Articles | Volume 17, issue 12
https://doi.org/10.5194/essd-17-7169-2025
https://doi.org/10.5194/essd-17-7169-2025
Data description paper
 | 
15 Dec 2025
Data description paper |  | 15 Dec 2025

Climatological fields of Southern Ocean interior carbonate system parameters and anthropogenic CO2 reconstructed and integrated from float- and ship-based observations

Wanqin Zhong, Xin Ma, Yingxu Wu, Chenglong Li, Tianqi Shi, Wei Gong, and Di Qi

Related authors

The coupled Southern Ocean–Sea ice–Ice shelf Model (SOSIM v1.0): configuration and evaluation
Chengyan Liu, Zhaomin Wang, Dake Chen, Xianxian Han, Hengling Leng, Xi Liang, Liangjun Yan, Xiang Li, Craig Stevens, Andrew Hogg, Kazuya Kusahara, Kaihe Yamazaki, Kay Ohshima, Meng Zhou, Xiao Cheng, Dongxiao Wang, Changming Dong, Jiping Liu, Qinghua Yang, Xichen Li, Ruibo Lei, Minghu Ding, Zhaoru Zhang, Dujuan Kang, Di Qi, Tongya Liu, Jihai Dong, Lu An, Ru Chen, Tong Zhang, Xiaoming Hu, Bo Han, Haibo Bi, Qi Shu, Longjiang Mu, Shiming Xu, Hu Yang, Hailong Liu, Tingfeng Dou, Zhixuan Feng, Lei Zheng, Xueyuan Tang, Guitao Shi, Yongqing Cai, Bingrui Li, Yang Wu, Xia Lin, Wenjin Sun, Yu Liu, Kai Yu, Yu Zhang, Weizeng Shao, Xiaoyu Wang, Shaojun Zheng, Chengyi Yuan, Chunxia Zhou, Jian Liu, Yang Liu, Yue Xia, Xiaoyu Pan, Jiabao Zeng, Kechen Liu, Jiahao Fan, Chen Cheng, and Qi Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-6487,https://doi.org/10.5194/egusphere-2025-6487, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024,https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Comparing float pCO2 profiles in the Southern Ocean to ship data reveals discrepancies
Chuqing Zhang, Yingxu Wu, Peter J. Brown, David Stappard, Amavi N. Silva, and Toby Tyrrell
EGUsphere, https://doi.org/10.5194/egusphere-2023-3143,https://doi.org/10.5194/egusphere-2023-3143, 2024
Preprint archived
Short summary
A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023,https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Estimating hub-height wind speed based on a machine learning algorithm: implications for wind energy assessment
Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong
Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023,https://doi.org/10.5194/acp-23-3181-2023, 2023
Short summary

Cited articles

Asselot, R., Carracedo, L. I., Thierry, V., Mercier, H., Bajon, R., and Pérez, F. F.: Anthropogenic carbon pathways towards the North Atlantic interior revealed by Argo-O2, neural networks and back-calculations, Nature Communications, 15, 1630, https://doi.org/10.1038/s41467-024-46074-5, 2024. 
Barth, A., Beckers, J.-M., Troupin, C., Alvera-Azcárate, A., and Vandenbulcke, L.: divand-1.0: n-dimensional variational data analysis for ocean observations, Geosci. Model Dev., 7, 225–241, https://doi.org/10.5194/gmd-7-225-2014, 2014. 
Bednaršek, N., Tarling, G. A., Bakker, D. C. E., Fielding, S., Jones, E. M., Venables, H. J., Ward, P., Kuzirian, A., Lézé, B., Feely, R. A., and Murphy, E. J.: Extensive dissolution of live pteropods in the Southern Ocean, Nature Geoscience, 5, 881–885, https://doi.org/10.1038/ngeo1635, 2012. 
Bittig, H. C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N. L., Sauzède, R., Körtzinger, A., and Gattuso, J.-P.: An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks, Frontiers in Marine Science, 5, https://doi.org/10.3389/fmars.2018.00328, 2018. 
Download
Short summary
This work addresses a critical observational gap in the Southern Ocean — one of the most important regions for carbon uptake — by integrating comprehensive Argo float observations with historical ship-based measurements. Our findings demonstrate the feasibility of using machine learning models to integrate observations, and support in-depth analyses of carbon transport and storage mechanisms. This can foster broader utilization of Argo floats data in ocean carbon research.
Share
Altmetrics
Final-revised paper
Preprint