Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-6025-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-6025-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A dataset for multidisciplinary applications: thirteen years of ocean observations in Sermilik Fjord, Southeast Greenland
Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
Fiamma Straneo
CORRESPONDING AUTHOR
Harvard University, Cambridge, MA, USA
Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
James Holte
Harvard University, Cambridge, MA, USA
Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
Margaret Lindeman
Harvard University, Cambridge, MA, USA
Matthew Mazloff
Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
Related authors
No articles found.
Tien-Yiao Hsu, Matthew R. Mazloff, Sarah T. Gille, Hai Lin, K. Andrew Peterson, Rui Sun, Aneesh C. Subramanian, and Luca Delle Monache
EGUsphere, https://doi.org/10.5194/egusphere-2025-4142, https://doi.org/10.5194/egusphere-2025-4142, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
This paper examines air-sea coupling impacts on 15-day winter forecasts over the North Pacific and Atlantic. Using an uncoupled atmospheric model, a coupled atmosphere-ocean model, and ERA5 for validation, we find that latent heat flux bias variance is reduced by 10–20 % in the Pacific. This improves forecasts of integrated vapor transport, enhancing prediction of weather extremes in mid- to high latitudes.
Lu Zhou, Holly Ayres, Birte Gülk, Aditya Narayanan, Casimir de Lavergne, Malin Ödalen, Alessandro Silvano, Xingchi Wang, Margaret Lindeman, and Nadine Steiger
EGUsphere, https://doi.org/10.5194/egusphere-2025-999, https://doi.org/10.5194/egusphere-2025-999, 2025
Short summary
Short summary
Polynyas are large openings in polar sea ice that can influence global climate and ocean circulation. After disappearing for 40 years, major polynyas reappeared in the Weddell Sea in 2016 and 2017, sparking new scientific questions. Our review explores how ocean currents, atmospheric conditions, and deep ocean heat drive their formation. These polynyas impact ecosystems, carbon exchange, and deep water formation, but their future remains uncertain, requiring better observations and models.
Tyler Pelle, Paul G. Myers, Andrew Hamilton, Matthew Mazloff, Krista Soderlund, Lucas Beem, Donald D. Blankenship, Cyril Grima, Feras Habbal, Mark Skidmore, and Jamin S. Greenbaum
EGUsphere, https://doi.org/10.5194/egusphere-2024-3751, https://doi.org/10.5194/egusphere-2024-3751, 2024
Short summary
Short summary
Here, we develop and run a high resolution ocean model of Jones Sound from 2003–2016 and characterize circulation into, out of, and within the sound as well as associated sea ice and productivity cycles. Atmospheric and ocean warming drive sea ice decline, which enhance biological productivity due to the increased light availability. These results highlight the utility of high resolution models in simulating complex waterways and the need for sustained oceanographic measurements in the sound.
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Yafei Nie, Ian Fenty, Matthew Mazloff, Armin Köhl, and Dimitris Menemenlis
Geosci. Model Dev., 17, 8613–8638, https://doi.org/10.5194/gmd-17-8613-2024, https://doi.org/10.5194/gmd-17-8613-2024, 2024
Short summary
Short summary
Global- and basin-scale ocean reanalyses are becoming easily accessible. However, such ocean reanalyses are optimized for their entire model domains and their ability to simulate the Southern Ocean requires evaluation. We conduct intercomparison analyses of Massachusetts Institute of Technology General Circulation Model (MITgcm)-based ocean reanalyses. They generally perform well for the open ocean, but open-ocean temporal variability and Antarctic continental shelves require improvements.
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024, https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
Short summary
We investigate how the moisture transport through atmospheric rivers influences Arctic sea ice variations using hourly atmospheric ERA5 for 1981–2020 at 0.25° × 0.25° resolution. We show that individual atmospheric rivers initiate rapid sea ice decrease through surface heat flux and winds. We find that the rate of change in sea ice concentration has significant anticorrelation with moisture, northward wind and turbulent heat flux on weather timescales almost everywhere in the Arctic Ocean.
Rui Sun, Alison Cobb, Ana B. Villas Bôas, Sabique Langodan, Aneesh C. Subramanian, Matthew R. Mazloff, Bruce D. Cornuelle, Arthur J. Miller, Raju Pathak, and Ibrahim Hoteit
Geosci. Model Dev., 16, 3435–3458, https://doi.org/10.5194/gmd-16-3435-2023, https://doi.org/10.5194/gmd-16-3435-2023, 2023
Short summary
Short summary
In this work, we integrated the WAVEWATCH III model into the regional coupled model SKRIPS. We then performed a case study using the newly implemented model to study Tropical Cyclone Mekunu, which occurred in the Arabian Sea. We found that the coupled model better simulates the cyclone than the uncoupled model, but the impact of waves on the cyclone is not significant. However, the waves change the sea surface temperature and mixed layer, especially in the cold waves produced due to the cyclone.
David S. Trossman, Caitlin B. Whalen, Thomas W. N. Haine, Amy F. Waterhouse, An T. Nguyen, Arash Bigdeli, Matthew Mazloff, and Patrick Heimbach
Ocean Sci., 18, 729–759, https://doi.org/10.5194/os-18-729-2022, https://doi.org/10.5194/os-18-729-2022, 2022
Short summary
Short summary
How the ocean mixes is not yet adequately represented by models. There are many challenges with representing this mixing. A model that minimizes disagreements between observations and the model could be used to fill in the gaps from observations to better represent ocean mixing. But observations of ocean mixing have large uncertainties. Here, we show that ocean oxygen, which has relatively small uncertainties, and observations of ocean mixing provide information similar to the model.
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021, https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary
Short summary
The ice thickness from four state-of-the-art reanalyses (GECCO2, SOSE, NEMO-EnKF and GIOMAS) are evaluated against that from remote sensing and in situ observations in the Weddell Sea, Antarctica. Most of the reanalyses can reproduce ice thickness in the central and eastern Weddell Sea but failed to capture the thick and deformed ice in the western Weddell Sea. These results demonstrate the possibilities and limitations of using current sea-ice reanalysis in Antarctic climate research.
Cited articles
Beaird, N. L., Straneo, F., and Jenkins, W.: Export of Strongly Diluted Greenland Meltwater From a Major Glacial Fjord, Geophysical Research Letters, 45, 4163–4170, https://doi.org/10.1029/2018GL077000, 2018. a, b, c
Bjørk, A. A., Kruse, L. M., and Michaelsen, P. B.: Brief communication: Getting Greenland's glaciers right – a new data set of all official Greenlandic glacier names, The Cryosphere, 9, 2215–2218, https://doi.org/10.5194/tc-9-2215-2015, 2015. a
Bretherton, F. P., Davis, R. E., and Fandry, C.: A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep Sea Research and Oceanographic Abstracts, 23, 559–582, https://doi.org/10.1016/0011-7471(76)90001-2, 1976. a
Cape, M. R., Straneo, F., Beaird, N., Bundy, R. M., and Charette, M. A.: Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers, Nature Geoscience, 12, 34–39, https://doi.org/10.1038/s41561-018-0268-4, 2019. a
Davison, B. J., Cowton, T., Sole, A., Cottier, F., and Nienow, P.: Modelling the effect of submarine iceberg melting on glacier-adjacent water properties, The Cryosphere, 16, 1181–1196, https://doi.org/10.5194/tc-16-1181-2022, 2022. a, b, c
de Jong, M. F. and de Steur, L.: Strong winter cooling over the Irminger Sea in winter 2014–2015, exceptional deep convection, and the emergence of anomalously low SST, Geophysical Research Letters, 43, 7106–7113, https://doi.org/10.1002/2016GL069596, 2016. a
Dotto, T. S., Mata, M. M., Kerr, R., and Garcia, C. A. E.: A novel hydrographic gridded data set for the northern Antarctic Peninsula, Earth Syst. Sci. Data, 13, 671–696, https://doi.org/10.5194/essd-13-671-2021, 2021. a, b
Enderlyn, E. M., Hamilton, G. S., Straneo, F., and Sutherland, D. A.: Iceberg meltwater fluxes dominate the freshwater budget in Greenland's iceberg-congested glacial fjords, Geophysical Research Letters, 43, 11287–11294, https://doi.org/10.1002/2016GL070718, 2016. a, b
Foga, S.: Characterization of Ice Mélange and its Implications toTerminus Stability at Helheim Glacier, Southeast Greenland, Master's thesis, University of Kansas, Lawerence, KS, https://core.ac.uk/reader/213418374 (last access: 12 December 2024), 2016. a
Gade, H. G.: Melting of Ice in Sea Water: A Primitive Model with Application to the Antarctic Ice Shelf and Icebergs, Journal of Physical Oceanography, 9, 189–198, https://doi.org/10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2, 1979. a
Harcourt, W. D., Shahin, M. G., Stearns, L. A., and Shankar, S.: Structural weaknesses in ice mélange revealed by high-resolution ICEYE SAR imagery, Journal of Glaciology, 1–32, https://doi.org/10.1017/jog.2025.10085, 2025. a
Harden, B. E., Straneo, F., and Sutherland, D. A.: Moored observations of synoptic and seasonal variability in the East Greenland Coastal Current, Journal of Geophysical Research: Oceans, 119, 8838–8857, https://doi.org/10.1002/2014JC010134, 2014. a, b
Holm, L.: Sila-Inuk: Study of the Impacts of Climate Change in Greenland, 145–160, ISBN 978-90-481-8586-3, https://doi.org/10.1007/978-90-481-8587-0_6, 2010. a
Hopwood, M. J., Carroll, D., Dunse, T., Hodson, A., Holding, J. M., Iriarte, J. L., Ribeiro, S., Achterberg, E. P., Cantoni, C., Carlson, D. F., Chierici, M., Clarke, J. S., Cozzi, S., Fransson, A., Juul-Pedersen, T., Winding, M. H. S., and Meire, L.: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?, The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, 2020. a
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014. a
Hughes, K. G.: Pathways, Form Drag, and Turbulence in Simulations of an Ocean Flowing Through an Ice Mélange, Journal of Geophysical Research: Oceans, 127, e2021JC018228, https://doi.org/10.1029/2021JC018228, 2022. a
Huiban, F., Millan, R., Kjeldsen, K. K., Andresen, C. S., Dømgaard, M., Dehecq, A., Brunt, S., Khan, S. A., Mouginot, J., and Bjørk, A. A.: Regional ice flow piracy following the collapse of Midgaard Glacier in Southeast Greenland, Nature Communications, 15, 9976, https://doi.org/10.1038/s41467-024-54045-z, 2024. a
Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C.: Unified Notation for Data Assimilation: Operational, Sequential and Variational (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice), Journal of the Meteorological Society of Japan Ser. II, 75, 181–189, https://doi.org/10.2151/jmsj1965.75.1B_181, 1997. a
Jackson, R. H. and Straneo, F.: Heat, Salt, and Freshwater Budgets for a Glacial Fjord in Greenland, Journal of Physical Oceanography, 46, 2735–2768, https://doi.org/10.1175/JPO-D-15-0134.1, 2016. a, b, c, d
Jackson, R. H., Straneo, F., and Sutherland, D. A.: Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months, Nature Geoscience, 7, 503–508, https://doi.org/10.1038/ngeo2186, 2014. a, b, c, d
Jackson, R. H., Lentz, S. J., and Straneo, F.: The Dynamics of Shelf Forcing in Greenlandic Fjords, Journal of Physical Oceanography, 48, 2799–2827, https://doi.org/10.1175/JPO-D-18-0057.1, 2018. a, b, c
Juul-Pedersen, T., Rysgaard, S., Batty, P., Mortensen, J., Retzel, A., Nygaard, R., Burmeister, A., Mikkelsen, D. M., Sejr, M. K., Blicher, M. E., Krause-Jensen, D., Christensen, P. B., Labansen, A. L., Rasmussen, L. M., Simon, M., Boye, T. K., Madsen, P. T., and Ugarte, F.: NUUK BASIC: The MarineBasis Programme, in: Nuuk Ecological Research Operations, edited by: Jensen, L. M. and Rasch, M., National Environmental Research Institute, Aarhus University, Aarhus, Denmark, 39–58, ISBN 978-87-7073-125-6, 2009. a, b
Laidre, K. L., Supple, M. A., Born, E. W., Regehr, E. V., Øystein Wiig, Ugarte, F., Aars, J., Dietz, R., Sonne, C., Hegelund, P., Isaksen, C., Akse, G. B., Cohen, B., Stern, H. L., Moon, T., Vollmers, C., Corbett-Detig, R., Paetkau, D., and Shapiro, B.: Glacial ice supports a distinct and undocumented polar bear subpopulation persisting in late 21st-century sea-ice conditions, Science, 376, 1333–1338, https://doi.org/10.1126/science.abk2793, 2022. a
Mankoff, K. D., Noël, B., Fettweis, X., Ahlstrøm, A. P., Colgan, W., Kondo, K., Langley, K., Sugiyama, S., van As, D., and Fausto, R. S.: Greenland liquid water discharge from 1958 through 2019, Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, 2020. a, b, c
Mazloff, M. R., Verdy, A., Gille, S. T., Johnson, K. S., Cornuelle, B. D., and Sarmiento, J.: Southern Ocean Acidification Revealed by Biogeochemical-Argo Floats, Journal of Geophysical Research: Oceans, 128, e2022JC019530, https://doi.org/10.1029/2022JC019530, 2023. a, b, c
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M. K., Rysgaard, S., Nygaard, R., Huybrechts, P., and Meysman, F. J. R.: Marine-terminating glaciers sustain high productivity in Greenland fjords, Global Change Biology, 23, 5344–5357, https://doi.org/10.1111/gcb.13801, 2017. a
Melton, S. M., Alley, R. B., Anandakrishnan, S., Parizek, B. R., Shahin, M. G., Stearns, L. A., Lewinter, A. L., and Finnegan, D. C.: Meltwater drainage and iceberg calving observed in high-spatiotemporal resolution at Helheim Glacier, Greenland, Journal of Glaciology, 68, 812–828, https://doi.org/10.1017/jog.2021.141, 2022. a
Meng, Y., Lai, C.-Y., Culberg, R., Shahin, M. G., Stearns, L. A., Burton, J. C., and Nissanka, K.: Seasonal changes of mélange thickness coincide with Greenland calving dynamics, Nature Communications, 16, 573, https://doi.org/10.1038/s41467-024-55241-7, 2025. a
Moon, T., Sutherland, D., Carroll, D., Felikson, D., Kehrl, L., and Straneo, F.: Subsurface iceberg melt key to Greenland fjord freshwater budget, Nature Geoscience, 11, 49–54, https://doi.org/10.1038/s41561-017-0018-z, 2018. a, b, c
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y., O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation, Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954, 2017. a, b, c
Mortensen, J., Rysgaard, S., Arendt, K., Juul-Pedersen, T., Søgaard, D., Bendtsen, J., and Meire, L.: Local Coastal Water Masses Control Heat Levels in a West Greenland Tidewater Outlet Glacier Fjord, Journal of Geophysical Research: Oceans, 123, 8068–8083, https://doi.org/10.1029/2018JC014549, 2018. a
Muilwijk, M., Straneo, F., Slater, D. A., Smedsrud, L. H., Holte, J., Wood, M., Andresen, C. S., and Harden, B.: Export of Ice Sheet Meltwater from Upernavik Fjord, West Greenland, Journal of Physical Oceanography, 52, 363–382, https://doi.org/10.1175/JPO-D-21-0084.1, 2022. a, b
Nuttall, M.: Water, ice, and climate change in northwest Greenland, WIREs Water, 7, e1433, https://doi.org/10.1002/wat2.1433, 2020. a
Rathcke, K., Qatsa, M., Burdenski, A., and Jacobsen, R.: Understanding marine biodiversity shifts in Southeast Greenland with Indigenous and local knowledge, Human Ecology: An Interdisciplinary Journal, 53, 29–40, https://doi.org/10.1007/s10745-025-00570-4, 2025. a
Reeve, K. A., Boebel, O., Kanzow, T., Strass, V., Rohardt, G., and Fahrbach, E.: A gridded data set of upper-ocean hydrographic properties in the Weddell Gyre obtained by objective mapping of Argo float measurements, Earth Syst. Sci. Data, 8, 15–40, https://doi.org/10.5194/essd-8-15-2016, 2016. a, b
Roemmich, D.: Optimal Estimation of Hydrographic Station Data and Derived Fields, Journal of Physical Oceanography, 13, 1544–1549, https://doi.org/10.1175/1520-0485, 1983. a
Roth, A., Straneo, F., Holte, J., Lindeman, M., and Mazloff, M.: Gridded hydrographic dataset for Sermilik Fjord, Southeast Greenland from 2009–2023, Arctic Data Center [data set], https://doi.org/10.18739/A28G8FK6D, 2025a. a, b, c
Roth, A., Straneo, F., Holte, J., Lindeman, M., and Mazloff, M.: Sermilik Gridded Hydrography v1, Zenodo [code], https://doi.org/10.5281/zenodo.17563180, 2025b. a, b
Sanchez, R., Slater, D., and Straneo, F.: Delayed Freshwater Export from a Greenland Tidewater Glacial Fjord, Journal of Physical Oceanography, 53, 1291–1309, https://doi.org/10.1175/JPO-D-22-0137.1, 2023. a, b
Sanchez, R., Straneo, F., and Andres, M.: Using Acoustic Travel Time to Monitor the Heat Variability of Glacial Fjords, J. Atmos. Oceanic Technol., 38, 1535–1550, https://doi.org/10.1175/JTECH-D-20-0176.1, 2021.
Sanchez, R., Straneo, F., Hughes, K., Barbour, P., and Shroyer, E.: Relative Roles of Plume and Coastal Forcing on Exchange Flow Variability of a Glacial Fjord, Journal of Geophysical Research: Oceans, 129, e2023JC020492, https://doi.org/10.1029/2023JC020492, 2024. a, b
Schild, K. M., Sutherland, D. A., Elosegui, P., and Duncan, D.: Measurements of Iceberg Melt Rates Using High-Resolution GPS and Iceberg Surface Scans, Geophysical Research Letters, 48, e2020GL089765, https://doi.org/10.1029/2020GL089765, 2021. a
Schiøtt, S., Tejsner, P., and Rysgaard, S.: Inuit and Local Knowledge on The Marine Ecosystem in Ilulissat Icefjord, Greenland, Human Ecology, 50, 167–181, https://doi.org/10.1007/s10745-021-00277-2, 2022. a
Schlegel, R. W. and Gattuso, J.-P.: A dataset for investigating socio-ecological changes in Arctic fjords, Earth Syst. Sci. Data, 15, 3733–3746, https://doi.org/10.5194/essd-15-3733-2023, 2023. a, b
Sciascia, R., Straneo, F., Cenedese, C., Heimbach, P., Ribergaard, M. H., Mortensen, J., and Muench, R. D.: Seasonal variability of submarine melt rate and circulation in an East Greenland fjord, Journal of Geophysical Research: Oceans, 118, 2492–2506, https://doi.org/10.1002/jgrc.20142, 2013. a, b
Snow, T., Zhang, W., Schreiber, E., Siegfried, M., Abdalati, W., and Scambos, T.: Alongshore winds force warm Atlantic Water toward Helheim Glacier in southeast Greenland, Journal of Geophysical Research: Oceans e2023JC019953, https://doi.org/10.1029/2023JC019953, 2023. a, b, c
Spall, M. A., Jackson, R. H., and Straneo, F.: Katabatic Wind-Driven Exchange in Fjords, Journal of Geophysical Research: Oceans, 122, 8246–8262, https://doi.org/10.1002/2017JC013026, 2017. a
Straneo, F. and Cenedese, C.: The Dynamics of Greenland's Glacial Fjords and Their Role in Climate, Annual Review of Marine Science, 7, 89–112, https://doi.org/10.1146/annurev-marine-010213-135133, 2015. a
Straneo, F., Hamilton, G. S., Sutherland, D. A., Stearns, L. A., Davidson, F., Hammill, M. O., Stenson, G. B., and Rosing-Asvid, A.: Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland, Nature Geoscience, 3, 182–186, https://doi.org/10.1038/ngeo764, 2010. a, b, c
Straneo, F., Sutherland, D., Holland, D., Gladish, C., Hamilton, G. S., Johnson, H. L., Rignot, E., Xu, Y., and Koppes, M.: Characteristics of ocean waters reaching Greenland's glaciers, Annals of Glaciology, 53, 202–210, https://doi.org/10.3189/2012AoG60A059, 2012. a
Straneo, F., Hamilton, G. S., Stearns, L. A., and Sutherland, D. A.: Connecting the Greenland Ice Sheet and the Ocean: A CASE STUDY OF HELHEIM GLACIER AND SERMILIK FJORD, Oceanography, 29, 34–45, https://www.jstor.org/stable/24862280 (last access: 21 April 2023), 2016. a
Straneo, F., Sutherland, D., Stearns, L., and Catania, G.: Frontiers | The Case for a Sustained Greenland Ice Sheet-Ocean Observing System (GrIOOS), Front. Mar. Sci., 29, https://doi.org/10.3389/fmars.2019.00138, 2019. a, b, c
Straneo, F., Slater, D., Bouchard, C., Cape, M., Carey, M., Ciannelli, L., Holte, J., Matrai, P., Laidre, K., Little, C., Meire, L., Seroussi, H., and Vernet, M.: An Interdisciplinary Perspective on Greenland’s Changing Coastal Margins, Oceanography, https://doi.org/10.5670/oceanog.2022.128, 2022. a, b
Sugiyama, S., Yamaguchi, A., Watanabe, T., Tojo, Y., Hayashi, N., Thiebot, J.-B., Tomiyasu, M., Hasegawa, K., Mitani, Y., Ogawa, M., Tanaka, K., Sakurai, K., Matsuno, K., Kanna, N., Podolskiy, E., Kusaka, R., Wang, Y., Imazu, Y., Watanabe, K., Sato, K., Ukai, S., Yamada, S., Kondo, K., Yamasaki, S., Tateyama, K., Sato, K., Inoue, J., Mori, T., Fukazawa, T., Rosing-Asvid, A., Langley, K., Gierisch, A. M. U., Sutherland, J., and Oshima, T.: Rapidly changing glaciers, ocean and coastal environments, and their impact on human society in the Qaanaaq region, northwestern Greenland, Polar Science, 27, 100632, https://doi.org/10.1016/j.polar.2020.100632, 2020. a
Sugiyama, S., Yamaguchi, A., Watanabe, T., Tojo, Y., Hayashi, N., Thiebot, J., Tomiyasu, M., Hasegawa, K., Mitani, Y., Ogawa, M., Tanaka, K., Sakurai, K., Matsuno, K., Kanna, N., Podolskiy, E., Kusaka, R., Wang, Y., Imazu, Y., Watanabe, K., Sato, K., Ukai, S., Yamada, S., Kondo, K., Yamasaki, S., Tateyama, K., Sato, K., Inoue, J., Mori, T., Fukazawa, T., Rosing-Asvid, A., Langley, K., Gierisch, A. M. U., Sutherland, J., and Oshima, T.: Changes in the coastal environments and their impact on society in the Qaanaaq region, northwestern Greenland, Polar Science, 101206, https://doi.org/10.1016/j.polar.2025.101206, 2025. a
Sutherland, D. A. and Pickart, R. S.: The East Greenland Coastal Current: Structure, variability, and forcing, Progress in Oceanography, 78, 58–77, https://doi.org/10.1016/j.pocean.2007.09.006, 2008. a, b
Sutherland, D. A., Roth, G. E., Hamilton, G. S., Mernild, S. H., Stearns, L. A., and Straneo, F.: Quantifying flow regimes in a Greenland glacial fjord using iceberg drifters, Geophysical Research Letters, 41, 8411–8420, https://doi.org/10.1002/2014GL062256, 2014a. a
Sutherland, D. A., Straneo, F., and Pickart, R. S.: Characteristics and dynamics of two major Greenland glacial fjords, Journal of Geophysical Research: Oceans, 119, 3767–3791, https://doi.org/10.1002/2013JC009786, 2014b. a, b
Williams, J. J., Gourmelen, N., Nienow, P., Bunce, C., and Slater, D.: Helheim Glacier Poised for Dramatic Retreat, Geophysical Research Letters, 48, e2021GL094546, https://doi.org/10.1029/2021GL094546, 2021. a, b
Wong, A. P. S., Johnson, G. C., and Owens, W. B.: Delayed-Mode Calibration of Autonomous CTD Profiling Float Salinity Data by θ–S Climatology, Journal of Atmospheric and Oceanic Technology, 20, 308–318, https://doi.org/10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2, 2003. a
Short summary
The fjords of Kalaallit Nunaat/Greenland play a critical role in our climate system and support thriving ecosystems that Greenlanders call home. As our climate warms, fjords are hotspots of change and more scientists are collecting data in fjords. These data need to be available, useable, and intuitive across a wide range of users – from scientists to local people. We provide an example of gridded transect data from Sermilik Fjord as a way to achieve this.
The fjords of Kalaallit Nunaat/Greenland play a critical role in our climate system and support...
Altmetrics
Final-revised paper
Preprint