Articles | Volume 17, issue 12
https://doi.org/10.5194/essd-17-7359-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-7359-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Western United States MTBS-Interagency database of large wildfires, 1984–2024 (WUMI2024a)
A. Park Williams
CORRESPONDING AUTHOR
Department of Geography, University of California, Los Angeles, CA, USA
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
Caroline S. Juang
Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
Karen C. Short
USDA Forest Service, Rocky Mountain Research Station, Missoula, MT, USA
Related authors
A. Park Williams, Winslow D. Hansen, Caroline S. Juang, John T. Abatzoglou, Volker C. Radeloff, Bowen Wang, Jazlynn Hall, Jatan Buch, and Gavin D. Madakumbura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2934, https://doi.org/10.5194/egusphere-2025-2934, 2025
Short summary
Short summary
The new WULFFSS is a monthly gridded forest-fire model to simulate forest fires across the western United States in response to vegetation, topographic, anthropogenic, and climate factors. This effort is motivated by the ten-fold increase in western U.S. annual forest area burned over the past 40 years. The WULFFSS is highly skillful, accounting for over 80 % of the observed variability in annual forest-fire area and capturing observed spatial, intra-annual variations, and trends.
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
A. Park Williams, Winslow D. Hansen, Caroline S. Juang, John T. Abatzoglou, Volker C. Radeloff, Bowen Wang, Jazlynn Hall, Jatan Buch, and Gavin D. Madakumbura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2934, https://doi.org/10.5194/egusphere-2025-2934, 2025
Short summary
Short summary
The new WULFFSS is a monthly gridded forest-fire model to simulate forest fires across the western United States in response to vegetation, topographic, anthropogenic, and climate factors. This effort is motivated by the ten-fold increase in western U.S. annual forest area burned over the past 40 years. The WULFFSS is highly skillful, accounting for over 80 % of the observed variability in annual forest-fire area and capturing observed spatial, intra-annual variations, and trends.
Yavar Pourmohamad, John T. Abatzoglou, Erin J. Belval, Erica Fleishman, Karen Short, Matthew C. Reeves, Nicholas Nauslar, Philip E. Higuera, Eric Henderson, Sawyer Ball, Amir AghaKouchak, Jeffrey P. Prestemon, Julia Olszewski, and Mojtaba Sadegh
Earth Syst. Sci. Data, 16, 3045–3060, https://doi.org/10.5194/essd-16-3045-2024, https://doi.org/10.5194/essd-16-3045-2024, 2024
Short summary
Short summary
The FPA FOD-Attributes dataset provides > 300 biological, physical, social, and administrative attributes associated with > 2.3×106 wildfire incidents across the US from 1992 to 2020. The dataset can be used to (1) answer numerous questions about the covariates associated with human- and lightning-caused wildfires and (2) support descriptive, diagnostic, predictive, and prescriptive wildfire analytics, including the development of machine learning models.
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
Nadine Borduas-Dedekind, Karen C. Short, and Samuel P. Carlson
Earth Syst. Sci. Data, 15, 1437–1440, https://doi.org/10.5194/essd-15-1437-2023, https://doi.org/10.5194/essd-15-1437-2023, 2023
Short summary
Short summary
This article describes the use of the open-discussion manuscript review process as an educational exercise for early career scientists.
Cited articles
Abatzoglou, J. T., Battisti, D. S., Williams, A. P., Hansen, W. D., Harvey, B. J., and Kolden, C. A.: Projected increases in western US forest fire despite growing fuel constraints, Communications Earth & Environment, 2, 1–8, https://doi.org/10.1038/s43247-021-00299-0, 2021.
Balch, J. K., St Denis, L. A., Mahood, A. L., Mietkiewicz, N. P., Williams, T. M., McGlinchy, J., and Cook, M. C.: FIRED (Fire Events Delineation): An Open, Flexible Algorithm and Database of US Fire Events Derived from the MODIS Burned Area Product (2001–2019), Remote Sensing, 12, 3498, https://doi.org/10.3390/rs12213498, 2020.
Bryant, B. P. and Westerling, A. L.: Scenarios for future wildfire risk in California: links between changing demography, land use, climate, and wildfire, Environmetrics, 25, 454–471, https://doi.org/10.1002/env.2280, 2014.
Chen, Y., Hantson, S., Andela, N., Coffield, S. R., Graff, C. A., Morton, D. C., Ott, L. E., Foufoula-Georgiou, E., Smyth, P., Goulden, M. L., and Randerson, J. T.: California wildfire spread derived using VIIRS satellite observations and an object-based tracking system, Scientific data, 9, 249, https://doi.org/10.1038/s41597-022-01343-0, 2022.
Coop, J. D., DeLory, T. J., Downing, W. M., Haire, S. L., Krawchuk, M. A., Miller, C., Parisien, M.-A., and Walker, R. B.: Contributions of fire refugia to resilient ponderosa pine and dry mixed-conifer forest landscapes, Ecosphere, 10, e02809, https://doi.org/10.1002/ecs2.2809, 2019.
Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B., and Howard, S.: A project for monitoring trends in burn severity, Fire Ecol., 3, 3–21, https://doi.org/10.4996/fireecology.0301003, 2007.
Giglio, L., Schroeder, W., and Justice, C. O.: The collection 6 MODIS active fire detection algorithm and fire products, Remote Sens. Environ., 178, 31–41, https://doi.org/10.1016/j.rse.2016.02.054, 2016.
Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Archibald, S., Mouillot, F., Arnold, S. R., Artaxo, P., Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler, T., Kaplan, J. O., Kloster, S., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Meyn, A., Sitch, S., Spessa, A., van der Werf, G. R., Voulgarakis, A., and Yue, C.: The status and challenge of global fire modelling, Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, 2016.
Hawbaker, T. J., Vanderhoof, M. K., Beal, Y.-J., Takacs, J. D., Schmidt, G. L., Falgout, J. T., Williams, B., Fairaux, N. M., Caldwell, M. K., Picotte, J. J., Howard, S. M., Stitt, S., and Dwyer, J. L.: Mapping burned areas using dense time-series of Landsat data, Remote Sensing of Environment, 198, 504–522, https://doi.org/10.1016/j.rse.2017.06.027, 2017.
He, K., Shen, X., and Anagnostou, E. N.: A global forest burn severity dataset from Landsat imagery (2003–2016), Earth Syst. Sci. Data, 16, 3061–3081, https://doi.org/10.5194/essd-16-3061-2024, 2024.
Hurteau, M. D., Liang, S., Westerling, A. L., and Wiedinmyer, C.: Vegetation-fire feedback reduces projected area burned under climate change, Sci. Rep.-UK, 9, 2838, https://doi.org/10.1038/s41598-019-39284-1, 2019.
Jorge, A. L., Abatzoglou, J. T., Fleishman, E., Williams, E. L., Rupp, D. E., Jenkins, J. S., Sadegh, M., Kolden, C. A., and Short, K. C.: COVID-19 fueled an elevated number of human-caused ignitions in the western United States during the 2020 wildfire season, Earth's Future, 13, e2024EF005744, https://doi.org/10.1029/2024EF005744, 2025.
Juang, C. S. and Williams, A. P.: Western US MTBS-Interagency (WUMI) wildfire dataset (2), Dryad [data set], https://doi.org/10.5061/dryad.sf7m0cg72, 2024.
Juang, C. S., Williams, A. P., Abazoglou, J. T., Balch, J. K., Hurteau, M. D., and Moritz, M. A.: Rapid growth of large forest fires drives the exponential response of annual forest-fire area to aridity in the western United States, Geophys. Res. Lett., 49, e2021GL097131, https://doi.org/10.1029/2021GL097131, 2022.
Keeley, J. E. and Syphard, A. D.: Climate change and future fire regimes: examples from California, Geosciences, 6, 37, https://doi.org/10.3390/geosciences6030037, 2016.
Krawchuk, M. A., Meigs, G. W., Cartwright, J. M., Coop, J. D., Davis, R., Holz, A., Kolden, C., and Meddens, A. J. H.: Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks, Frontiers in Ecology and the Environment, 18, 235–244, https://doi.org/10.1002/fee.2190, 2020.
Lizundia-Loiola, J., Franquesa, M., Boettcher, M., Kirches, G., Pettinari, M. L., and Chuvieco, E.: Implementation of the burned area component of the Copernicus climate change service: from MODIS to OLCI data, Remote Sensing, 13, 4295, https://doi.org/10.3390/rs13214295, 2021.
McKenzie, D. and Littell, J. S.: Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA?, Ecological Applications, 27, 26–36, https://doi.org/10.1002/eap.1420, 2017.
Parks, S. A., Miller, C., Abatzoglou, J. T., Holsinger, L. M., Parisien, M.-A., and Dobrowski, S. Z.: How will climate change affect wildland fire severity in the western US?, Environmental Research Letters, 11, 035002, https://doi.org/10.1088/1748-9326/11/3/035002, 2016.
Parks, S. A., Holsinger, L. M., Miller, C., and Parisien, M.-A.: Analog-based fire regime and vegetation shifts in mountainous regions of the western US, Ecography, 41, 910–921, https://doi.org/10.1111/ecog.03378, 2018.
Parks, S. A., Holsinger, L. M., Koontz, M. J., Collins, L., Whitman, E., Parisien, M.-A., Loehman, R. A., Barnes, J. L., Bourdon, J.-F., and Boucher, J.: Giving ecological meaning to satellite-derived fire severity metrics across North American forests, Remote Sensing, 11, 1735, https://doi.org/10.3390/rs11141735, 2019.
Ruefenacht, B., Finco, M. V., Nelson, M. D., Czaplewski, R., Helmer, E. H., Blackard, J. A., Holden, G. R., Lister, A. J., Salajanu, D., and Weyermann, D.: Conterminous US and Alaska forest type mapping using forest inventory and analysis data, Photogrammetric Engineering & Remote Sensing, 74, 1379–1388, https://doi.org/10.14358/PERS.74.11.1379, 2008.
Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment, Remote Sensing of Environment, 143, 85–96, https://doi.org/10.1016/j.rse.2013.12.008, 2014.
Short, K. C.: A spatial database of wildfires in the United States, 1992–2011, Earth Syst. Sci. Data, 6, 1–27, https://doi.org/10.5194/essd-6-1-2014, 2014.
Short, K. C.: Spatial wildfire occurrence data for the United States, 1992–2020 [FPA_FOD_20221014], 6th Edition, Fort Collins, CO, Forest Service Research Data Archive [data set], https://doi.org/10.2737/RDS-2013-0009.6, 2022.
St. Denis, L. A., Short, K. C., McConnell, K., Cook, M. C., Mietkiewicz, N. P., Buckland, M., and Balch, J. K.: All-hazards dataset mined from the US National Incident Management System 1999–2020, Scientific data, 10, 112, https://doi.org/10.1038/s41597-023-01955-0, 2023.
USGS: Annual National Land Cover Database (NLCD) Collection 1.0, U.S. Geological Survey data release [data set], https://doi.org/10.5066/P94UXNTS, 2024.
Welty, J. L. and Jeffries, M. I.: Combined wildland fire datasets for the United States and certain territories, 1800s–Present, U.S. Geological Survey data release [data set], https://doi.org/10.5066/P9ZXGFY3, 2021.
Westerling, A. L.: Wildfire Simulations for California's Fourth Climate Change Assessment: Projecting Changes in Extreme Wildfire Events with a Warming Climate, California Energy Commission, https://www.energy.ca.gov/sites/default/files/2019-11/Projections_CCCA4-CEC-2018-014_ADA.pdf (last access: 13 December 2025), 2018.
Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., and Ryan, M. G.: Continued warming could transform Greater Yellowstone fire regimes by mid-21st century, Proceedings of the National Academy of Sciences USA, 108, 13165–13170, https://doi.org/10.1073/pnas.1110199108, 2011.
Williams, A. P. and Abatzoglou, J. T.: Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity, Current Climate Change Reports, 2, 1–14, https://doi.org/10.1007/s40641-016-0031-0, 2016.
Williams, A. P., Livneh, B., McKinnon, K. A., Hansen, W. D., Mankin, J. S., Cook, B. I., Smerdon, J. E., Varuolo-Clarke, A. M., Bjarke, N. R., and Juang, C. S.: Growing impact of wildfire on western US water supply, Proc. Nat. Acad. Sci. USA, 119, e2114069119, https://doi.org/10.1073/pnas.2114069119, 2022.
Williams, A. P., Juang, C. S., and Short, K. C.: The western united States MTBS-Interagency database of large wildfires, 1984–2024 (WUMI2024a) (2024a), Dryad [data set], https://doi.org/10.5061/dryad.63xsj3vd4, 2025a.
Williams, P., Juang, C., and Short, K.: The Western United States MTBS-Interagency Database of Large Wildfires, 1984–2024 (WUMI2024a), Zenodo [code], https://doi.org/10.5281/zenodo.17298252, 2025b.
Short summary
The Western United States MTBS-Interagency Database of Large Wildfires, 1984–2024 (WUMI2024a) represents more than 22000 large (≥1 km2) wildfires in the western United States from 1984 through 2024, including maps of fire perimeters and areas burned. It was compiled from seven government datasets and quality controlled. This dataset will aid research on the causes and effects of wildfire in a changing world.
The Western United States MTBS-Interagency Database of Large Wildfires, 1984–2024 (WUMI2024a)...
Altmetrics
Final-revised paper
Preprint