Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-5729-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5729-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Air–sea interaction heat and momentum fluxes based on vessel's experimental observations over Spanish waters
Ángel Sánchez-Lorente
CORRESPONDING AUTHOR
Instituto Español de Oceanografía, Servicios Centrales, C/Corazón de María, 8, 28002 Madrid, Spain
now at: Barcelona Supercomputing Center, Plaça d'Eusebi Güell, 1–3, Les Corts, 08034 Barcelona, Spain
Elena Tel
Instituto Español de Oceanografía, Servicios Centrales, C/Corazón de María, 8, 28002 Madrid, Spain
Lucía Sanz-Pinilla
Instituto Español de Oceanografía, Servicios Centrales, C/Corazón de María, 8, 28002 Madrid, Spain
Gonzalo González-Nuevo González
Instituto Español de Oceanografía, Centro Oceanográfico de La Coruña, P. Marítimo Alcalde Francisco Vázquez, 10, 15001 La Coruña, Spain
Related authors
No articles found.
Jonathan Coyne, Frédéric Cyr, Sheila Atchison, Charlie Bishop, Sébastien Donnet, Peter S. Galbraith, Maxime Geoffroy, David Hebert, Chantelle Layton, Andry Ratsimandresy, Jose-Luis del Rio Iglesias, Jean-Luc Shaw, Stephen Snook, Nancy Soontiens, Elena Tel, and Wojciech Walkusz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-611, https://doi.org/10.5194/essd-2025-611, 2025
Preprint under review for ESSD
Short summary
Short summary
As part of the new Fisheries Act, Fisheries and Oceans Canada (DFO) has made it a priority to make oceanographic data publicly available. The Canadian Atlantic Shelf Temperature-Salinity (CASTS) aims to address this priority, by creating an open-access data product that includes most of the historical temperature and salinity profiles in Atlantic Canada and the eastern Arctic since 1873.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Cited articles
Anderson, E. R.: Energy budget studies, US Geol. Surv. Circ., 229, 71–119, 1952. a
Anderson, R. and Smith, S.: Evaporation coefficient for the sea surface from eddy flux measurements, J. Geophys. Res.-Oceans, 86, 449–456, https://doi.org/10.1029/JC086iC01p00449, 1981. a, b
Azorin-Molina, C., Menendez, M., McVicar, T. R., Acevedo, A., Vicente-Serrano, S. M., Cuevas, E., Minola, L., and Chen, D.: Wind speed variability over the Canary Islands, 1948–2014: focusing on trend differences at the land–ocean interface and below–above the trade-wind inversion layer, Clim. Dynam., 50, 4061–4081, https://doi.org/10.1007/s00382-017-3861-0, 2018. a, b
Bentamy, A., Katsaros, K. B., Mestas-Nuñez, A. M., Drennan, W. M., Forde, E. B., and Roquet, H.: Satellite estimates of wind speed and latent heat flux over the global oceans, J. Climate, 16, 637–656, https://doi.org/10.1175/1520-0442(2003)016<0637:SEOWSA>2.0.CO;2, 2003. a
Bentamy, A., Grodsky, S. A., Elyouncha, A., Chapron, B., and Desbiolles, F.: Homogenization of scatterometer wind retrievals, Int. J. Climatol., 37, 870–889, https://doi.org/10.1002/joc.4746, 2017. a
Bethoux, J.: Budgets of the Mediterranean Sea-Their dependance on the local climate and on the characteristics of the Atlantic waters, Oceanolog. Acta, 2, 157–163, 1979. a
Bosilovich, M.: NASA's modern era retrospective-analysis for research and applications: Integrating Earth observations, IEEE Earthzine, 1, 82367, 2008. a
Buck, A. L.: New equations for computing vapor pressure and enhancement factor, J. Appl. Meteorol., 1527–1532, https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2, 1981. a
Camacho, M. O., Sánchez, E. S., Escribano, C. G., and Sánchez, M. O. M.: Descripción del cierzo, el levante y el poniente a través del reanálisis de alta resolución COSMO-REA6 para el periodo 2000–2018, in: Retos del cambio climático: impactos, mitigación y adaptación: aportaciones presentadas en el XII Congreso de la Asociación Española de Climatología, celebrado en Santiago de Compostela entre el 19 y el 21 de octubre de 2022, 221–230, Asociación Española de Climatología, https://doi.org/10.5281/zenodo.7222027, 2022. a, b
Castellari, S., Pinardi, N., and Leaman, K.: A model study of air–sea interactions in the Mediterranean Sea, J. Mar. Syst., 18, 89–114, https://doi.org/10.1016/S0924-7963(98)90007-0, 1998. a
Chacko, N., Ali, M. M., and Bourassa, M. A.: Impact of ocean currents on wind stress in the tropical Indian Ocean, Remote Sens., 14, 1547, https://doi.org/10.3390/rs14071547, 2022. a
Curry, J. A., Bentamy, A., Bourassa, M. A., Bourras, D., Bradley, E. F., Brunke, M., Castro, S., Chou, S. H., Clayson, C. A., Emery, W. J., Eymard, L., Fairall, C. W., Kubota, M., Lin, B., Perrie, W., Reeder, R. A., Renfrew, I. A., Rossow, W. B., Schulz, J., Smith, S. R., Webster, P. J., Wick, G. A., and Zeng, X.: Seaflux, B. Am. Meteorol. Soc., 85, 409–424, https://doi.org/10.1175/BAMS-85-3-409, 2004. a
Foken, T.: 50 years of the Monin–Obukhov similarity theory, Bound.-Lay. Meteorol., 119, 431–447, 2006. a
Garrett, C., Outerbridge, R., and Thompson, K.: Interannual variability in meterrancan heat and buoyancy fluxes, J. Climate, 6, 900–910, 1993. a
Iribarne, J. V. and Godson, W. L.: Atmospheric thermodynamics, in: vol. 6, Springer Science & Business Media, ISBN 9027712972, ISBN 9789027712974, 2012. a
Johns, W. E., Baringer, M. O., Beal, L. M., Cunningham, S. A., Kanzow, T., Bryden, H. L., Hirschi, J. J. M., Marotzke, J., Meinen, C. S., Shaw, B., and Curry, R.: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5° N, J. Climate, 24, 2429–2449, https://doi.org/10.1175/2010JCLI3997.1, 2011. a
Kubota, M., Iwasaka, N., Kizu, S., Konda, M., and Kutsuwada, K.: Japanese ocean flux data sets with use of remote sensing observations (J-OFURO), J. Oceanogr., 58, 213–225, 2002. a
Large, W. and Pond, S.: On the exchange of momentumomentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11, 324–336, https://doi.org/10.1175/JPO-D-12-0173.1, 1981. a, b, c
Large, W. and Pond, S.: Sensible and latent heat flux measurements over the ocean, J. Phys. Oceanogr., 12, 464–482, https://doi.org/10.1175/1520-0485(1982)012<0464:SALHFM>2.0.CO;2, 1982. a, b
Large, W. and Yeager, S.: The global climatology of an interannually varying air–sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2009. a, b
Long, R.: The Marine Strategy Framework Directive: a new European approach to the regulation of the marine environment, marine natural resources and marine ecological services, J. Energ. Nat. Resour. Law, 29, 1–44, https://doi.org/10.1080/02646811.2011.11435256, 2011. a, b
Lozano, I. L., Alados, I., and Foyo-Moreno, I.: Analysis of the solar radiation/atmosphere interaction at a Mediterranean site: The role of clouds, Atmos. Res., 296, 107072, https://doi.org/10.1016/j.atmosres.2023.107072, 2023. a
Macdonald, A. M., Candela, J., and Bryden, H. L.: An estimate of the net heat transport through the Strait of Gibraltar, Seasonal and Interannual Variability of the Western Mediterranean Sea, 46, 13–32, 1994. a
Maillard, C., Fichaut, M., Balopoulos, E., Garcia, M., Jaourdan, D., and Dooley, H.: Medatlas 1997: Mediterranean Hydrological Atlas, Ifremer, Plouzane, France, https://side.developpement-durable.gouv.fr/Default/doc/SYRACUSE/51081/medatlas-1997-mediterranean-hydrological-atlas (last access: 23 October 2025), 1998. a
Mao, H., Sun, X., Qiu, C., Zhou, Y., Liang, H., Sang, H., Zhou, Y., and Chen, Y.: Validation of NCEP and OAFlux air-sea heat fluxes using observations from a Black Pearl wave glider, Acta Oceanolog. Sin., 40, 167–175, https://doi.org/10.1007/s13131-021-1816-0, 2021. a
Morrow, R., Church, J., Coleman, R., Chelton, D., and White, N.: Eddy momentum flux and its contribution to the Southern Ocean momentum balance, Nature, 357, 482–484, https://doi.org/10.1038/357482a0, 1992. a, b
O'Neill, L. W.: Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellite, J. Climate, 25, 1544–1569, https://doi.org/10.1175/JCLI-D-11-00121.1, 2012. a
Ortega, M., Sanchez, E., Gutierrez, C., Molina, M. O., and López-Franca, N.: Regional winds over the iberian peninsula (Cierzo, Levante and Poniente) from high-resolution COSMO-REA6 reanalysis, Int. J. Climatol., 43, 1016–1033, https://doi.org/10.1002/joc.7860, 2023. a, b, c
Paladini de Mendoza, F., Schroeder, K., Langone, L., Chiggiato, J., Borghini, M., Giordano, P., Verazzo, G., and Miserocchi, S.: Deep-water hydrodynamic observations of two moorings sites on the continental slope of the southern Adriatic Sea (Mediterranean Sea), Earth Syst. Sci. Data, 14, 561–5635, https://doi.org/10.5194/essd-14-5617-2022, 2022. a
Pierson Jr, W. J.: Examples of, reasons for, and consequences of the poor quality of wind data from ships for the marine boundary layer: Implications for remote sensing, J. Geophys. Res.-Oceans, 95, 13313–13340, 1990. a
Pond, S., Phelps, G., Paquin, J., McBean, G., and Stewart, R.: Measurements of the turbulent fluxes of momentum, moisture and sensible heat over the ocean, J. Atmos. Sci., 28, 901–917, https://doi.org/10.1175/1520-0469(1971)028<0901:MOTTFO>2.0.CO;2, 1971. a, b
Samuel, S., Haines, K., Josey, S., and Myers, P. G.: Response of the Mediterranean Sea thermohaline circulation to observed changes in the winter wind stress field in the period 1980–1993, J. Geophys. Res.-Oceans, 104, 7771–7784, https://doi.org/10.1029/1998JC900130, 1999. a
Sánchez-Lorente, A. and Tel, E.: Air–Sea Interaction: Heat and Momentum Fluxes based on data records from the R/V Angeles Alvarino around Spanish waters (2013–2023), SEANOE [data set], https://doi.org/10.17882/103856, 2024a. a, b, c
Sánchez-Lorente, A. and Tel, E.: Air–Sea Interaction: Heat and Momentum Fluxes based on data records from the R/V Cornide de Saavedra around Spanish waters (2011–2013), SEANOE [data set], https://doi.org/10.17882/103424 2024b. a, b, c
Sánchez-Lorente, A. and Tel, E.: Marine data from continuous acquisition systems on board the R/V Miguel Oliver in Spanish waters in the framework of Air–Sea interaction studies (2014–2023), SEANOE [data set], https://doi.org/10.17882/103903, 2024c. a, b, c
Sánchez-Lorente, A. and Tel, E.: Air–Sea Interaction: Heat and Momentum Fluxes based on data records from the R/V Ramon Margalef around Spanish waters (2013–2023), SEANOE [data set], https://doi.org/10.17882/103855, 2024d. a, b, c
Sarhan, T., Lafuente, J. G., Vargas, M., Vargas, J. M., and Plaza, F.: Upwelling mechanisms in the northwestern Alboran Sea, J. Mar. Syst., 23, 317–331, https://doi.org/10.1016/S0924-7963(99)00068-8, 2000. a
Schaap, D. M. and Lowry, R. K.: SeaDataNet–Pan-European infrastructure for marine and ocean data management: unified access to distributed data sets, Int. J. Digit. Earth, 3, 50–69, https://doi.org/10.1080/17538941003660974, 2010. a, b
Smith, S. D.: Wind stress and heat flux over the ocean in gale force winds, J. Phys. Oceanogr., 10, 709–726, https://doi.org/10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2, 1980. a, b
Stull, R. B.: An introduction to boundary layer meteorology, in: vol. 13, Springer Science & Business Media, https://doi.org/10.1007/978-94-009-3027-8, 2012. a, b
Talley, L. D.: Shallow, intermediate, and deep overturning components of the global heat budget, J. Phys. Oceanogr., 33, 530–560, https://doi.org/10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2, 2003. a
Trenberth, K. E., Large, W. G., and Olson, J. G.: The mean annual cycle in global ocean wind stress, J. Phys. Oceanogr., 20, 1742–1760, https://doi.org/10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2, 1990. a, b, c
Vargas-Yáñez, M., García-Martínez, M. d. C., Moya-Ruiz, F., Tel, E., Parrilla, G., Plaza-Jorge, F., Lavín, A., García-Fernández, M. J., Salat, J., Pascual, J., García-Lafuente, J., Gomis, D., Álvarez-Fanjul, E., García-Sotillo, M., González-Pola, C., Polvorinos, F., and Fraile-Nuez, E.: Cambio climático en el Mediterráneo español, Instituto Español de Oceanografía, http://hdl.handle.net/10261/86824 (last access: 23 October 2025), 2007. a, b, c
Viedma Muñoz, M.: El régimen de vientos en la cornisa cantábrica, http://hdl.handle.net/10835/1401 (last access: 23 October 2025), 2005. a
Yu, L. and Weller, R. A.: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005), B. Am. Meteorol. Soc., 88, 527–540, https://doi.org/10.1175/BAMS-88-4-527, 2007. a, b, c, d
Zhang, H., Chen, D., Liu, T., Tian, D., He, M., Li, Q., Wei, G., and Liu, J.: MASCS 1.0: synchronous atmospheric and oceanic data from a cross-shaped moored array in the northern South China Sea during 2014–2015, Earth Syst. Sci. Data, 16, 5665–5679, https://doi.org/10.5194/essd-16-5665-2024, 2024. a
Zhou, F., Zhang, R., Shi, R., Chen, J., He, Y., Wang, D., and Xie, Q.: Evaluation of OAFlux datasets based on in situ air–sea flux tower observations over Yongxing Island in 2016, Atmos. Meas. Tech., 11, 6091–6106, https://doi.org/10.5194/amt-11-6091-2018, 2018. a
Short summary
This study has been done within the framework of JAE INTRO-ICU fellowship of the Instituto Español de Oceanografía, with an interest in understanding the interaction between the ocean and atmosphere in a climate change context using experimental measurements aboard research vessels over Spanish waters. The distinct behaviour in the different basins of the Spanish waters is reflected, and the need for further investment in experimental observations due to its great usefulness is also evidenced.
This study has been done within the framework of JAE INTRO-ICU fellowship of the Instituto...
Altmetrics
Final-revised paper
Preprint