Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-545-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-545-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
HOLSEA-NL: a Holocene water level and sea level indicator dataset for the Netherlands
Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508TC Utrecht, the Netherlands
Kim M. Cohen
Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508TC Utrecht, the Netherlands
Roderik S. W. van de Wal
Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508TC Utrecht, the Netherlands
Institute for Marine and Atmospheric research Utrecht, Utrecht University, 3584 CC Utrecht, the Netherlands
Related authors
No articles found.
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3098, https://doi.org/10.5194/egusphere-2025-3098, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We present an ensemble of ice sheet model projections for the Greenland ice sheet. The focus is on providing projections that improve our understanding of the range future sea-level rise and the inherent uncertainties over the next 100 to 300 years. Compared to earlier work we more fully account for some of the uncertainties in sea-level projections. We include a wider range of climate model output, more climate change scenarios and we extend projections schematically up to year 2300.
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3380, https://doi.org/10.5194/egusphere-2025-3380, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The Antarctic Ice Sheet is currently thinning, especially at major outlet glaciers. Including present-day thinning rates in models is a modeller's choice and can affect future projections. This study quantifies the impact of current imbalance on forced future projections, revealing strong regional and short-term (up to 2100) effects when these mass change rates are included.
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 21, 1061–1077, https://doi.org/10.5194/cp-21-1061-2025, https://doi.org/10.5194/cp-21-1061-2025, 2025
Short summary
Short summary
Glacial cycle duration changed from 41 000 to 100 000 years during the Mid-Pleistocene Transition (MPT), but the cause is still under debate. We simulate the MPT with an ice sheet model forced by prescribed CO2 and insolation and simple ice–climate interactions. Before the MPT, glacial cycles follow insolation. After the MPT, low CO2 levels may compensate for warming at insolation maxima, increasing the length of glacial cycles until the North American ice sheet becomes large and thereby unstable.
Constantijn J. Berends, Victor Azizi, Jorge A. Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 3635–3659, https://doi.org/10.5194/gmd-18-3635-2025, https://doi.org/10.5194/gmd-18-3635-2025, 2025
Short summary
Short summary
Ice-sheet models are computer programs that can simulate how the Greenland and Antarctic ice sheets will evolve in the future. The accuracy of these models depends on their resolution: how small the details are that the model can resolve. We have created a model with a variable resolution that can resolve a lot of detail in areas where lots of changes happen in the ice and less detail in areas where the ice does not move so much. This makes the model both accurate and fast.
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025, https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth's orbit. We demonstrate that ZEMBA reproduces many features of the Earth's climate for both the pre-industrial period and the Earth's most recent cold extreme – the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-441, https://doi.org/10.5194/egusphere-2025-441, 2025
Short summary
Short summary
Ice sheet models to simulate future sea level rise require parameterizations, like for the friction at the bedrock. Studies have quantified the effect of using different parameterizations, and some have concluded that projections are sensitive to the choice of the specific parameterization. In this study, we show that you can make an ice sheet model sensitive to the basal friction parameterization, and that for equally defendable modellers choices you can also make the model insensitive to this.
Tim H. J. Hermans, Chiheb Ben Hammouda, Simon Treu, Timothy Tiggeloven, Anaïs Couasnon, Julius J. M. Busecke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-196, https://doi.org/10.5194/egusphere-2025-196, 2025
Short summary
Short summary
We studied the performance of different types of neural networks at predicting extreme storm surges. We found that that performance improves when during model training, events with a lower density are given a higher weight. Additionally, we found that the performance of especially convolutional neural networks approaches that of a state-of-the-art hydrodynamic model. This is promising for the application of neural networks to climate model simulations.
Franka Jesse, Erwin Lambert, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-4058, https://doi.org/10.5194/egusphere-2024-4058, 2025
Short summary
Short summary
We introduce the coupling of a sub-shelf melt model with an ice sheet model to explore how horizontal meltwater flow below ice shelves affects ice sheet mass loss over time. We show that accurately modelling the meltwater flow direction leads to distinct feedbacks and transient volume loss, not captured by melt parameterisations that simplify flow direction. Our results highlight the importance of refining the meltwater flow representation in ice sheet models to improve sea level projections.
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn J. Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
The Cryosphere, 19, 283–301, https://doi.org/10.5194/tc-19-283-2025, https://doi.org/10.5194/tc-19-283-2025, 2025
Short summary
Short summary
In this study, we present an improved way of representing ice thickness change rates in an ice sheet model. We apply this method using two ice sheet models of the Antarctic Ice Sheet. We found that the two largest outlet glaciers on the Antarctic Ice Sheet, Thwaites Glacier and Pine Island Glacier, will collapse without further warming on a timescale of centuries. This would cause a sea level rise of about 1.2 m globally.
Caroline Jacoba van Calcar, Pippa L. Whitehouse, Roderik S. W. van de Wal, and Wouter van der Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2982, https://doi.org/10.5194/egusphere-2024-2982, 2024
Short summary
Short summary
The bedrock response to a melting Antarctic ice sheet delays grounding line retreat by up to 130 years and reduces sea level rise by up to 23% compared to excluding this effect. Current ice sheet models often use computationally fast but simplified Earth models that do not capture this feedback well. We recommend parameters for simple Earth models that approximate bedrock uplift and ice sheet evolution from a complex ice sheet - Earth model to improve sea level projections of the next centuries.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024, https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary
Short summary
The Summary for Policymakers compiles findings from “Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise”. It covers knowledge gaps, observations, projections, impacts, adaptation measures, decision-making principles, and governance challenges. It provides information for each European basin (Mediterranean, Black Sea, North Sea, Baltic Sea, Atlantic, and Arctic) and aims to assist policymakers in enhancing the preparedness of European coasts for sea level rise.
Meike D. W. Scherrenberg, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 1761–1784, https://doi.org/10.5194/cp-20-1761-2024, https://doi.org/10.5194/cp-20-1761-2024, 2024
Short summary
Short summary
During Late Pleistocene glacial cycles, the Eurasian and North American ice sheets grew and melted, resulting in over 100 m of sea-level change. Studying the melting of past ice sheets can improve our understanding of how ice sheets might respond in the future. In this study, we find that melting increases due to proglacial lakes forming at the margins of the ice sheets, primarily due to the reduced basal friction of floating ice. Furthermore, bedrock uplift rates can strongly influence melting.
Lennert B. Stap, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 257–266, https://doi.org/10.5194/cp-20-257-2024, https://doi.org/10.5194/cp-20-257-2024, 2024
Short summary
Short summary
Analysing simulations of Antarctic Ice Sheet variability during the early and mid-Miocene (23 to 14 Myr ago), we find that the ice sheet area adapts faster and more strongly than volume to climate change on quasi-orbital timescales. Considering the recent discovery that ice area, rather than volume, influences deep-ocean temperatures, this implies that the Miocene Antarctic Ice Sheet affects deep-ocean temperatures more than its volume suggests.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023, https://doi.org/10.5194/gmd-16-5473-2023, 2023
Short summary
Short summary
The waxing and waning of the Antarctic ice sheet caused the Earth’s surface to deform, which is stabilizing the ice sheet and mainly determined by the spatially variable viscosity of the mantle. Including this feedback in model simulations led to significant differences in ice sheet extent and ice thickness over the last glacial cycle. The results underline and quantify the importance of including this local feedback effect in ice sheet models when simulating the Antarctic ice sheet evolution.
Erwin Lambert, André Jüling, Roderik S. W. van de Wal, and Paul R. Holland
The Cryosphere, 17, 3203–3228, https://doi.org/10.5194/tc-17-3203-2023, https://doi.org/10.5194/tc-17-3203-2023, 2023
Short summary
Short summary
A major uncertainty in the study of sea level rise is the melting of the Antarctic ice sheet by the ocean. Here, we have developed a new model, named LADDIE, that simulates this ocean-driven melting of the floating parts of the Antarctic ice sheet. This model simulates fine-scale patterns of melting and freezing and requires significantly fewer computational resources than state-of-the-art ocean models. LADDIE can be used as a new tool to force high-resolution ice sheet models.
Iris Keizer, Dewi Le Bars, Cees de Valk, André Jüling, Roderik van de Wal, and Sybren Drijfhout
Ocean Sci., 19, 991–1007, https://doi.org/10.5194/os-19-991-2023, https://doi.org/10.5194/os-19-991-2023, 2023
Short summary
Short summary
Using tide gauge observations, we show that the acceleration of sea-level rise (SLR) along the coast of the Netherlands started in the 1960s but was masked by wind field and nodal-tide variations. This finding aligns with global SLR observations and expectations based on a physical understanding of SLR related to global warming.
Constantijn J. Berends, Roderik S. W. van de Wal, Tim van den Akker, and William H. Lipscomb
The Cryosphere, 17, 1585–1600, https://doi.org/10.5194/tc-17-1585-2023, https://doi.org/10.5194/tc-17-1585-2023, 2023
Short summary
Short summary
The rate at which the Antarctic ice sheet will melt because of anthropogenic climate change is uncertain. Part of this uncertainty stems from processes occurring beneath the ice, such as the way the ice slides over the underlying bedrock.
Inversion methodsattempt to use observations of the ice-sheet surface to calculate how these sliding processes work. We show that such methods cannot fully solve this problem, so a substantial uncertainty still remains in projections of sea-level rise.
Meike D. W. Scherrenberg, Constantijn J. Berends, Lennert B. Stap, and Roderik S. W. van de Wal
Clim. Past, 19, 399–418, https://doi.org/10.5194/cp-19-399-2023, https://doi.org/10.5194/cp-19-399-2023, 2023
Short summary
Short summary
Ice sheets have a large effect on climate and vice versa. Here we use an ice sheet computer model to simulate the last glacial cycle and compare two methods, one that implicitly includes these feedbacks and one that does not. We found that when including simple climate feedbacks, the North American ice sheet develops from two domes instead of many small domes. Each ice sheet melts slower when including feedbacks. We attribute this difference mostly to air temperature–ice sheet interactions.
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022, https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
Short summary
The rate at which marine ice sheets such as the West Antarctic ice sheet will retreat in a warming climate and ocean is still uncertain. Numerical ice-sheet models, which solve the physical equations that describe the way glaciers and ice sheets deform and flow, have been substantially improved in recent years. Here we present the results of several years of work on IMAU-ICE, an ice-sheet model of intermediate complexity, which can be used to study ice sheets of both the past and the future.
Kim M. Cohen, Víctor Cartelle, Robert Barnett, Freek S. Busschers, and Natasha L. M. Barlow
Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, https://doi.org/10.5194/essd-14-2895-2022, 2022
Short summary
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
Lennert B. Stap, Constantijn J. Berends, Meike D. W. Scherrenberg, Roderik S. W. van de Wal, and Edward G. W. Gasson
The Cryosphere, 16, 1315–1332, https://doi.org/10.5194/tc-16-1315-2022, https://doi.org/10.5194/tc-16-1315-2022, 2022
Short summary
Short summary
To gain understanding of how the Antarctic ice sheet responded to CO2 changes during past warm climate conditions, we simulate its variability during the Miocene. We include feedbacks between the ice sheet and atmosphere in our model and force the model using time-varying climate conditions. We find that these feedbacks reduce the amplitude of ice volume variations. Erosion-induced changes in the bedrock below the ice sheet that manifested during the Miocene also have a damping effect.
Víctor Cartelle, Natasha L. M. Barlow, David M. Hodgson, Freek S. Busschers, Kim M. Cohen, Bart M. L. Meijninger, and Wessel P. van Kesteren
Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, https://doi.org/10.5194/esurf-9-1399-2021, 2021
Short summary
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Constantijn J. Berends, Heiko Goelzer, and Roderik S. W. van de Wal
Geosci. Model Dev., 14, 2443–2470, https://doi.org/10.5194/gmd-14-2443-2021, https://doi.org/10.5194/gmd-14-2443-2021, 2021
Short summary
Short summary
The largest uncertainty in projections of sea-level rise comes from ice-sheet retreat. To better understand how these ice sheets respond to the changing climate, ice-sheet models are used, which must be able to reproduce both their present and past evolution. We have created a model that is fast enough to simulate an ice sheet at a high resolution over the course of an entire 120 000-year glacial cycle. This allows us to study processes that cannot be captured by lower-resolution models.
Constantijn J. Berends, Bas de Boer, and Roderik S. W. van de Wal
Clim. Past, 17, 361–377, https://doi.org/10.5194/cp-17-361-2021, https://doi.org/10.5194/cp-17-361-2021, 2021
Short summary
Short summary
For the past 2.6 million years, the Earth has experienced glacial cycles, where vast ice sheets periodically grew to cover large parts of North America and Eurasia. In the earlier part of this period, this happened every 40 000 years. This value changed 1.2 million years ago to 100 000 years: the Mid-Pleistocene Transition. We investigate this interesting period using an ice-sheet model, studying the interactions between ice sheets and the global climate.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Cited articles
Aalbersberg, G.: Het Natuurlijke Landschap van de Polder Matsloot-Roderwolde, Huisplaatsen in De Onlanden: De geschiedenis van een Drents veenweidegebied, 26–63, ISBN 9789492444721, 2018.
Autin, W. J.: Stratigraphic analysis and paleoenvironmental implications of the Wijchen Member in the lower Rhine-Meuse Valley of the Netherlands, Neth. J. Geosci., 87, 291–307, https://doi.org/10.1017/S0016774600023362, 2008.
Baeteman, C., Waller, M., and Kiden, P.: Reconstructing middle to late Holocene sea-level change: A methodological review with particular reference to “A new Holocene sea-level curve for the southern North Sea” presented by K.-E. Behre: Reconstructing middle to late Holocene sea-level change, Boreas, 40, 557–572, https://doi.org/10.1111/j.1502-3885.2011.00207.x, 2011.
Bakker, J. A.: The Dutch hunebedden: megalithic tombs of the Funnel Beaker Culture, Berghahn Books, ISBN 3-7749-3198-4, 1992.
Barckhausen, J.: Geologische Karte von Niedersachsen 1 : 25 000, Blatt Nr. 2609 Emden NLfB Hannover, Niedersächsisches Landesamt für Bodenforschung, 1984.
Beets, D. J. and Van der Spek, A. J. F.: The Holocene evolution of the barrier and the back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply, Neth. J. Geosci., 79, 3–16, https://doi.org/10.1017/S0016774600021533, 2000.
Behre, K.-E.: A new Holocene sea-level curve for the southern North Sea, BOREAS, 36, 82–102, https://doi.org/10.1111/j.1502-3885.2007.tb01183.x, 2007.
Bennema, J.: Bodem-en zeespiegelbewegingen in het Nederlandse kustgebied, PhD thesis, Wageningen University and Research, 1954.
Bennema, J. and Pons, L.: Donken, fluviatiel Laagterras en Eemzee-afzettingen in het westelijk gebied van de grote rivieren, Boor en Spade, 5, 126–137, 1952.
Berendsen, H. J. A.: De genese van het landschap in het Zuiden van de provincie Utrecht: een fysisch-geografische studie = The genesis of the Southern part of the province of Utrecht, the Netherlands, a study of physical geography, PhD thesis, Utrechtse Geografische Studies 25, Universiteit Utrecht, Utrecht, 256 pp., 1982.
Berendsen, H. J. A. and Stouthamer, E.: Palaeogeographic development of the Rhine-Meuse delta, the Netherlands, Koninklijke Van Gorcum, Assen, xi + 268 pp., ISBN 90-2323695-5, 2001.
Berendsen, H. J. A. and Stouthamer, E.: Paleogeographic evolution and avulsion history of the Holocene Rhine-Meuse delta, the Netherlands, Neth. J. Geosci., 81, 97–112, https://doi.org/10.1017/S0016774600020606, 2002.
Berendsen, H. J. A., Makaske, B., Van de Plassche, O., Van Ree, M. H. M., Das, S., Van Dongen, M., Ploumen, S., and Schoenmakers, W.: New groundwater-level rise data from the Rhine-Meuse delta – implications for the reconstruction of Holocene relative mean sea-level rise and differential land-level movements, Neth. J. Geosci., 86, 333–354, https://doi.org/10.1017/S0016774600023568, 2007.
Bos, I. J., Busschers, F. S., and Hoek, W. Z.: Organic-facies determination: a key for understanding facies distribution in the basal peat layer of the Holocene Rhine-Meuse delta, the Netherlands, Sedimentology, 59, 676–703, https://doi.org/10.1111/j.1365-3091.2011.01271.x, 2012.
Bosch, J. and Kok, H.: Toelichting bij de geologische kaart van Nederland 1 : 50.000, Blad Gorinchem west (38 W), 1994.
Bouman, M. J. I. T. and Bos, J. A. A.: Chapter 10 Paleoecologie, in: Dronten Swifterbant N23 vindplaats 5 Opgraving, edited by: Hamburg, T. (Archol BV), Müller, A. (ADC ArcheoProjecten BV), and Quadflieg, B. (Vestigia BV), DANS Data Station Archaeology, 2012.
Bradley, S. L., Milne, G. A., Shennan, I., and Edwards, R.: An improved glacial isostatic adjustment model for the British Isles, J. Quaternary Sci., 26, 541–552, https://doi.org/10.1002/jqs.1481, 2011.
Brijker, J. M. and Zijverden, W. K.: Zwolle, Westenholte dijkverlegging: een bureauonderzoek en inventariserend veldonderzoek in de vorm van een verkennend booronderzoek, ADC ArcheoProjecten, https://doi.org/10.17026/dans-zjm-6e5b, 2009.
Brinkkemper, O., Bijkerk, W., Brongers, M., Jager, S., Kosian, M., Spek, T., and Van der Vaart, J.: Cultuur, Mens en Natuur in de Mieden, I. Biografie van de Mieden – Landschapsgeschiedenis van de miedengebieden bij Buitenpost, Surhuizum en Zwaagwesteinde (Noordoost-Friesland), Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten, Fryske Akademy, Altenburg and Wymenga ecologisch onderzoek, Amersfoort, Leeuwarden, Veenwouden, 2006.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary Sci. Rev., 27, 42–60, https://doi.org/10.1016/j.quascirev.2007.01.019, 2008.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337–360, https://doi.org/10.1017/S0033822200033865, 2009.
Bulten, E. E. B., Boonstra, Y. M., and Arnoldussen, S.: Bronovo, een Hilversumvindplaats aan zee: Gemeente Den Haag: bronstijd-en ijzertijdbewoning in de Haagse duinen, Gemeente Den Haag, Dienst Stadsbeheer, Afdeling Archeologie, https://doi.org/10.17026/dans-x32-ygvr, ISBN 978-94-6067-134-0, 2013.
Bungenstock, F., Freund, H., and Bartholomä, A.: Holocene relative sea-level data for the East Frisian barrier coast, NW Germany, southern North Sea, Neth. J. Geosci., 100, e16, https://doi.org/10.1017/njg.2021.11, 2021.
Busschers, F. S., Kasse, C., van Balen, R. T., Vandenberghe, J., Cohen, K. M., Weerts, H. J. T., Wallinga, J., Johns, C., Cleveringa, P., and Bunnik, F. P. M.: Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and glacio-isostacy, Quaternary Sci. Rev., 26, 3216–3248, https://doi.org/10.1016/j.quascirev.2007.07.013, 2007.
Cahill, N., Kemp, A. C., Horton, B. P., and Parnell, A. C.: Modeling sea-level change using errors-in-variables integrated Gaussian processes, Ann. Appl. Stat., 9, 547–571, https://doi.org/10.1214/15-AOAS824, 2015.
Candel, J. H. J., Makaske, B., Storms, J. E. A., and Wallinga, J.: Oblique aggradation: a novel explanation for sinuosity of low-energy streams in peat-filled valley systems, Earth Surf. Proc. Land., 42, 2679–2696, https://doi.org/10.1002/esp.4100, 2017.
Cohen, K. M.: Differential subsidence within a coastal prism: late-glacial-Holocene tectonics in the Rhine-Meuse delta, the Netherlands, Koninklijk Nederlands Aardrijkskundig Genootschap, Faculteit Ruimtelijke Wetenschappen, PhD thesis, Nederlandse geografische studies 316, Universiteit Utrecht, Amsterdam, Utrecht, 172 pp., 2003.
Cohen, K. M.: 3D Geostatistical Interpolation and Geological Interpretation of Paleo-Groundwater Rise in the Holocene Coastal Prism in the Netherlands, in: River Deltas–Concepts, Models, and Examples, vol. 83, edited by: Giosan, L. and Bhattacharya, J. P., SEPM Society for Sediment. Geol., https://doi.org/10.2110/pec.05.83.0341, 2005.
Cohen, K. M., Gouw, M. J. P., and Holten, J. P.: Fluvio-Deltaic Floodbasin Deposits Recording Differential Subsidence within a Coastal Prism (Central Rhine–Meuse Delta, the Netherlands), in: Fluvial Sedimentology VII, John Wiley & Sons, Ltd, 295–320, https://doi.org/10.1002/9781444304350.ch17, 2005.
Cohen, K. M., Stouthamer, E., Pierik, H. J., and Geurts, A. H.: Vernieuwd Digitaal Basisbestand Paleogeografie van de Rijn-Maas Delta: Beknopte toelichting bij het Digitaal Basisbestand Paleogeografie van de Rijn-Maas Delta, https://doi.org/10.17026/dans-x7g-sjtw, 2012.
Cohen, K. M., Dambrink, R., de Bruijn, R., Marges, V. C., Erkens, G., Pierik, H. J., Koster, K., Stafleu, J., Schokker, J., and Hijma, M. P.: Mapping buried Holocene landscapes: past lowland environments, palaeoDEMs and preservation in GIS, in: Knowledge for Informed Choices: Tools for more effective and efficient selection of valuable archaeology in the Netherlands, edited by: Lauwerier, R. C. G. M., Eerden, M. C., Groenewoudt, B. J., Lascaris, M. A., Rensink, E., Smit, B. I., Speleers, B. P., and van Doesburg, J., 73–95, Netherlands Archeological Reports; Vol. 55, RCE, ISBN 9789057992773, 2017a.
Cohen, K. M., Schokker, J., Hijma, M. P., Koster, K., Pierik, H. J., Vos, P. C., Erkens, G., and Stafleu, J.: Landschapskaarten en hoogtemodellen naar periode en diepte voor archeologisch gebruik in Holoceen-afgedekte delen van Nederland, DANS Data Station Archaeology [data set], V1 https://doi.org/10.17026/dans-zck-y7ww, 2017b.
Cohen, K. M., Cartelle, V., Barnett, R., Busschers, F. S., and Barlow, N. L. M.: Last Interglacial sea-level data points from Northwest Europe, Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, 2022.
Creel, R. C., Austermann, J., Khan, N. S., D'Andrea, W. J., Balascio, N., Dyer, B., Ashe, E., and Menke, W.: Postglacial relative sea level change in Norway, Quaternary Sci. Rev., 282, 107422, https://doi.org/10.1016/j.quascirev.2022.107422, 2022.
De Groot, T. A., Westerhoff, W., and Bosch, J.: Sea-level rise during the last 2000 yr as recorded on the Frisian Islands (the Netherlands), Mededelingen Rijks Geologische Dienst, 57, 69–78, 1996.
De Jong, J.: Age and vegetational history of the coastal dunes in the Frisian islands, the Netherlands, Geol. Mijnbouw, 63, 269–275, 1984.
De Jong, J.: RGD Pal. Lab. Rap. 1009 – Veldgegevens van ontsluitingen bij Heiloo en daarmee samenhangende resultaten van C14-ouderdomsbepalingen, Rijks Geologische Dienst, Haarlem, 1986.
De Jong, J.: RGD Pal. Lab. Rap. 895, 895ab – Gegevens inzake te verrichten C14-ouderdomsbepaingen i.v.m. de genese van de Utrechtse Vecht en de Kromme Amstel, Rijks Geologische Dienst, Haarlem, 1988.
De Jong, J.: RGD Pal. Lab. Rap. 1067 – Pollenanalytisch en C14-onderzoek aan strandvlakteveen uit het stadsdeel Schalkwijk onder Haarlem, Rijks Geologische Dienst, Haarlem, 1989.
De Jong, J.: RGD Pal. Lab. Rap. 974a – Uitkomst van een C14-bepaling aan veen afkomstig uit een bouwput aan de Hambakenweg te Den Bosch, Rijks Geologische Dienst, Haarlem, 1990.
De Jong, J.: RGD Pal. Lab. Rap. 1161 – Schoorl Strand, veldwaarnemingen en resultaten van pollenanalytisch- en C14-onderzoek, Rijks Geologische Dienst, Haarlem, 1992a.
De Jong, J.: RGD Pal. Lab. Rap. 1178 – Pollenanalytisch – en C14-onderzoek van een boring uit de strandvlakte te Ruigenhoek, Rijks Geologische Dienst, Haarlem, 1992b.
De Jong, J. and van Regteren Altena, J.: Enkele geologische en archeologische waarnemingen in Alkmaars oude stad – Alkmaar, van boederij tot middeleeuwse stad, Alkmaarse Studieën 1, 1972.
De Moor, J. J. W., Bos, J. A. A., Bouman, M., Moolhuizen, C., Exaltus, R. P., Maartense, F. P. A., and Van der Linden, T. J. M.: Definitief Archeologisch Onderzoek in het tracé van de Hanzelijn in het Nieuwe Land, Een interdisciplinaire geo-archeologische waardering van het begraven landschap van Oostelijk Flevoland, Deltares 1001311-000-GEO-0005, 2009.
De Moor, J. J. W., Maurer, A. M., Houchin, R., and Fritzsch, D.: Almere Poort, Godendreef Verstoringsonderzoek 4J4K_I De Distel, https://doi.org/10.17026/dans-zpt-4yfk, 2013.
De Mulder, E. F. J. and Bosch, J. H. A.: Holocene stratigraphy, radiocarbon datings and paleogeography of central and northern North-Holland (the Netherlands), Mededelingen – Rijks Geologische Dienst, 36, 111–160, 1982.
De Wit, K. and Cohen, K. M.: HOLSEA-NL: Holocene water level and sea-level indicator dataset for the Netherlands (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.11098447, 2024.
Delibrias, G., Guillier, M. T., and Labeyrie, J.: Gif Natural Radiocarbon Measurements VIII, Radiocarbon, 16, 15–94, https://doi.org/10.1017/S0033822200001417, 1974.
Du Burck, P.: Enige beschouwingen over het ontstaan van de oudere zeeklei-afzettingen en het oppervlakte-veen in het noordelijk deel van Noord-Holland: uitgaande van stratigrafische gegevens en met behulp van enkele 14C bepalingen en palynologische analysen, STIBOKA, Voorl. Wet. Med. 10, 1960.
Du Burck, P.: De bodemgesteldheid van de Anna Paulownapolder en van de polder Het Koegras, STIBOKA, no. 927, 1972.
Ente, P. J., Zagwijn, W. H., and Mook, W. G.: The Calais deposits in the vicinity of wieringen and the geogenisis of Northern North Holland, Geol. Mijnbouw, 54, 1–14, 1975.
Erkens, G., Van der Meulen, M. J., and Middelkoop, H.: Double trouble: subsidence and CO2 respiration due to 1000 yr of Dutch coastal peatlands cultivation, Hydrogeol. J., 24, 551–568, https://doi.org/10.1007/s10040-016-1380-4, 2016.
Gotjé, W.: De Holocene laagveenontwikkeling in de randzone van de Nederlandse kustvlakte (Noordoostpolder), PhD thesis, Vrije Universiteit, Amsterdam, https://hdl.handle.net/1871/12715 (last access: 30 January 2025), 1993.
Gotjé, W.: BIAXiaal 40 Het landschap in Zuidelijk Flevoland tussen 9500 en 4300 BP. Een landschapsreconstructie in het gebied Wet Bodembescherming, BIAX, 1997a.
Gotjé, W.: De vegetatie op en rond een Mesolithische en Vroeg Neolithische vindplaats, Een ecologisch onderzoek aan drie kernen op de vindplaats Hoge Vaart, BIAXiaal, 36, 1997b.
Gouw, M. J. P.: Alluvial architecture of the Holocene Rhine–Meuse delta (the Netherlands), Sedimentology, 55, 1487–1516, https://doi.org/10.1111/j.1365-3091.2008.00954.x, 2008.
Gouw, M. J. P. and Erkens, G.: Architecture of the Holocene Rhine-Meuse delta (the Netherlands) – A result of changing external controls, Neth. J. Geosci., 86, 23–54, https://doi.org/10.1017/S0016774600021302, 2007.
Griede, J. W.: Het ontstaan van Frieslands Noordhoek, PhD thesis, Universiteit Amsterdam, 186 pp., ISBN 978-90-6203-390-4, 1978.
Groenendijk, H., Mook-Kamps, E., and Elerie, J. N. H.: Op zoek naar de horizon: het landschap van Oost-Groningen en zijn bewoners tussen 8000 voor Chr. en 1000 na Chr., REGIO-PRojekt Uitgevers Groningen, ISBN 9050280838, 1997.
Hamburg, T. and Knippenberg, S.: Proefsleuven op drie locaties binnen het tracé van de Hanzelijn “Oude Land”, Archol, Leiden, 2006.
Hamburg, T., Müller, A., and Quadflieg, B.: Dronten Swifterbant N23 vindplaats 5 Opgraving (V1), Archol BV, ADC ArcheoProjecten, Haveka bv, Alblasserdam, https://doi.org/10.17026/dans-zeh-g9g8, 2012.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20 – The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Hijma, M. P.: From river valley to estuary: the early-mid Holocene transgression of the Rhine-Meuse valley, the Netherlands, Dissertation, Utrecht University, Royal Dutch Geographical Society, ISBN 978-90-6809-432-9, 2009.
Hijma, M. P. and Cohen, K. M.: Timing and magnitude of the sea-level jump preluding the 8200 yr event, Geology, 38, 275–278, https://doi.org/10.1130/G30439.1, 2010.
Hijma, M. P. and Cohen, K. M.: Holocene transgression of the Rhine river mouth area, The Netherlands/Southern North Sea: palaeogeography and sequence stratigraphy, Sedimentology, 58, 1453–1485, https://doi.org/10.1111/j.1365-3091.2010.01222.x, 2011.
Hijma, M. P. and Cohen, K. M.: Holocene sea-level database for the Rhine-Meuse Delta, the Netherlands: Implications for the pre-8.2 ka sea-level jump, Quaternary Sci. Rev., 214, 68–86, https://doi.org/10.1016/j.quascirev.2019.05.001, 2019.
Hijma, M. P., Cohen, K. M., Hoffmann, G., Spek, A. J. F. V. der, and Stouthamer, E.: From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine-Meuse delta), Neth. J. Geosci., 88, 13–53, https://doi.org/10.1017/S0016774600000986, 2009.
Hijma, M. P., Engelhart, S. E., Törnqvist, T. E., Horton, B. P., Hu, P., and Hill, D. F.: A protocol for a geological sea-level database, in: Handbook of Sea-Level Research, John Wiley & Sons, Ltd, 536–553, https://doi.org/10.1002/9781118452547.ch34, 2015.
Hoek, W. Z.: Late-glacial and early Holocene climatic events and chronology of vegetation development in the Netherlands, Veg. Hist. Archaebot., 6, 197–213, https://doi.org/10.1007/BF01370442, 1997.
Hofstede, J., Berendsen, H., and Janssen, C.: Holocene palaeogeography and palaeoecology of the fluvial area near Maurik (Neder-Betuwe, the Netherlands), Geol. Mijnbouw, 68, 409–419, 1989.
Jelgersma, S.: Die Palynologische und C14-Untersuchung einiger Torfprofile aus dem NS-Profil Meedhuizen-Farmsum, Das Ems-Estuarium (Nordsee). Verh. K. Ned. Geol.-Mijnb. k. Gen. Geol. Ser, 19, 25–32, 1960.
Jelgersma, S.: Holocene sea-level changes in the Netherlands, PhD dissertation, Leiden University, Leiden, 1961.
Jelgersma, S., de Jong, S., Zagwijn, W., and van Regteren Altena, J.: The coastal dunes of the western Netherlands: geology, vegetational history and archeology, Mededelingen Rijks Geologische Dienst 21, 93–167, 1970.
Kasse, C. and Aalbersberg, G.: A complete Late Weichselian and Holocene record of aeolian coversands, drift sands and soils forced by climate change and human impact, Ossendrecht, the Netherlands, Neth. J. Geosci., 98, e4, https://doi.org/10.1017/njg.2019.3, 2019.
Khan, N. S., Horton, B. P., Engelhart, S., Rovere, A., Vacchi, M., Ashe, E. L., Törnqvist, T. E., Dutton, A., Hijma, M. P., and Shennan, I.: Inception of a global atlas of sea levels since the Last Glacial Maximum, Quaternary Sci. Rev., 220, 359–371, https://doi.org/10.1016/j.quascirev.2019.07.016, 2019.
Khan, N., Ashe, E., Kopp, R., and Horton, B.: HOLSEA Archive Your Data, https://www.holsea.org/archive-your-data, last access: 2 July 2024.
Kiden, P.: The Late Holocene evolution of the perimarine part of the River Scheldt, The Quaternary and Tertiary Geology of the Southern Bight, North Sea. Belgische Geologische Dienst, Brussel, 173–184, 1989.
Kiden, P.: Holocene relative sea-level change and crustal movement in the southwestern Netherlands, Mar. Geol., 124, 21–41, https://doi.org/10.1016/0025-3227(95)00030-3, 1995.
Kiden, P. and Vos, P. C.: Holocene relative sea-level change and land movements in the northern Netherlands – a first assessment, in: 3rd IGCP588-Conference “Preparing for Coastal Change” Conference Program – Book of Abstracts. Christian-Albrechts-Universität zu Kiel (Kiel), 2012.
Kiden, P., Denys, L., and Johnston, P.: Late Quaternary sea-level change and isostatic and tectonic land movements along the Belgian-Dutch North Sea coast: geological data and model results, J. Quaternary Sci., 17, 535–546, https://doi.org/10.1002/jqs.709, 2002.
Kiden, P., Makaske, B., and Van de Plassche, O.: Waarom verschillen de zeespiegelreconstructies voor Nederland?, Grondboor Hamer, 62, 54–61, 2008.
Kooi, H., Johnston, P., Lambeck, K., Smither, C., and Ronald Molendijk: Geological causes of recent (∼100 yr) vertical land movement in the Netherlands, Tectonophysics, 299, 297–316, https://doi.org/10.1016/S0040-1951(98)00209-1, 1998.
Kooistra, M. J., Kooistra, L. I., Van Rijn, P., and Sass-Klaassen, U.: Woodlands of the past – The excavation of wetland woods at Zwolle-Stadshagen (the Netherlands): Reconstruction of the wetland wood in its environmental context, Neth. J. Geosci., 85, 37–60, 2006.
Koster, K., Stafleu, J., and Cohen, K. M.: Generic 3D interpolation of Holocene base-level rise and provision of accommodation space, developed for the Netherlands coastal plain and infilled palaeovalleys, Basin Res., 29, 775–797, https://doi.org/10.1111/bre.12202, 2017.
Lambeck, K.: Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio-hydro-isostatic rebound, J. Geol. Soc. London, 152, 437–448, https://doi.org/10.1144/gsjgs.152.3.0437, 1995.
Lohof, E. and Alders, P. G.: Hattemerbroek Bedrijventerrein Noord (2), DANS Data Station Archaeology [data set], V2, https://doi.org/10.17026/dans-zyt-zzer, 2008.
Lohof, E., Hamburg, T., and Flamman, J.: Steentijd opgespoord. Archeologisch onderzoek in het tracé van de Hanzelijn-Oude Land, Archol & ADC-Archeoprojecten, Leiden, Amersfoort (Archol report 138 & ADC report 2576), 2011.
Louwe Kooijmans, L.: The Rhine/Meuse Delta. Four studies on its prehistoric occupation and Holocene geology, Leiden University, Leiden, https://hdl.handle.net/1887/28137 (last access: 30 January 2025), 1972.
Makaske, B. and Maas, G. J.: Different hydrological controls causing variable rates of Holocene peat growth in a lowland valley system, north-eastern Netherlands, implications for valley peatland restoration, Holocene, 33, 960–974, https://doi.org/10.1177/09596836231169985, 2023.
Makaske, B., Smeerdijk, D. G. van, Mulder, J. R., and Spek, T.: De stijging van de waterspiegel nabij Almere in de periode 5300–2300 v. Chr, Alterra, Wageningen, 2002.
Makaske, B., Smeerdijk, D. G. V., Peeters, H., Mulder, J. R., and Spek, T.: Relative water-level rise in the Flevo lagoon (the Netherlands), 5300–2000 cal yr BC: an evaluation of new and existing basal peat time-depth data, Neth. J. Geosci., 82, 115–131, https://doi.org/10.1017/S0016774600020680, 2003.
Meijles, E. W., Kiden, P., Streurman, H.-J., Van der Plicht, J., Vos, P. C., Gehrels, W. R., and Kopp, R. E.: Holocene relative mean sea-level changes in the Wadden Sea area, northern Netherlands, J. Quaternary Sci., 33, 905–923, https://doi.org/10.1002/jqs.3068, 2018.
Morzadec-Kerfourn, M. T. and Delibrias, G.: Analyses polliniques et datations radiocarbone des sediments quaternaires preleves en Manche centrale et orientale, Memoir. Bur. Rech. Geol. Min., 79, 160–165, 1972.
NAM: Aanvraag Instemming Winningsplan Gaag-Monster, Nederlandse Aardolie Maatschappij B.V., Assen, the Netherlands, 2017.
NAM: Statusrapport 2020 en Prognose tot het jaar 2080, Nederlandse Aardolie Maatschappij B.V., Assen, the Netherlands, EP Document No.: EP201511213444, 2020.
Nicolay, J., Schepers, M., Postma, D., and Kaspers, A.: Firdgum: pioniers, boeren en terpbewoners, in: De geschiedenis van terpen-en wierdenland: Een verhaal in ontwikkeling, Vereniging voor Terpenonderzoek, 133–148, ISBN 978-90-829691-0-8, 2018.
Nieuwhof, A. and Vos, P. C.: Landschap en bewoningsgeschiedenis, in: De wierde Wierum (provincie Groningen). Een archeologisch steilkantonderzoek (= Groningen Archaeological Studies 3), edited by: Nieuwhof, A., Barkhuis Publishing and Groningen University Library (Groningen), ISBN 9077922172, 2006.
Osinga, M. and Hekman, J. J.: Archeologisch onderzoek Hanzelijn deelgebieden XIV en XV, Grontmij, Assen, 2011.
Peeters, J., Busschers, F. S., Stouthamer, E., Bosch, J. H. A., Van den Berg, M. W., Wallinga, J., Versendaal, A. J., Bunnik, F. P. M., and Middelkoop, H.: Sedimentary architecture and chronostratigraphy of a late Quaternary incised-valley fill: A case study of the late Middle and Late Pleistocene Rhine system in the Netherlands, Quaternary Sci. Rev., 131, 211–236, https://doi.org/10.1016/j.quascirev.2015.10.015, 2016.
Peeters, J. H. M.: Hoge Vaart-A27 in context: towards a model of mesolithic – neolithic land use dynamics as a framework for archaeological heritage management, PhD thesis, Amsersfoort Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten, https://hdl.handle.net/11245/1.262008 (last access: 30 January 2025), 2007.
Pierik, H. J. and Cohen, K. M.: The use of geological, geomorphological and soil mapping products in palaeolandscape reconstructions for the Netherlands, Neth. J. Geosci., 99, e9, https://doi.org/10.1017/njg.2020.8, 2020.
Pierik, H. J., Cohen, K. M., Vos, P. C., Van der Spek, A. J. F., and Stouthamer, E.: Late Holocene coastal-plain evolution of the Netherlands: the role of natural preconditions in human-induced sea ingressions, P. Geologist. Assoc., 128, 180–197, https://doi.org/10.1016/j.pgeola.2016.12.002, 2017.
Pierik, H. J., Moree, J. I. M., van der Werf, K. M., Roelofs, L., Albernaz, M. B., Wilbers, A., van der Valk, B., van Dinter, M., Hoek, W. Z., de Haas, T., and Kleinhans, M. G.: Vegetation and peat accumulation steer Holocene tidal–fluvial basin filling and overbank sedimentation along the Old Rhine River, the Netherlands, Sedimentology, 70, 179–213, https://doi.org/10.1111/sed.13038, 2023.
Pons, L. J. and Wiggers, A. J.: The holocene wordingsgeschiedenis van Noord-Holland en het Zuiderzeegebied = The holocene genesis of the province of North-Holland and the Zuyder Sea region, STIBOKA, https://edepot.wur.nl/251518 (last access: 30 January 2025), 1960.
Quik, C., Van der Velde, Y., Harkema, T., Van der Plicht, H., Quik, J., Van Beek, R., and Wallinga, J.: Using legacy data to reconstruct the past? Rescue, rigour and reuse in peatland geochronology, Earth Surf. Proc. Land., 46, 2607–2631, https://doi.org/10.1002/esp.5196, 2021.
Quik, C., Palstra, S. W. L., Van Beek, R., Van der Velde, Y., Candel, J. H. J., Van der Linden, M., Kubiak-Martens, L., Swindles, G. T., Makaske, B., and Wallinga, J.: Dating basal peat: The geochronology of peat initiation revisited, Quat. Geochronol., 72, 101278, https://doi.org/10.1016/j.quageo.2022.101278, 2022.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Plicht, J. van der, Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Schrijer, E., Lohof, E., and Waldus, W. B.: Tzummarum, rotonde (gem. Franekeradeel). Een archeologische opgraving en een begeleiding, ADC ArcheoProjecten, Amersfoort, ISBN 90-5874-62-24, 2006.
Shennan, I.: Interpretation of Flandrian sea-level data from the Fenland, England, Proc. Geologist. Assoc., 93, 53–63, https://doi.org/10.1016/S0016-7878(82)80032-1, 1982.
Shennan, I. and Horton, B.: Holocene land- and sea-level changes in Great Britain, J. Quaternary Sci., 17, 511–526, https://doi.org/10.1002/jqs.710, 2002.
Shennan, I., Lambeck, K., Flather, R., Horton, B., McArthur, J., Innes, J., Lloyd, J., Rutherford, M., and Wingfield, R.: Modelling western North Sea palaeogeographies and tidal changes during the Holocene, Geol. Soc. Spec. Publ., 166, 299–319, https://doi.org/10.1144/GSL.SP.2000.166.01.15, 2000.
Simon, K. M. and Riva, R. E. M.: Uncertainty Estimation in Regional Models of Long-Term GIA Uplift and Sea Level Change: An Overview, J. Geophys. Res.-Sol. Ea., 125, e2019JB018983, https://doi.org/10.1029/2019JB018983, 2020.
Slupik, A. A., Wesselingh, F. P., Mayhew, D. F., Janse, A. C., Dieleman, F. E., Strydonck, M. van, Kiden, P., Burger, A. W., and Reumer, J. W. F.: The role of a proto-Schelde River in the genesis of the southwestern Netherlands, inferred from the Quaternary successions and fossils in Moriaanshoofd Borehole (Zeeland, the Netherlands), Neth. J. Geosci., 92, 69–86, https://doi.org/10.1017/S0016774600000299, 2013.
Spek, T., Bisdom, E. B. A., and van Smeerdijk, D. G.: Verdronken dekzandgronden in Zuidelijk Flevoland (archeologische opgraving “A27-Hoge Vaart”), een interdisciplinaire studie naar de veranderingen van bodem en landschap in het Mesolithicum en Vroeg-Neolithicum, Staring Centrum, Netherlands, 1997.
Stafleu, J., Maljers, D., Busschers, F., Gunnink, J., Schokker, J., Dambrink, R. M., Hummelman, H. J., and Schijf, M. L.: GeoTop modellering, TNO, 2012.
Steffelbauer, D. B., Riva, R. E. M., Timmermans, J. S., Kwakkel, J. H., and Bakker, M.: Evidence of regional sea-level rise acceleration for the North Sea, Environ. Res. Lett., 17, 074002, https://doi.org/10.1088/1748-9326/ac753a, 2022.
Stouthamer, E. and Berendsen, H. J. A.: Factors Controlling the Holocene Avulsion History of the Rhine-Meuse Delta (the Netherlands), J. Sediment. Res., 70, 1051–1064, https://doi.org/10.1306/033000701051, 2000.
Teunissen, D.: De bewoningsgeschiedenis van Nijmegen en omgeving, haar relatie tot de landschapsbouw en haar weerspiegeling in palynologische gegevens, Mededelingen van de Afdeling Biogeologie van de Sectie Biologie van de Katholieke Universiteit van Nijmegen, 108 pp., 1988.
Teunissen, D.: Palynologisch onderzoek in het oostelijk rivierengebied: een overzicht, Mededelingen van de Afdeling Biogeologie van de Sectie Biologie van de Katholieke Universiteit van Nijmegen 16, 163 pp., 1990.
Törnqvist, T., Weerts, H. J. T., and Berendsen, H.: Definition of two new members in the upper Kreftenheye and Twente Formations (Quaternary, the Netherlands): a final solution to persistent confusion?, Geol. Mijnbouw, 72, 251–264, 1994.
Törnqvist, T. E.: Holocene alternation of meandering and anastomosing fluvial systems in the Rhine-Meuse delta (central Netherlands) controlled by sea-level rise and subsoil erodibility, J. Sediment. Res., 63, 683–693, 1993.
Törnqvist, T. E., Van Ree, M. H. M., Van 'T Veer, R., and Van Geel, B.: Improving Methodology for High-Resolution Reconstruction of Sea-Level Rise and Neotectonics by Paleoecological Analysis and AMS 14C Dating of Basal Peats, Quaternary Res., 49, 72–85, https://doi.org/10.1006/qres.1997.1938, 1998.
Törnqvist, T. E., González, J. L., Newsom, L. A., Van der Borg, K., De Jong, A. F. M., and Kurnik, C. W.: Deciphering Holocene sea-level history on the U. S. Gulf Coast: A high-resolution record from the Mississippi Delta, GSA Bull., 116, 1026–1039, https://doi.org/10.1130/B2525478.1, 2004.
Uehara, K., Scourse, J. D., Horsburgh, K. J., Lambeck, K., and Purcell, A. P.: Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present, J. Geophys. Res.-Oceans, 111, https://doi.org/10.1029/2006JC003531, 2006.
Van Asselen, S.: Peat compaction in deltas: implications for Holocene delta evolution, Dissertation, Koninklijk Nederlands Aardrijkskundig Genootschap, ISBN 978-90-6809-438-1, 2010.
Van Asselen, S.: The contribution of peat compaction to total basin subsidence: implications for the provision of accommodation space in organic-rich deltas: The contribution of peat compaction to basin subsidence, Basin Res., 23, 239–255, https://doi.org/10.1111/j.1365-2117.2010.00482.x, 2011.
Van Asselen, S., Stouthamer, E., and Van Asch, Th. W. J.: Effects of peat compaction on delta evolution: A review on processes, responses, measuring and modeling, Earth-Sci. Rev., 92, 35–51, https://doi.org/10.1016/j.earscirev.2008.11.001, 2009.
Van Asselen, S., Cohen, K. M., and Stouthamer, E.: The impact of avulsion on groundwater level and peat formation in delta floodbasins during the middle-Holocene transgression in the Rhine-Meuse delta, the Netherlands, Holocene, 27, 1694–1706, https://doi.org/10.1177/0959683617702224, 2017.
Van de Meene, J. W.: The shoreface-connected ridges along the central Dutch coast, Utrecht, Koninklijk Nederlands Aardrijkskundig Genootschap, ISBN 9062661122, 1994.
Van de Plassche, O.: Compaction and Other Sources of Error in Obtaining Sea-Level Data: Some Results and Consequences, E&G Quaternary Sci. J., 30, 171–182, https://doi.org/10.3285/eg.30.1.14, 1980.
Van de Plassche, O.: Sea-level change and water-level movements in the Netherlands during the Holocene, Mededelingen Rijks Geologische Dienst, 36, 1–93, 1982.
Van de Plassche, O.: Sea-level research: a manual for the collection and evaluation of data, Geo Books, Norwich, 1986.
Van de Plassche, O.: Evolution of the intra-coastal tidal range in the Rhine-Meuse delta and Flevo Lagoon, 5700–3000 yrs cal B. C., Mar. Geol., 124, 113–128, https://doi.org/10.1016/0025-3227(95)00035-W, 1995a.
Van de Plassche, O.: Periodic clay deposition in a fringing peat swamp in the lower Rhine-Meuse river area, 5400–3400 cal BC, J. Coastal Res., 95–102, 1995b.
Van de Plassche, O., Bohncke, S. J. P., Makaske, B., and Van der Plicht, J.: Water-level changes in the Flevo area, central Netherlands (5300–1500 BC): implications for relative mean sea-level rise in the Western Netherlands, Quatern. Int., 133–134, 77–93, https://doi.org/10.1016/j.quaint.2004.10.009, 2005.
Van de Plassche, O., Makaske, B., Hoek, W. Z., Konert, M., and Van Der Plicht, J.: Mid-Holocene water-level changes in the lower Rhine-Meuse delta (western Netherlands): implications for the reconstruction of relative mean sea-level rise, palaeoriver-gradients and coastal evolution, Neth. J. Geosci., 89, 3–20, https://doi.org/10.1017/S0016774600000780, 2010.
Van den Berg, M. and Beets, D.: Saalian glacial deposits and morphology in the Netherlands, Tills and Glaciotectonics. Balkema, Rotterdam, 235–251, 1987.
Van den Biggelaar, D. F. A. M., Kluiving, S. J., Bohncke, S. J. P., Van Balen, R. T., Kasse, C., Prins, M. A., and Kolen, J.: Landscape potential for the adoption of crop cultivation: Role of local soil properties and groundwater table rise during 6000–5400 BP in Flevoland (central Netherlands), Quatern. Int., 367, 77–95, https://doi.org/10.1016/j.quaint.2014.09.063, 2015.
Van den Brenk, S., Huisman, H., Willemse, N. W., Smit, B., and Van Os, B. J. H.: Magnetometer mapping of drowned prehistoric landscapes for Archaeological Heritage Management in the Netherlands, Archaeol. Prospect., 1–16, https://doi.org/10.1002/arp.1925, 2023.
Van der Linden, M.: Palynologisch onderzoek aan een veen- en kleipakket uit het Laat-Mesolithicum bij Almere-De Vaart, BIAXiaal 493, BIAX, Zaandam, 2010a.
Van der Linden, M.: Verlaten donken onder het veen? Paleoecologisch onderzoek aan een veenpakket bij Dinteloord, BIAXiaal 501, BIAX, Zaandam, 2010b.
Van der Meulen, M. J., Doornenbal, J. C., Gunnink, J. L., Stafleu, J., Schokker, J., Vernes, R. W., Geer, F. C. van, Gessel, S. F. van, Heteren, S. van, Leeuwen, R. J. W. van, Bakker, M. a. J., Bogaard, P. J. F., Busschers, F. S., Griffioen, J., Gruijters, S. H. L. L., Kiden, P., Schroot, B. M., Simmelink, H. J., Berkel, W. O. van, Krogt, R. A. A. van der, Westerhoff, W. E., and Daalen, T. M. van: 3D geology in a 2D country: perspectives for geological surveying in the Netherlands, Neth. J. Geosci., 92, 217–241, https://doi.org/10.1017/S0016774600000184, 2013.
Van der Molen, J. and De Swart, H. E.: Holocene tidal conditions and tide-induced sand transport in the southern North Sea, J. Geophys. Res.-Oceans, 106, 9339–9362, https://doi.org/10.1029/2000JC000488, 2001.
Van der Spek, A. J. F.: Large-scale evolution of Holocene tidal basins in the Netherlands, PhD thesis, Universiteit Utrecht Faculteit Aardwetenschappen, ISBN 90-393-0664-8, 1994.
Van der Woude, J. D.: Holocene paleoenvironmental evolution of a perimarine fluviatile area, PhD dissertation, Vrije Universiteit Amsterdam, 1981.
Van der Woude, J. D.: Holocene paleoenvironmental evolution of a perimarine fluviatile area: geology and paleobotany of the area surrounding the archeological excavation at the Hazendonk river dune (western Netherlands), Leiden U. P. Modderman Stichting, Leiden, 124 pp., ISBN 90 0407 166 0, 1983.
Van Dijk, G. J.: Holocene water level development in the Netherlands' river area, implications for sea-level reconstruction, Geol. Mijnbouw, 70, 311–326, 1991.
Van Dijk, G. J., Berendsen, H. J. A., and Roeleveld, W.: Holocene water level development in the Netherlands' river area, implications for sea-level reconstruction, Geol. Mijnbouw, 70, 311–326, 1991.
Van Dinter, M.: Hoofdstuk 10 Fysische Geografie, in: De opgraving en lichting van de 15e eeuwse IJsselkogge, ADC monografie 24, edited by: Waldus, W. B., ADC ArcheoProjecten, 119–133, ISBN 978-94-6064-413-9, 2018.
Van Dinter, M., Cohen, K. M., Hoek, W. Z., Stouthamer, E., Jansma, E., and Middelkoop, H.: Late Holocene lowland fluvial archives and geoarchaeology: Utrecht's case study of Rhine river abandonment under Roman and Medieval settlement, Quaternary Sci. Rev., 166, 227–265, https://doi.org/10.1016/j.quascirev.2016.12.003, 2017.
Van Heteren, S., Van der Spek, A., and De Groot, T.: Architecture of a preserved Holocene tidal complex offshore the Rhine-Meuse river mouth, the Netherlands, Netherlands Institute of Applied Geoscience TNO – National Geological Survey, TNO report NITG 01-027-A, 2002.
Van Lil, R.: Aanleg N23 tussen Lelystad en Dronten, ADC ArcheoProjecten, ISBN 978-90-6836-567-2, 2008.
Van Smeerdijk, D. G.: Pollenonderzoek aan materiaal uit de top van een Pleistocene dekzandrug in Almere Hout ten behoeve van de Cursus Archeologie, BIAXiaal report 197, BIAX, Zaandam, 2003.
Van Smeerdijk, D. G.: Palynologisch onderzoek en 14C AMS datering van een venige laag uit de locatie Ripperda-complex in Haarlem, BIAXiaal report 204, BIAX, Zaandam, 2004.
Van Smeerdijk, D. G.: Palynologisch onderzoek en datering van de overgang van het pleistocene zand naar het afdekkende veen bij de Noorderplassen-West in Almere, BIAXiaal 283, BIAX, Zaandam, 2006.
Van Straaten, L. M. J. U.: Radiocarbon datings and changes of sea level at Velzen (Netherlands), Geol. Mijnbouw (N W. SE R.), 16, 247–253, 1954.
Van Straaten, L. M. J. U. and De Jong, J.: The excavation at Velsen. A Detailed Study of Upper-Pleistocene and Holocene Stratigraphy, Verh. Kon. Ned. Geol.-Mijnbouwk. Gen., Geol. Ser., Deel XVII, Tweede Stuk, 93–99, 1957.
Van Veen, J.: Eb-en vloedschaar systemen in de Nederlandse getijwateren, Tijdschrift Koninklijk Nederlands Aardrijkskundig Genootschap, 67, 303–325, 1950.
Van Veen, J., Van der Spek, A. J. F., Stive, M. J. F., and Zitman, T.: Ebb and Flood Channel Systems in the Netherlands Tidal Waters, J. Coastal Res., 21, 1107–1120, https://doi.org/10.2112/04-0394.1, 2005.
Varwijk, T. and de Langen, G.: Terpzoolopgraving Wommels-Stapert 2014 (GIA 138). Terug na 20 jaar: Nieuw archeologisch onderzoek aan de commercieel afgegraven terp Stapert bij Wommels in het hart van Westergo (Friesland), Groninger Instituut voor Archeologie, Rijksuniversiteit Groningen, 2018.
Veldkamp, M. A.: Pollenanalytische en C14-dateringen van de boring Maassluis 37B/226. Palaeobotanie Kenozoïcum 1255A, Rijks Geologische Dienst, Haarlem, 1996.
Verbraeck, A.: Toelichtingen bij de Geologische kaart van Nederland 1: 50.000, Blad Tiel West (39 W) en Blad Tiel Oost (39 O). Rijks Geologische Dienst (Haarlem), 1984.
Verbruggen, M.: Geoarchaeological prospection of the Rommertsdonk, Analecta Praehistorica Leidensia 25: The end of our third decade: Papers written on the occasion of the 30th anniversary of the Institutte of prehistory, vol. I, 25, 119–128, https://hdl.handle.net/1887/28096 (last access: 31 January 2025), 1992.
Vermeersen, B. L. A., Slangen, A. B. A., Gerkema, T., Baart, F., Cohen, K. M., Dangendorf, S., Duran-Matute, M., Frederikse, T., Grinsted, A., Hijma, M. P., Jevrejeva, S., Kiden, P., Kleinherenbrink, M., Meijles, E. W., Palmer, M. D., Rietbroek, R., Riva, R. E. M., Schulz, E., Slobbe, D. C., Simpson, M. J. R., Sterlini, P., Stocchi, P., Van de Wal, R. S. W., and Van der Wegen, M.: Sea-level change in the Dutch Wadden Sea, Neth. J. Geosci., 97, 79–127, https://doi.org/10.1017/njg.2018.7, 2018.
Vink, A., Steffen, H., Reinhardt, L., and Kaufmann, G.: Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea), Quaternary Sci. Rev., 26, 3249–3275, https://doi.org/10.1016/j.quascirev.2007.07.014, 2007.
Vis, G.-J., Cohen, K. M., Westerhoff, W. E., Veen, J. H. T., Hijma, M. P., van der Spek, A. J. F., and Vos, P. C.: Paleogeography, in: Handbook of Sea-Level Research, John Wiley & Sons, Ltd, 514–535, https://doi.org/10.1002/9781118452547.ch33, 2015.
Vogel, J. C. and Waterbolk, H. T.: Groningen Radiocarbon Dates IV, Radiocarbon, 5, 163–202, https://doi.org/10.1017/S0033822200036857, 1963.
Vos, P. C.: Toelichting kaartblad 43/49 West en 49 Oost: concept toelichting 43/49 West, Holocene deel, Rijks Geologische Dienst, Distrikt Noord, Haarlem, 41 pp., 1992.
Vos, P. C.: The Subatlantic evolution of the coastal area around the Wijnaldum-Tjitsma terp. With a contribution by B. A. M. Baardman. in: The Excavations at Wijnaldum. Reports on Frisia in Roman and Medieval times, vol. I, edited by: Besteman, J. C., Bos, J. M., Gerrets, D. A., Heidinga, H. A., and De Koning, J., Balkema (Rotterdam/Brookfield), 33–72, ISBN 978-9054104889, 1999.
Vos, P. C.: Geologisch en paleolandschappelijk onderzoek Yangtzehaven (Maasvlakte, Rotterdam). Deltares report 1206788-000-BGS-000187, Deltares, 2013.
Vos, P. C.: Op veilige afstand van de Marne: geologische en paleolandschappelijke waarnemingen in Achlum. in: Graven aan de voet van de Achlumer dorpsterp. Archeologische sporen rondom een terpnederzetting (= Jaarverslagen van de Vereniging voor Terpenonderzoek 97), edited by: Nicolay, J. A. W. and de Langen, G., Vereniging voor Terpenonderzoek, Groningen, 31–47, ISBN 978-90-811714-7-2, 2015a.
Vos, P. C.: Origin of the Dutch coastal landscape: Long-term landscape evolution of the Netherlands during the Holocene, described and visualized in national, regional and local palaeogeographical map series, Barkhuis, 373 pp., ISBN 978-94-92444-42-4, 2015b.
Vos, P. C. and Cohen, K. M.: Landscape genesis and palaeogeography. in: Interdisciplinary Archaeological Research Programme Maasvlakte 2, edited by: Moree, J. M., Sier, M. M., vol. 566, BOOR Rotterdam, 2014.
Vos, P. C. and Gerrets, D. A.: Archaeology: a major tool in the reconstruction of the coastal evolution of Westergo (northern Netherlands), Quatern. Int., 133, 61–75, 2005.
Vos, P. C. and Nieuwhof, A.: Late-Holocene sea-level reconstruction (1200 BC–AD 100) in the Westergo terp region of the northern Netherlands, Neth. J. Geosci., 100, e3, https://doi.org/10.1017/njg.2021.1, 2021.
Vos, P. C. and Van Zijverden, W. K.: Landschappelijke ligging, in: ADC Monografie. Een terp op de schop, edited by: Dijkstra, J. and Nicolay, J. A. W., Archeologisch onderzoek op het Oldehoofsterkerkhof te Leeuwarden, vol. 3, 25–42, 2008.
Vos, P. C. and Varwijk, T.: Paleolandschappelijke opname Saksenoord (GIA 133), DANS Data Station Archaeology, 2017.
Vos, P. C. and Waldus, W. B.: Landschap en bewoning: over terpen, kwelderwallen en de bedijkingsgeschiedenis, Middeleeuwse bewoningssporen bij Beetgumermolen (= ADC-rapport 3213). ADC-ArcheoProjecten (Amersfoort), 62–65, 2012.
Vos, P. C., Meijer, T., and Van Os, B.: Bodem en geologie. Paleolandschappelijk onderzoek op en rond De Bloemert, in: Opgravingen bij Midlaren: 5000 jaar wonen tussen Hondsrug en Hunzedal (Deel I), edited by: Nicolay, J. A. W., Barkhuis Publishing and Groningen University Library, Groningen, 17–39, ISBN 9789077922439, 2008.
Vos, P. C., Bazelmans, J., Weerts, H. J. T., and Van de Meulen, M. J.: Atlas Van Nederland in Het Holoceen, RCE, TNO en Deltares, 94 pp., ISBN 9789-03-513-639-7, 2011.
Vos, P. C., Bunnik, F. P. M., Cohen, K. M., and Cremer, H.: A staged geogenetic approach to underwater archaeological prospection in the Port of Rotterdam (Yangtzehaven, Maasvlakte, The Netherlands): A geological and palaeoenvironmental case study for local mapping of Mesolithic lowland landscapes, Quatern. Int., 367, 4–31, https://doi.org/10.1016/j.quaint.2014.11.056, 2015.
Vos, P. C., Van der Meulen, M., Weerts, H., and Bazelmans, J.: Atlas of the Holocene Netherlands, landscape and habitation since the last ice age, Amsterdam University Press, Amsterdam, 96 pp., ISBN 978-94-6372-443-2, 2020.
Ward, I., Larcombe, P., and Lillie, M.: The dating of Doggerland–post-glacial geochronology of the southern North Sea, Environ. Archaeol., 11, 207–218, 2006.
Ward, S. L., Neill, S. P., Scourse, J. D., Bradley, S. L., and Uehara, K.: Sensitivity of palaeotidal models of the northwest European shelf seas to glacial isostatic adjustment since the Last Glacial Maximum, Quaternary Sci. Rev., 151, 198–211, https://doi.org/10.1016/j.quascirev.2016.08.034, 2016.
Weerts, H. and Berendsen, H.: Late Weichselian and Holocene fluvial palaeogeography of the southern Rhine-Meuse delta (the Netherlands), Geol. Mijnbouw.-N. J. G., 74, 199–212, 1995.
Wiggers, A. J.: De wording van het Noordoostpoldergebied: een onderzoek naar de physisch-geografische ontwikkeling van een sedimentair gebied, Tjeenk Willink, PhD thesis, 1955.
Woldring, H., de Boer, P., Gillavry, J. N. B.-M., and Cappers, R. T. J.: De palaeoecologie van Duurswold (Gr.): vroeg-Holocene landschapsontwikkeling, Paleo-aktueel, 36–44, 2005.
Wolfert, H. P. and Maas, G. J.: Downstream changes of meandering styles in the lower reaches of the River Vecht, the Netherlands, Neth. J. Geosci., 86, 257–271, https://doi.org/10.1017/S0016774600077842, 2007.
Zagwijn, W.: Vegetation, climate and radiocarbon datings in the Netherlands. Part I: Eemian and Early Weichselian, Meded. Geol. Sticht., NS, 14, 15, 1961.
Zagwijn, W. H.: The pleistocene of the Netherlands with special reference to glaciation and terrace formation, Quaternary Sci. Rev., 5, 341–345, https://doi.org/10.1016/0277-3791(86)90195-2, 1986.
Zagwijn, W. H. and De Jong, J.: RGD Pal. Lab. Rap. 814 and 814a – Pollenanalytisch onderzoek en C14-ouderdomsbepalingen + Aanvullende C14-ouderdomsbepaling aan boring Zwaagdijk Oost 19F/70, Rijks Geologische Dienst, Haarlem, 1982.
Zonneveld, I. S.: De Brabantse Biesbosch: een studie van bodem en vegetatie van een zoetwatergetijdendelta, PhD thesis, Wageningen University and Research, https://doi.org/10.18174/203159, 1960.
Short summary
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past coastal and inland water levels are preserved in geological indicators, like basal peats. We present a dataset of 712 Holocene water level indicators from the Dutch coastal plain, relevant for studying RSLR and regional subsidence, compiled in HOLSEA workbook format. Our new, internally consistent, expanded documentation encourages multiple data uses and to report RSLR uncertainties transparently.
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past...
Altmetrics
Final-revised paper
Preprint