.5194/esurf-10-605-2022, 2022
Short summary
Short summary
Rock glaciers are some of the most frequently occurring landforms containing ice in mountain environments. Here, we use field observations, analysis of aerial and satellite images, and dating methods to investigate the activity of the rock glacier of the Vallon de la Route in the French Alps. Our results suggest that the rock glacier is characterized by two major episodes of activity and that the rock glacier system promotes the maintenance of mountain erosion.
Jonathan Oberreuter, Edwin Badillo-Rivera, Edwin Loarte, Katy Medina, Alejo Cochachin, and José Uribe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-336, https://doi.org/10.5194/essd-2021-336, 2022
Manuscript not accepted for further review
Short summary
Short summary
We present a representative set of data of interpreted ice thickness and ice surface elevation of the ablation area of the Artesonraju glacier between 2012 and 2020. The results show a maximum depth of 235 ± 18 m and a decreasing mean depth ranging from 134 ± 18 m in 2013 to 110 ± 18 m in 2020. Additionally, we estimate a mean ice thickness change rate of −4.2 ± 3.2 m yr−1 between 2014 and 2020, which is in agreement with the elevation change in the same period of −3.2 ± 0.2 m yr−1.
Antoine Guillemot, Laurent Baillet, Stéphane Garambois, Xavier Bodin, Agnès Helmstetter, Raphaël Mayoraz, and Eric Larose
The Cryosphere, 15, 501–529, https://doi.org/10.5194/tc-15-501-2021, https://doi.org/10.5194/tc-15-501-2021, 2021
Short summary
Short summary
Among mountainous permafrost landforms, rock glaciers are composed of boulders, fine frozen materials, water and ice in various proportions. Displacement rates of active rock glaciers can reach several m/yr, contributing to emerging risks linked to gravitational hazards. Thanks to passive seismic monitoring, resonance effects related to seasonal freeze–thawing processes of the shallower layers have been monitored and modeled. This method is an accurate tool for studying rock glaciers at depth.
Cited articles
Abdullah, T. and Romshoo, S. A.: A Comprehensive Inventory, Characterization, and Analysis of Rock Glaciers in the Jhelum Basin, Kashmir Himalaya, Using High-Resolution Google Earth Data, Water, 16, 2327, https://doi.org/10.3390/w16162327, 2024.
Aguilar-Lome, J., Espinoza-Villar, R., Espinoza, J. C., Rojas-Acuña, J., Willems, B. L., and Leyva-Molina, W. M.: Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000–2017), Int. J. Appl. Earth Obs. Geoinf., 77, 119–128, https://doi.org/10.1016/j.jag.2018.12.013, 2019.
Ahumada, A., Ibáñez, G., Toledo, M., Carilla, J., and Páez, S.: El permafrost reptante, inventario y verificación en las cabeceras del río Bermejo, Geoacta, 39, 123–137, 2014.
ANA: Map of hydrographic basins of Peru, Lima, https://www.ana.gob.pe/normatividad/7-mapa-hidrografico-del-peru-0 (last access: 8 December 2025), 2003.
Andrés, N., Palacios, D., Úbeda, J., and Alcalá, J.: Ground thermal conditions at Chachani volcano, southern Peru, Geogr. Ann. Ser. A Phys. Geogr., 93, 151–162, https://doi.org/10.1111/j.1468-0459.2011.00424.x, 2011.
Azocar, G.: Modeling of Permafrost Distribution in the Semi-arid Chilean Andes, University of Waterloo, 160 pp., https://uwspace.uwaterloo.ca/items/7d414b75-235c-4839-a40e-949e67afb4d1 (last access: 8 December 2025), 2013.
Azócar, G. F. and Brenning, A.: Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27° −33° S), Permafrost Periglac. Process., 21, 42–53, https://doi.org/10.1002/ppp.669, 2010.
Badillo-Rivera, E., Loarte, E., Medina, K., Bodin, X., Azócar, G., and Cusicanqui, D.: An Estimation of Past and Present Air Temperature Conditions, Water Equivalent, and Surface Velocity of Rock Glaciers in Cordillera Volcanica, Peru, in: Permafrost 2021, 105–116, https://doi.org/10.1061/9780784483589.010, 2021.
Baroni, C., Carton, A., and Seppi, R.: Distribution and behaviour of rock glaciers in the Adamello-Presanella massif (Italian Alps), Permafrost Periglac. Process., 15, 243–259, https://doi.org/10.1002/ppp.497, 2004.
Barsch, D.: Rockglaciers: Indicators for the present and former geoecology in high mountain environments, edited by: Douglas, I. and Marcus, M., Springer Series, Berlin, 175 pp., https://doi.org/10.1007/978-3-642-80093-1_11, 1996.
Bhat, I. A., Rashid, I., Ramsankaran, R., Banerjee, A., and Vijay, S.: Inventorying rock glaciers in the Western Himalaya, India, and assessing their hydrological significance, Geomorphology, 471, 109514, https://doi.org/10.1016/j.geomorph.2024.109514, 2025.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 1–11, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Bland, J. M. and Altman, D. G.: Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, 327, 307–310, 1986.
Bonshoms, M., Álvarez-Garcia, F. J., Ubeda, J., Cabos, W., Quispe, K., and Liguori, G.: Dry season circulation-type classification applied to precipitation and temperature in the Peruvian Andes, Int. J. Climatol., 1–19, https://doi.org/10.1002/joc.6593, 2020.
Brardinoni, F., Scotti, R., Sailer, R., and Mair, V.: Evaluating sources of uncertainty and variability in rock glacier inventories, Earth Surf. Process. Landforms, 44, 2450–2466, https://doi.org/10.1002/esp.4674, 2019.
Brenning, A.: Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33-35° S), Permafrost Periglac. Process., 16, 231–240, https://doi.org/10.1002/ppp.528, 2005.
Brighenti, S., Hotaling, S., Finn, D. S., Fountain, A. G., Hayashi, M., Herbst, D., Saros, J. E., Tronstad, L. M., and Millar, C. I.: Rock glaciers and related cold rocky landforms: Overlooked climate refugia for mountain biodiversity, Glob. Change Biol., 27, 1504–1517, https://doi.org/10.1111/gcb.15510, 2021.
Charbonneau, A. A. and Smith, D. J.: An inventory of rock glaciers in the central British Columbia Coast Mountains, Canada, from high resolution Google Earth imagery, Arct. Antarct. Alp. Res., 50, https://doi.org/10.1080/15230430.2018.1489026, 2018.
Colucci, R. R., Boccali, C., Žebre, M., and Guglielmin, M.: Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps, Elsevier B.V., 112–121, https://doi.org/10.1016/j.geomorph.2016.06.039, 2016.
DGA: Inventario Público de Glaciares 2022, Santiago de Chile, https://dga.mop.gob.cl/inventario-publico-glaciares (last access: 8 December 2025), 2022.
Drewes, J., Moreiras, S., and Korup, O.: Permafrost activity and atmospheric warming in the Argentinian Andes, Geomorphology, 323, 13–24, https://doi.org/10.1016/j.geomorph.2018.09.005, 2018.
Esper Angillieri, M. Y.: Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites, J. South Am. Earth Sci., 73, 42–49, https://doi.org/10.1016/j.jsames.2016.12.002, 2017.
Falaschi, D., Castro, M., Masiokas, M., Tadono, T., and Ahumada, A. L.: Rock Glacier Inventory of the Valles Calchaquíes Region (∼ 25° S), Salta, Argentina, Derived from ALOS Data, Permafrost Periglac. Process., 25, 69–75, https://doi.org/10.1002/ppp.1801, 2014.
Falaschi, D., Tadono, T., and Masiokas, M.: Rock Glaciers in the Patagonian Andes: An Inventory for the Monte San Lorenzo (Cerro Cochrane) Massif, 47° S, Geogr. Ann. Ser. A Phys. Geogr., 97, 769–777, https://doi.org/10.1111/geoa.12113, 2015.
Falaschi, D., Masiokas, M., Tadono, T., and Couvreux, F.: ALOS-derived glacier and rock glacier inventory of the Volcán Domuyo region (∼ 36° S), southernmost Central Andes, Argentina, Z. Geomorphol., 60, 195–208, https://doi.org/10.1127/zfg/2016/0319, 2016.
French, H.: The Periglacial Environment, 4th Edn., John Wiley & Sons, Ltd, ISBN 978-1-119-13278-3, 2017.
García, A., Ulloa, C., Amigo, G., Milana, J. P., and Medina, C.: An inventory of cryospheric landforms in the arid diagonal of South America (high Central Andes, Atacama region, Chile), Quaternary Int., 438, 4–19, https://doi.org/10.1016/j.quaint.2017.04.033, 2017.
Garreaud, R. D.: The Andes climate and weather, Adv. Geosci., 22, 3–11, https://doi.org/10.5194/adgeo-22-3-2009, 2009.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Haeberli, W., Kääb, A., Wagner, S., Vonder Mühll, D., Geissler, P., Haas, J. N., Glatzel-Mattheier, H., and Wagenbach, D.: Pollen analysis and 14C age of moss remains in a permafrost core recovered from the active rock glacier Murtèl-Corvatsch, Swiss Alps: geomorphological and glaciological implications, Journal of Glaciology, 45, 1–8, https://doi.org/10.3189/S0022143000002975, 1999.
Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to landslides from degrading permafrost into new lakes in deglaciating mountain ranges, Geomorphology, 293, 405–417, https://doi.org/10.1016/j.geomorph.2016.02.009, 2017.
Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto Liaudat, D., Hilbich, C., Hauck, C., and Schrott, L.: Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, 2021.
Haq, M. A. and Baral, P.: Study of permafrost distribution in Sikkim Himalayas using Sentinel-2 satellite images and logistic regression modelling, Geomorphology, 333, 123–136, https://doi.org/10.1016/j.geomorph.2019.02.024, 2019.
Harrison, S., Whalley, B., and Anderson, E.: Relict rock glaciers and protalus lobes in the British Isles: implications for Late Pleistocene mountain geomorphology and palaeoclimate, J. Quaternary Sci., 23, 287–304, https://doi.org/10.1002/jqs.1148, 2008.
Humlum, O.: Rock glacier types on Disko,Central West Greenland, Geogr. Tidsskr. J. Geogr., 82, 59–66, https://doi.org/10.1080/00167223.1982.10649152, 1982.
IANIGLA: Resumen ejecutivo de los resultados del Inventario Nacional de Glaciares, Buenos Aires, 27 pp., https://www.glaciaresargentinos.gob.ar/wp-content/uploads/resultados_finales/informe_resumen_ejecutivo_APN_11-05-2018.pdf (last access: 8 December 2025), 2018.
IGN: Límites departamentales referenciales, Lima, https://datosabiertos.gob.pe/dataset/limites-departamentales (last access: 8 December 2025, 2023.
INAIGEM: Memoria descriptiva del Inventario Nacional de Glaciares y Laguna de Origen Glaciar del Perú, Huaraz, 187 pp., https://repositorio.inaigem.gob.pe/items/7029db53-5118-4e93-8b2a-71e6e26db5f6 (last access: 10 November 2025), 2023.
INGEMMET: Mapa Geológico del Perú a escala 1:1 000 000, Lima, https://portal.ingemmet.gob.pe/web/guest/mapa-geologico-nacional (last access: 10 November 2025), 2022.
IPCC: Global Warming of 1.5 °C, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, P., Sukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., Cambridge University Press, 631 pp., https://doi.org/10.1017/9781009157940, 2022.
Janke, J. R.: Colorado front range rock glaciers: Distribution and topographic characteristics, Arct. Antarct. Alp. Res., 39, 74–83, https://doi.org/10.1657/1523-0430(2007)39[74:CFRRGD]2.0.CO;2, 2007.
Janke, J. R., Ng, S., and Bellisario, A.: An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile, Geomorphology, https://doi.org/10.1016/j.geomorph.2017.09.002, 2017.
Jones, D. B., Harrison, S., Anderson, K., and Betts, R. A.: Mountain rock glaciers contain globally significant water stores, Sci. Rep., 8, 2834, https://doi.org/10.1038/s41598-018-21244-w, 2018a.
Jones, D. B., Harrison, S., Anderson, K., Selley, H. L., Wood, J. L., and Betts, R. A.: The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya, Glob. Planet. Change, 160, 123–142, https://doi.org/10.1016/j.gloplacha.2017.11.005, 2018b.
Jones, D. B., Harrison, S., Anderson, K., Shannon, S., and Betts, R. A.: Rock glaciers represent hidden water stores in the Himalaya, Sci. Total Environ., 145368, https://doi.org/10.1016/j.scitotenv.2021.145368, 2021.
Jorgenson, M. T., Romanovsky, V., Harden, J., Shur, Y., O'Donnell, J., Schuur, E. A. G., Kanevskiy, M., and Marchenko, S.: Resilience and vulnerability of permafrost to climate change, Can. J. For. Res., 40, 1219–1236, https://doi.org/10.1139/X10-060, 2010.
Kääb, A., Strozzi, T., Bolch, T., Caduff, R., Trefall, H., Stoffel, M., and Kokarev, A.: Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s, The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, 2021.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high resolution for the earth's land surface areas, Sci. Data, 4, 170122, https://doi.org/10.1038/sdata.2017.122, 2017.
Kellerer-Pirklbauer, A., Lieb, G. K., and Kleinferchner, H.: A new rock glacier inventory of the eastern European Alps, Austrian J. Earth Sci., 105, 78–93, 2012.
Krainer, K. and Ribis, M.: A rock glacier inventory of the tyrolean alps (Austria), Austrian J. Earth Sci., 105, 32–47, 2012.
León, H., Medina, K., Loarte, E., Azócar, G., Iribarren, P., and Huggel, C.: Mountain Permafrost in the Tropical Andes of Peru: The 0 °C Isotherm as a Potential Indicator, in: Permafrost 2021, 117–129, https://doi.org/10.1061/9780784483589.011, 2021.
Marcer, M., Bodin, X., Brenning, A., Schoeneich, P., Charvet, R., and Gottardi, F.: Permafrost Favorability Index: Spatial Modeling in the French Alps Using a Rock Glacier Inventory, Front. Earth Sci., 5, 1–17, https://doi.org/10.3389/feart.2017.00105, 2017.
Matthews, J., Shakesby, R., Owen, G., and Vater, A.: Pronival rampart formation in relation to snow-avalanche activity and Schmidt-hammer exposure-age dating (SHD): Three case studies from southern Norway, Geomorphology, 130, 280–288, https://doi.org/10.1016/j.geomorph.2011.04.010, 2011.
Medina, K., León, H., Badillo-Rivera, E., Loarte, E., Bodin, X., and Úbeda, J.: Geomorphological and topoclimatic characteristics of the Peruvian Andes Rock Glacier Inventory (PRoGI), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.983295, 2025a.
Medina, K., León, H., Badillo-Rivera, E., Loarte, E., Bodin, X., and Úbeda, J.: Peruvian Andes Rock Glacier Inventory (PRoGI) geopackage, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.983251, 2025b.
Obu, J., Westermann, S., Kääb, A., and Bartsch, A.: Ground Temperature Map, 2000–2016, Andes, New Zealand and East African Plateau Permafrost, PANGEA [data set], https://doi.org/10.1594/PANGAEA.905512, 2019.
Palacios, D., Hughes, P. D., García-Ruiz, J. M., and Andrés, N.: The Quaternary ice ages, In European Glacial Landscapes, Elsevier, 9–18, https://doi.org/10.1016/B978-0-12-823498-3.00006-6, 2022.
Pandey, P.: Inventory of rock glaciers in Himachal Himalaya, India using high-resolution Google Earth imagery, Geomorphology, 340, 103–115, https://doi.org/10.1016/j.geomorph.2019.05.001, 2019.
Perucca, L. and Esper Angillieri, M. Y.: Glaciers and rock glaciers' distribution at 28° SL, Dry Andes of Argentina, and some considerations about their hydrological significance, Environ. Earth Sci., 64, 2079–2089, https://doi.org/10.1007/s12665-011-1030-z, 2011.
Rangecroft, S., Harrison, S., Anderson, K., Magrath, J., Castel, A. P., and Pacheco, P.: A First Rock Glacier Inventory for the Bolivian Andes, Permafrost Periglac. Process., 25, 333–343, https://doi.org/10.1002/ppp.1816, 2014.
Rangecroft, S., Harrison, S., and Anderson, K.: Rock Glaciers as Water Stores in the Bolivian Andes: An Assessment of Their Hydrological Importance, Arct. Antarct. Alp. Res., 47, 89–98, https://doi.org/10.1657/AAAR0014-029, 2015.
RGIK: Guidelines for inventorying rock glaciers: baseline and practical concepts (version 1.0), Friburgo, 26 pp., https://doi.org/10.51363/unifr.srr.2023.002, 2023.
Robson, B. A., Bolch, T., MacDonell, S., Hölbling, D., Rastner, P., and Schaffer, N.: Automated detection of rock glaciers using deep learning and object-based image analysis, Remote Sens. Environ., 250, 112033, https://doi.org/10.1016/j.rse.2020.112033, 2020.
Roer, I., Kääb, A., and Dikau, R.: Rockglacier acceleration in the Turtmann valley (Swiss Alps): Probable controls, Nor. Geogr. Tidsskr., 59, 157–163, https://doi.org/10.1080/00291950510020655, 2005.
Rosenqvist, A., Shimada, M., Ito, N., and Watanabe, M.: ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment, IEEE Trans. Geosci. Remote Sens., 45, 3307–3316, https://doi.org/10.1109/TGRS.2007.901027, 2007.
Sagredo, E. A. and Lowell, T. V.: Climatology of Andean glaciers: A framework to understand glacier response to climate change, Glob. Planet. Change, 86–87, 101–109, https://doi.org/10.1016/j.gloplacha.2012.02.010, 2012.
Sattler, K.: Periglacial preconditioning of debris flows in the Southern Alps, New Zealand, 276 pp., https://doi.org/10.1007/978-3-642-35133-4, 2016.
Scapozza, C., Lambiel, C., Baron, L., Marescot, L., and Reynard, E.: Internal structure and permafrost distribution in two alpine periglacial talus slopes, Valais, Swiss Alps, Geomorphology, 132, 208-221, https://doi.org/10.1016/j.geomorph.2011.05.010, 2011.
Schaffer, N., MacDonell, S., Réveillet, M., Yáñez, E., and Valois, R.: Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes, Reg. Environ. Chang., 19, 1263–1279, https://doi.org/10.1007/s10113-018-01459-3, 2019.
Scotti, R., Brardinoni, F., Alberti, S., Frattini, P., and Crosta, G. B.: A regional inventory of rock glaciers and protalus ramparts in the central Italian Alps, Geomorphology, 186, 136–149, https://doi.org/10.1016/j.geomorph.2012.12.028, 2013.
Scotti, R., Mair, V., Costantini, D., and Brardinoni F.: A high-resolution rock glacier inventory of South Tyrol: Evaluating lithologic, topographic, and climatic effects, in: 12th International Conference on Permafrost, 16-2-0 June 2024, International Permafrost Association, 382–389, https://doi.org/10.52381/ICOP2024.176.1
Sun, Z., Hu, Y., Racoviteanu, A., Liu, L., Harrison, S., Wang, X., Cai, J., Guo, X., He, Y., and Yuan, H.: TPRoGI: a comprehensive rock glacier inventory for the Tibetan Plateau using deep learning, Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024, 2024.
Tielidze, L. G., Cicoira, A., Nosenko, G. A., and Eaves, S. R.: The First Rock Glacier Inventory for the Greater Caucasus, Geosciences, 13, 117, https://doi.org/10.3390/geosciences13040117, 2023.
Van Everdingen, R.: Multi-language glossary of permafrost and related ground-ice terms in Chinese, English, French, German, Icelandic, Italian, Norwegian, polish, Romanian, Russian, Spanish, and Swedish, International Permafrost Association, Terminology Working Group, https://ucalgary.primo.exlibrisgroup.com/permalink/01UCALG_INST/1j63de0/alma991003184839704336 (last access: 8 December 2025), 1998.
Veettil, B. K., Wang, S., Simões, J. C., Ruiz Pereira, S. F., and de Souza, S. F.: Regional climate forcing and topographic influence on glacier shrinkage: eastern cordilleras of Peru, Int. J. Climatol., 38, 979–995, https://doi.org/10.1002/joc.5226, 2018.
Vuille, M., Carey, M., Huggel, C., Buytaert, W., Rabatel, A., Jacobsen, D., Soruco, A., Villacis, M., Yarleque, C., Elison Timm, O., Condom, T., Salzmann, N., and Sicart, J.-E.: Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead, Earth-Sci. Rev., 176, 195–213, https://doi.org/10.1016/j.earscirev.2017.09.019, 2018.
Wirz, V., Gruber, S., Purves, R. S., Beutel, J., Gärtner-Roer, I., Gubler, S., and Vieli, A.: Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions, Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, 2016.
Yoshikawa, K., Úbeda, J., Masías, P., Pari, W., Apaza, F., Vasquez, P., Ccallata, B., Concha, R., Luna, G., Iparraguirre, J., Ramos, I., De la Cruz, G., Cruz, R., Pellitero, R., and Bonshoms, M.: Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO), Permafrost Periglac. Process., 1–12, https://doi.org/10.1002/ppp.2064, 2020.
Short summary
We created the first comprehensive inventory of Peru's rock glaciers: 2338 landforms in the Andes and filling the information gap in this mountainous region. Using satellite imagery, we mapped their distribution, finding most of them in southern Peru, above 4800 m a.s.l. and conditioned mainly by low temperature and precipitation. This dataset helps scientists to follow the evolution of permafrost and local planners to manage water resources and risks in the mountains.
We created the first comprehensive inventory of Peru's rock glaciers: 2338 landforms in the...
Altmetrics
Final-revised paper
Preprint