Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-5007-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5007-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Over three decades, and counting, of near-surface turbulent flux measurements from the Atmospheric Radiation Measurement (ARM) user facility
Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
David P. Billesbach
Department of Biological Systems Engineering, School of Natural Resources, University of Nebraska, Lincoln, NE 68583, USA
retired
Sebastien Biraud
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Stephen Chan
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Richard Hart
Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
retired
deceased
Evan Keeler
Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
Jenni Kyrouac
Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
Sujan Pal
Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
Mikhail Pekour
Pacific Northwest National Laboratory, Richland, WA 99352, USA
Sara L. Sullivan
independent researcher
Adam Theisen
Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
Matt Tuftedal
Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
David R. Cook
Environmental Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
retired
Related authors
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Lindsay M. Sheridan, Raghavendra Krishnamurthy, Tien Manh Nguyen, Yi-Leng Chen, William I. Gustafson Jr., Ye Liu, Feng Hsiao, Rob K. Newsom, Preston Spicer, Evgueni Kassianov, Mikhail Pekour, Nicola Bodini, and Mark Severy
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-167, https://doi.org/10.5194/wes-2025-167, 2025
Preprint under review for WES
Short summary
Short summary
Wind simulations can contain significant errors which can lead to inaccurate estimates of wind energy generation. We hypothesize and, using observations from a floating lidar off Hawaii, establish that distinct simulation datasets will exhibit diverse ranges of errors in this offshore environment. The most commonly used simulation dataset produces the largest wind speed biases due to underestimation of fast wind speeds and misrepresentation of how wind speed varies throughout the day and night.
Anjana Devanand, Jason P. Evans, Andy J. Pitman, Sujan Pal, David Gochis, and Kevin Sampson
Hydrol. Earth Syst. Sci., 29, 4491–4513, https://doi.org/10.5194/hess-29-4491-2025, https://doi.org/10.5194/hess-29-4491-2025, 2025
Short summary
Short summary
Including lateral flow increases evapotranspiration near major river channels in high-resolution land surface simulations in southeast Australia, consistent with observations. The 1-km resolution model shows a widespread pattern of dry ridges that does not exist at coarser resolutions. Our results have implications for improved simulations of droughts and future water availability.
Emily Follansbee, James E. Lee, Mohit L. Dubey, Jonathan F. Dooley, Curtis Shuck, Ken Minschwaner, Andre Santos, Sebastien C. Biraud, and Manvendra K. Dubey
Atmos. Meas. Tech., 18, 4527–4542, https://doi.org/10.5194/amt-18-4527-2025, https://doi.org/10.5194/amt-18-4527-2025, 2025
Short summary
Short summary
This work uses ambient methane and wind measurements to quantify methane emissions from a leaking orphaned oil and gas well using Gaussian plume inversions. Our analysis shows that existing Gaussian plume methods that assume atmospheric stability are prone to large errors. We report a more robust analysis that determines plume dispersion coefficients from our in situ observations. Our technique enables more accurate methane quantification of orphaned oil and gas wells to prioritize plugging.
Aliza Abraham, Matteo Puccioni, Arianna Jordan, Emina Maric, Nicola Bodini, Nicholas Hamilton, Stefano Letizia, Petra M. Klein, Elizabeth N. Smith, Sonia Wharton, Jonathan Gero, Jamey D. Jacob, Raghavendra Krishnamurthy, Rob K. Newsom, Mikhail Pekour, William Radünz, and Patrick Moriarty
Wind Energ. Sci., 10, 1681–1705, https://doi.org/10.5194/wes-10-1681-2025, https://doi.org/10.5194/wes-10-1681-2025, 2025
Short summary
Short summary
This study is the first to use real-world atmospheric measurements to show that large wind plants can increase the height of the planetary boundary layer, the part of the atmosphere near the surface where life takes place. The planetary boundary layer height governs processes like pollutant transport and cloud formation and is a key parameter for modeling the atmosphere. The results of this study provide important insights into interactions between wind plants and their local environment.
Jessie M. Creamean, Carson C. Hume, Maria Vazquez, and Adam Theisen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-352, https://doi.org/10.5194/essd-2025-352, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a comprehensive, publicly available ice nucleating particles (INP) dataset from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility across diverse environments, including Arctic, agricultural, urban, marine, and mountainous sites. Samples are collected via fixed and mobile platforms and processed using a standardized pipeline. The dataset supports observational and modelling analyses of seasonal, spatial, and compositional variability in INPs.
Mohit L. Dubey, Andre Santos, Andrew B. Moyes, Ken Reichl, James E. Lee, Manvendra K. Dubey, Corentin LeYhuelic, Evan Variano, Emily Follansbee, Fotini K. Chow, and Sébastien C. Biraud
Atmos. Meas. Tech., 18, 2987–3007, https://doi.org/10.5194/amt-18-2987-2025, https://doi.org/10.5194/amt-18-2987-2025, 2025
Short summary
Short summary
Orphaned wells, meaning wells lacking responsible owners, pose a significant and poorly understood environmental challenge. We propose, develop and test a novel method for estimating emissions from orphaned wells using a forced advection sampling technique (FAST) that can overcome many of the limitations in current methods (cost, accuracy, safety). Our results suggest that the FAST method can provide a low-cost alternative to existing methods over a range of leak rates.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Jeongmin Yun, Junjie Liu, Brendan Byrne, Brad Weir, Lesley E. Ott, Kathryn McKain, Bianca C. Baier, Luciana V. Gatti, and Sebastien C. Biraud
Atmos. Chem. Phys., 25, 1725–1748, https://doi.org/10.5194/acp-25-1725-2025, https://doi.org/10.5194/acp-25-1725-2025, 2025
Short summary
Short summary
This study quantifies errors in regional net surface–atmosphere CO2 flux estimates from an inverse model ensemble using airborne CO2 measurements. Our results show that flux error estimates based on observations significantly exceed those computed from the ensemble spread of flux estimates in regions with high fossil fuel emissions. This finding suggests the presence of systematic biases in the inversion estimates, associated with errors in the fossil fuel emissions common to all models.
Raghavendra Krishnamurthy, Rob K. Newsom, Colleen M. Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci., 10, 361–380, https://doi.org/10.5194/wes-10-361-2025, https://doi.org/10.5194/wes-10-361-2025, 2025
Short summary
Short summary
This study examines how atmospheric phenomena affect the recovery of wind farm wake – the disturbed air behind turbines. In regions like Oklahoma, where wind farms are often clustered, understanding wake recovery is crucial. We found that wind farms can alter phenomena like low-level jets, which are common in Oklahoma, by deflecting them above the wind farm. As a result, the impact of wakes can be observed up to 1–2 km above ground level.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Fan Mei, Jennifer M. Comstock, Mikhail S. Pekour, Jerome D. Fast, Krista L. Gaustad, Beat Schmid, Shuaiqi Tang, Damao Zhang, John E. Shilling, Jason M. Tomlinson, Adam C. Varble, Jian Wang, L. Ruby Leung, Lawrence Kleinman, Scot Martin, Sebastien C. Biraud, Brian D. Ermold, and Kenneth W. Burk
Earth Syst. Sci. Data, 16, 5429–5448, https://doi.org/10.5194/essd-16-5429-2024, https://doi.org/10.5194/essd-16-5429-2024, 2024
Short summary
Short summary
Our study explores a comprehensive dataset from airborne field studies (2013–2018) conducted using the US Department of Energy's Gulfstream 1 (G-1). The 236 flights span diverse regions, including the Arctic, US Southern Great Plains, US West Coast, eastern North Atlantic, Amazon Basin in Brazil, and Sierras de Córdoba range in Argentina. This dataset provides unique insights into atmospheric dynamics, aerosols, and clouds and makes data available in a more accessible format.
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024, https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Short summary
A new hyperspectral radiometer (HSR1) was deployed and evaluated in the central United States (northern Oklahoma). The HSR1 total spectral irradiance agreed well with nearby existing instruments, but the diffuse spectral irradiance was slightly smaller. The HSR1-retrieved aerosol optical depth (AOD) also agreed well with other retrieved AODs. The HSR1 performance is encouraging: new hyperspectral knowledge is possible that could inform atmospheric process understanding and weather forecasting.
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci., 9, 741–758, https://doi.org/10.5194/wes-9-741-2024, https://doi.org/10.5194/wes-9-741-2024, 2024
Short summary
Short summary
In 2020, lidar-mounted buoys owned by the US Department of Energy (DOE) were deployed off the California coast in two wind energy lease areas and provided valuable year-long analyses of offshore low-level jet (LLJ) characteristics at heights relevant to wind turbines. In addition to the LLJ climatology, this work provides validation of LLJ representation in atmospheric models that are essential for assessing the potential energy yield of offshore wind farms.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Short summary
To assess the ability of Earth system model (ESM) predictions, we developed a tool called ESMAC Diags to understand how aerosols, clouds, and aerosol–cloud interactions are represented in ESMs. This paper describes its version 2 functionality. We compared the model predictions with measurements taken by planes, ships, satellites, and ground instruments over four regions across the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Joshua L. Laughner, Sébastien Roche, Matthäus Kiel, Geoffrey C. Toon, Debra Wunch, Bianca C. Baier, Sébastien Biraud, Huilin Chen, Rigel Kivi, Thomas Laemmel, Kathryn McKain, Pierre-Yves Quéhé, Constantina Rousogenous, Britton B. Stephens, Kaley Walker, and Paul O. Wennberg
Atmos. Meas. Tech., 16, 1121–1146, https://doi.org/10.5194/amt-16-1121-2023, https://doi.org/10.5194/amt-16-1121-2023, 2023
Short summary
Short summary
Observations using sunlight to measure surface-to-space total column of greenhouse gases in the atmosphere need an initial guess of the vertical distribution of those gases to start from. We have developed an approach to provide those initial guess profiles that uses readily available meteorological data as input. This lets us make these guesses without simulating them with a global model. The profiles generated this way match independent observations well.
Siegfried Schobesberger, Emma L. D'Ambro, Lejish Vettikkat, Ben H. Lee, Qiaoyun Peng, David M. Bell, John E. Shilling, Manish Shrivastava, Mikhail Pekour, Jerome Fast, and Joel A. Thornton
Atmos. Meas. Tech., 16, 247–271, https://doi.org/10.5194/amt-16-247-2023, https://doi.org/10.5194/amt-16-247-2023, 2023
Short summary
Short summary
We present a new, highly sensitive technique for measuring atmospheric ammonia, an important trace gas that is emitted mainly by agriculture. We deployed the instrument on an aircraft during research flights over rural Oklahoma. Due to its fast response, we could analyze correlations with turbulent winds and calculate ammonia emissions from nearby areas at 1 to 2 km resolution. We observed high spatial variability and point sources that are not resolved in the US National Emissions Inventory.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Lindsay M. Sheridan, Raghu Krishnamurthy, Gabriel García Medina, Brian J. Gaudet, William I. Gustafson Jr., Alicia M. Mahon, William J. Shaw, Rob K. Newsom, Mikhail Pekour, and Zhaoqing Yang
Wind Energ. Sci., 7, 2059–2084, https://doi.org/10.5194/wes-7-2059-2022, https://doi.org/10.5194/wes-7-2059-2022, 2022
Short summary
Short summary
Using observations from lidar buoys, five reanalysis and analysis models that support the wind energy community are validated offshore and at rotor-level heights along the California Pacific coast. The models are found to underestimate the observed wind resource. Occasions of large model error occur in conjunction with stable atmospheric conditions, wind speeds associated with peak turbine power production, and mischaracterization of the diurnal wind speed cycle in summer months.
Fan Mei, Mikhail S. Pekour, Darielle Dexheimer, Gijs de Boer, RaeAnn Cook, Jason Tomlinson, Beat Schmid, Lexie A. Goldberger, Rob Newsom, and Jerome D. Fast
Earth Syst. Sci. Data, 14, 3423–3438, https://doi.org/10.5194/essd-14-3423-2022, https://doi.org/10.5194/essd-14-3423-2022, 2022
Short summary
Short summary
This work focuses on an expanding number of data sets observed using ARM TBS (133 flights) and UAS (seven flights) platforms by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility. These data streams provide new perspectives on spatial variability of atmospheric and surface parameters, helping to address critical science questions in Earth system science research, such as the aerosol–cloud interaction in the boundary layer.
Fan Mei, Steven Spielman, Susanne Hering, Jian Wang, Mikhail S. Pekour, Gregory Lewis, Beat Schmid, Jason Tomlinson, and Maynard Havlicek
Atmos. Meas. Tech., 14, 7329–7340, https://doi.org/10.5194/amt-14-7329-2021, https://doi.org/10.5194/amt-14-7329-2021, 2021
Short summary
Short summary
This study focuses on understanding a versatile water-based condensation particle counter (vWCPC 3789) performance under various ambient pressure conditions (500–1000 hPa). A vWCPC has the advantage of avoiding health and safety concerns. However, its performance characterization under low pressure is rare but crucial for ensuring successful airborne deployment. This paper provides advanced knowledge of operating a vWCPC 3789 to capture the spatial variations of atmospheric aerosols.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Maria A. Zawadowicz, Kaitlyn Suski, Jiumeng Liu, Mikhail Pekour, Jerome Fast, Fan Mei, Arthur J. Sedlacek, Stephen Springston, Yang Wang, Rahul A. Zaveri, Robert Wood, Jian Wang, and John E. Shilling
Atmos. Chem. Phys., 21, 7983–8002, https://doi.org/10.5194/acp-21-7983-2021, https://doi.org/10.5194/acp-21-7983-2021, 2021
Short summary
Short summary
This paper describes the results of a recent field campaign in the eastern North Atlantic, where two mass spectrometers were deployed aboard a research aircraft to measure the chemistry of aerosols and trace gases. Very clean conditions were found, dominated by local sulfate-rich acidic aerosol and very aged organics. Evidence of
long-range transport of aerosols from the continents was also identified.
Sébastien Roche, Kimberly Strong, Debra Wunch, Joseph Mendonca, Colm Sweeney, Bianca Baier, Sébastien C. Biraud, Joshua L. Laughner, Geoffrey C. Toon, and Brian J. Connor
Atmos. Meas. Tech., 14, 3087–3118, https://doi.org/10.5194/amt-14-3087-2021, https://doi.org/10.5194/amt-14-3087-2021, 2021
Short summary
Short summary
We evaluate CO2 profile retrievals from ground-based near-infrared solar absorption spectra after implementing several improvements to the GFIT2 retrieval algorithm. Realistic errors in the a priori temperature profile (~ 2 °C in the lower troposphere) are found to be the leading source of differences between the retrieved and true CO2 profiles, differences that are larger than typical CO2 variability. A temperature retrieval or correction is critical to improve CO2 profile retrieval results.
Cited articles
Andreas, E. L.: The effects of volume averaging on spectra measured with a Lyman-alpha hygrometer, J. Appl. Meteorol., 20, 467–475, 1981.
Bagley, J. E., Kueppers, L. M., Billesbach, D. P., Williams, I. N., Biraud, S. C., and Torn, M. S.: The influence of land cover on surface energy partitioning and evaporative fraction regimes in the US Southern Great Plains, J. Geophys. Res.-Atmos., 122, 5793–5807, 2017.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Baldocchi, D., Novick, K., Keenan, T., and Torn, M.: AmeriFlux: Its Impact on our understanding of the “breathing of the biosphere”, after 25 years, Agr. Forest Meteorol., 348, 109929, https://doi.org/10.1016/j.agrformet.2024.109929, 2024.
Bao, T., Xu, X., Jia, G., Billesbach, D. P., and Sullivan, R. C.: Much stronger tundra methane emissions during autumn freeze than spring thaw, Glob. Change Biol., 27, 376–387, https://doi.org/10.1111/gcb.15421, 2021.
Barr, A. G., King, K. M., Gillespie, T. J., Den Hartog, G., and Neumann, H. H.: A comparison of Bowen ratio and eddy correlation sensible and latent heat flux measurements above deciduous forest, Bounda.-Lay. Meteorol., 71, 21–41, 1994.
Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Resco de Dios, V., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T.: An introduction to the Australian and New Zealand flux tower network – OzFlux, Biogeosciences, 13, 5895–5916, https://doi.org/10.5194/bg-13-5895-2016, 2016.
Billesbach, D. P.: Estimating uncertainties in individual eddy covariance flux measurements: A comparison of methods and a proposed new method, Agr. Forest Meteorol., 151, 394–405, 2011.
Billesbach, D. P.: AmeriFlux and Methane (AMCMETHANE) VAP, Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1508268, 2012.
Billesbach, D. P. and Sullivan, R. C.: FLUXNET-CH4 US-A03 ARM-AMF3-Oliktok, FLUXNET [data set], https://doi.org/10.18140/FLX/1669661, 2020a.
Billesbach, D. P. and Sullivan, R. C.: FLUXNET-CH4 US-A10 ARM-NSA-Barrow, FLUXNET [data set], https://doi.org/10.18140/FLX/1669662, 2020b.
Billesbach, D. P., Fischer, M. L., Torn, M. S., and Berry, J. A.: A portable eddy covariance system for the measurement of ecosystem–atmosphere exchange of CO2, water vapor, and energy, J. Atmos. Ocean. Tech., 21, 639–650, 2004.
Billesbach, D. P., Chan, S. W. , Cook, D. R., Papale, D. Bracho-Garrillo, R., Verfallie, J., Vargas, R., and Biraud, S. C.: Effects of the Gill-Solent WindMaster-Pro “w-boost” firmware bug on eddy covariance fluxes and some simple recovery strategies, Agr. Forest Meteorol., 265, 145–151, 2019.
Biraud, S. and Chan, S.: 30co2flx4m (b1), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1989774, 2002a.
Biraud, S. and Chan, S.: 30co2flx25m (b1), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1989776, 2002b.
Biraud, S. and Chan, S.: 30co2flx60m (b1), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1992202, 2002c.
Biraud, S. and Chan, S.: 30co2flx4mmet (b1), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1989773, 2002d.
Biraud, S., Fischer, M., Chan, S., and Torn, M.: AmeriFlux FLUXNET-1F US-ARM ARM Southern Great Plains site- Lamont, Ver. 3-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1854366, 2022.
Biraud, S., Fischer, M., Chan, S., and Torn, M.: AmeriFlux BASE US-ARM ARM Southern Great Plains site- Lamont, Ver. 13-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1246027, 2024.
Burba, G. and Anderson, D.: A brief practical guide to eddy covariance flux measurements: principles and workflow examples for scientific and industrial applications, Li-Cor Biosciences, https://books.google.com/books?hl=en&lr=&id=mCsI1_8GdrIC&oi=fnd&pg=PA6&dq=A+brief+practical+guide+to+eddy+covariance+flux+measurements:+principles+and+workflow+examples+for+30+scientific+and+industrial+applications,&ots=TMQm22PodY&sig=vrItwwiPc4ZMKFW69gEd7YZ5xPo#v=onepage&q=A%20brief%20practical%20guide%20to%20eddy%20covariance%20flux%20measurements%3A%20principles%20and%20workflow%20examples%20for%2030%20scientific%20and%20industrial%20applications%2C&f=false, 2010.
Butterworth, B. J., Desai, A. R., Durden, D., Kadum, H., LaLuzerne, D., Mauder, M., Metzger, S., Paleri, S., and Wanner, L.: Characterizing energy balance closure over a heterogeneous ecosystem using multi-tower eddy covariance, Front. Earth Sci., 11, 1251138, https://doi.org/10.3389/feart.2023.1251138, 2024.
Chan, S. W. and Biraud, S. C.: Carbon Dioxide Flux Measurement System (CO2FLX) instrument handbook, U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington, https://doi.org/10.2172/1020279, 2022.
Chu, H., Baldocchi, D. D., John, R., Wolf, S., and Reichstein, M.: Fluxes all of the time? A primer on the temporal representativeness of FLUXNET, J. Geophys. Res.-Biogeo., 122, 289–307, 2017.
Chu, H., Luo, X., Ouyang, Z., Ouyang, Z., Chan, S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger. S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N.A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles. J. F., Knox, S., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., and Zona, D.: Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites, Agr. Forest Meteorol., 301–302, 108350, https://doi.org/10.1016/j.agrformet.2021.108350, 2021.
Cook, D. R.: Soil Temperature And Moisture Profile (STAMP) system handbook, DOE/SC-ARM-TR-186, U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington, https://doi.org/10.2172/1332724, 2016a.
Cook, D. R.: Soil Water And Temperature System (SWATS) instrument handbook, DOE/SC-ARM-TR-063, U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington, https://doi.org/10.2172/1251383, 2016b.
Cook, D. R. and Sullivan, R. C.: Energy Balance Bowen Ratio (EBBR) handbook, DOE/SC-ARM-TR-037, U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington, https://doi.org/10.2172/1020562, 2025a.
Cook, D. R. and Sullivan, R. C.: Eddy Correlation flux measurement system (ECOR) instrument handbook, DOE/SC-ARM/TR-052, U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington, https://doi.org/10.2172/1467448, 2025b.
Cook, D. R. and Sullivan, R. C.: Surface Energy Balance System (SEBS) instrument handbook, DOE/SC-ARM-TR-092, U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington, https://doi.org/10.2172/1004944, 2025c.
Daub, B. J. and Lareau, N. P.: Observed covariations in boundary layer and cumulus cloud-layer processes, J. Appl. Meteorol. Clim., 61, 1497–1508, 2022.
Ershadi, A., McCabe, M. F., Evans, J. P., Chaney, N. W., and Wood, E. F.: Multi-site evaluation of terrestrial evaporation models using FLUXNET data, Agr. Forest Meteorol., 187, 46–61, 2014.
Feldman, D. R., Aiken, A. C., Boos, W. R., Carroll, R. W. H, Chandrasekar, V., Collis, S., Creamean, J. M., de Boer, G., Deems, J., DeMott, P. J., Fan, J., Flores, A. N., Gochis, D., Grover, M., Hill, T. C. J., Hodshire, A., Hulm, E., Hume, C. C., Jackson, R., Junyent, F., Kennedy, A., Kumjian, M., Levin, E. J. T., Lundquist, J. D., O’Brien, J., Raleigh, M. S., Reithel, J., Rhoades, A., Rittger, K., Rudisill, W., Sherman, Z., Siirila-Woodburn, E., Skiles, S. M., Smith, J. N., Sullivan, R. C., Theisen, A., Tuftedal, M., Varble, A. C., Wiedlea, A., Wielandt, S., Williams, K., and Xu, Z.: The Surface Atmosphere Integrated field Laboratory (SAIL) campaign, B. Am. Meteorol. Soc., 104, E2192–E2222, https://doi.org/10.1175/bams-d-22-0049.1, 2023.
Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, J-P., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G., and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53, 2618–2626, 2017.
Foken, T., Leuning, R., Oncley, S. R., Mauder, M., and Aubinet, M.: Corrections and data quality control. Eddy Covariance: A Practical Guide to Measurement and Data Analysis, https://doi.org/10.1007/978-94-007-2351-1_4, 85–131, 2012.
Franssen, H. J. H., Stöckli, R., Lehner, I., Rotenberg, E., and Seneviratne, S. I.: Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations, Agr. Forest Meteorol., 150, 1553–1567, 2010.
Gaustad, K.: 30qcecor, Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1097546, 2003.
Gaustad, K. and Xie, S.: 30baebbr, Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1027268, 1993.
Helbig, M., Gerken, T., Beamesderfer, E., Baldocchi, D. D., Banerjee, T., Biraud, S. C., Brown, W. O. J., Brunsell, N. A., Burakowski, W. A., Burns, S. P., Butterworth. B. J., Chan, W. S., Davis, K. J., Desai, A. R., Fuentes, J. D., Hollinger, D. Y., Kljun, N., Mauder, M., Novick, K. A., Perkins, J. M., Rahn, D. A., Rey-Sanchez, C., Santanello, J. A., Scott, R. L., Seyednasrollahm, B., Stoy, P. C., Sullivan, R. C., Vilà-Guerau de Arellano, J., Wharton, S., Yi, C., and Richardson, A. D.: Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions, Agr. Forest Meteorol., 307, 108509, https://doi.org/10.1016/j.agrformet.2021.108509, 2021.
Hickmon, N.: Field campaign guidelines, DOE/SC-ARM-14-032, U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington, https://doi.org/10.2172/1236496, 2023.
Hojstrup, J.: A statistical data screening procedure, Meas. Sci. Technol., 4, 153–157, https://doi.org/10.1088/0957-0233/4/2/003, 1993.
Hukseflux Thermal Sensors B.V.: HFP01 & HFP03 heat flux plate heat flux sensor user manual, Hukseflux Thermal Sensors B.V., v2326, https://www.hukseflux.com/uploads/product-documents/HFP01_HFP03_manual_v2326.pdf (last access: 8 September 2025), 2023.
Kaimal, J. C.: The effect of vertical line averaging on the spectra of temperature and heat-flux, Q. J. Roy. Meteor. Soc., 94, 149–155, 1968.
Keeler, E., Burk, K., and Kyrouac, J.: Balloon-borne sounding system (BBSS), WNPN output data, Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1595321, 2022.
Koontz, A., Biraud, S., and Chan, S.: Carbon Dioxide Flux Measurement Systems (CO2FLX4M), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1287574, 2015a.
Koontz, A., Biraud, S., and Chan, S.: Carbon Dioxide Flux Measurement Systems (CO2FLX25M), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1287575, 2015b.
Koontz, A., Biraud, S., and Chan, S.: Carbon Dioxide Flux Measurement Systems (CO2FLX60M), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1287576, 2015c.
Koontz, A., Biraud, S., and Chan, S.: Carbon Dioxide Flux Measurement Systems (CO2FLXSOIL), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1313010, 2015d.
Koontz, A., Biraud, S., and Chan, S.: Carbon Dioxide Flux Measurement Systems (CO2FLXRAD4M), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1313017, 2016a.
Koontz, A., Biraud, S., and Chan, S.: Carbon Dioxide Flux Measurement Systems (CO2FLXSOILAUX), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1313016, 2016b.
Kristensen, L. and Fitzjarrald, D. R.: The effect of line averaging on scalar flux measurements with a sonic anemometer near the surface, J. Atmos. Ocean. Tech., 1, 138–146, 1984.
Kyrouac, J., Ermold, B., and Cook, D.: ARM: Soil Water And Temperature Profiling System (SWATS): soil temp and water profiles, Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1150274, 1996
Kyrouac, J., Cook, D., Ermold, B., Pal, S., Sullivan, R., and Keeler, E.: Soil Temperature and Moisture Profiles, Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1238260, 2016.
Kyrouac, J., Shi, Y., and Tuftedal, M.: met.b1, Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1786358, 2021.
Lee, X. and Massman, W. J.: A perspective on thirty years of the Webb, Pearman and Leuning density corrections, Bound.-Lay. Meteorol., 139, 37–59, 2011.
LI-COR Biosciences: EddyPro Software Instruction Manual, Version 7.0. Lincoln, https://www.licor.com/support/EddyPro/manuals.html (last access: 8 September 2025), 2021.
Liu, Z., Ichii, K., Yamamoto, Y., Ueyama, M., Kobayashi, H., Hiyama, T., Kotani, A., Maximov, T., Sullivan, R. C., and Biraud, S.: Can sub-daily LST be constructed in high-latitude regions using polar orbiting satellites?, IEEE Geosci. Remote S., 22, 1–5, https://doi.org/10.1109/LGRS.2025.3546797, 2025.
Massman, W. and Clement, R.: Uncertainty in eddy covariance flux estimates resulting from spectral attenuation, in: Handbook of micrometeorology: A guide for surface flux measurement and analysis, 67–99, Springer, https://doi.org/10.1007/1-4020-2265-4_4, 2004.
Massman, W. J.: A simple method for estimating frequency response corrections for eddy covariance systems, Agr. Forest Meteorol., 104, 185–198, 2000.
Massman, W. J.: Reply to comment by Rannik on “A simple method for estimating frequency response corrections for eddy covariance systems”, Agr. Forest Meteorol., 107, 247–251, 2001.
Matamala, R.: AmeriFlux BASE US-IB2 Fermi National Accelerator Laboratory-Batavia (Prairie site), Ver. 8-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1246066, 2019.
Mauder, M. and Foken, T.: Documentation and instruction manual of the eddy-covariance software package TK3 (update), Eigenverlag, ISSN 1614-8916, 2015.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.: Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 1436, 19–35, 2019.
Moncrieff, J. B., Massheder, J. M., de Bruin, H., Ebers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide, J. Hydrol., 188–189, 589–611, 1997.
NSF Unidata: Network Common Data Form (NetCDF), UCAR/NSF Unidata Program Center, Boulder, CO [software], https://doi.org/10.5065/D6H70CW6, 2025.
Oehri, J., Schaepman-Strub, G., Kim, J.-S., Grysko, R., Kropp, H., Grünberg, I., Zemlianskii, V., Sonnentag, O., Euskirchen, E. S., Chacko, M. R., Muscari, G., Blanken, P. D., Dean, J. F., di Sarra, A., Harding, R. J., Sobota, I., Kutzbach, L., Plekhanov, E., Riihelä, A., Boike, J., Miller, N. B., Beringer, J., Lápez-Blanco, E., Stoy, P. C., Sullivan, R. C., Kejna, M., Parmentier, F.-J. W., Gamon, J. A., Mastepanov, M., Wille, C., Jackowicz-Korczynski, M., Karger, D. N., Quinton, W. L., Putkonen, J., van As, D., Christensen, T. R., Hakuba, M .Z., Stone, R. S., Metzger, S., Vandecrux, B., Frost, G. V., Wild, M., Hansen, B., Meloni, D., Domine, F., te Beest, M., Sachs, T., Kalhori, A., Rocha, A. V., Williamson, S. N., Morris, S., Atchley, A. L., Essery, R., Runkle, B. R. K., Holl, D., Riihimaki, L. D., Iwata, H., Schuur, E. A. G., Cox, C., Grachev, A. A., McFadden, J. P., Fausto, R. S., Goeckede, M., Ueyama, M., Pirk, N., de Boer, J., Bret-Harte, M. S., Leppäranta, M., Steffen, K., Friborg, T., Ohmura, A., Edgar, C. W., Olofsson, J., Chambers, S. D.: Vegetation type is an important predictor of the arctic summer land surface energy budget, Nat. Commun., 13, 1–12, https://doi.org/10.1038/s41467-022-34049-3, 2022.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., and Humphrey, M.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Pekour, M. S.: New Eddy Correlation System for ARM SGP Site, in: Fourteenth ARM Science Team Meeting Proceedings, U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington, https://www.arm.gov/publications/proceedings/conf14/extended_abs/pekour-ms.pdf (last access: 8 September 2025), 2004.
Phillips, T. J., Klein, S. A., Ma, H.-Y., Tang, Q., Xie, S., Williams, I. N., Santanello, J. A., Cook, D. R., and Torn, M. S.: Using ARM observations to evaluate climate model simulations of land-atmosphere coupling on the US Southern Great Plains, J. Geophys. Res.-Atmos., 122, 11524–11548, 2017.
Qin, H., Klein, S. A., Ma, H.-Y., Van Weverberg, K., Feng, Z., Chen, X., Best, M., Hu, H., Leung, L. R., Morcrette, C. J., Rumbold, H., and Webster, S.: Summertime near-surface temperature biases over the central United States in convection-permitting simulations, J. Geophys. Res.-Atmos., 128, e2023JD038624, https://doi.org/10.1029/2023JD038624, 2023.
Raz-Yaseef, N., Billebach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., and Torn, M. S.: Vulnerability of crops and native grasses to summer drying in the US Southern Great Plains, Agr. Ecosyst. Environ., 213, 209–218, 2015.
Reichl, K., Shi, Y., Howie, J., Biraud, S., Reichl, K., Moyes, A., and Curtis, J.: amc.b1 datastream, Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1406260, 2012.
Schmidt, A., Hanson, C., Chan, W. S., and Law, B. E.: Empirical assessment of uncertainties of meteorological parameters and turbulent fluxes in the AmeriFlux network, J. Geophys. Res.-Biogeo., 117, G04014, https://doi.org/10.1029/2012JG002100, 2012.
Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B. and Teuling, A.J.: Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, 2010.
Stokes, G. M. and Schwartz, S. E.: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed, B. Am. Meteorol. Soc., 75, 1201–1222, 1994.
Sullivan, R. C., Ermold, B., Pal, S., and Keeler, E.: 30ebbr, Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1023895, 1993.
Sullivan, R. C., Billesbach, D., Keeler, E., Ermold, B., and Pal, S.: 30ecor (a1), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1879993, 1997.
Sullivan, R. C., Keeler, E., Pal, S., and Kyrouac, J.: sebs (b1), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1984921, 2010.
Sullivan, R. C., Cook, D., Shi, Y., Keeler, E., and Pal, S.: ARM Instrument: Eddy Correlation flux measurement smart flux system (ECORSF), Atmospheric Radiation Measurement (ARM) [data set], https://doi.org/10.5439/1494128, 2019a.
Sullivan, R. C., Cook, D. R., Ghate, V. P., Kotamarthi, V. R., and Feng, Y.: Improved spatiotemporal representativeness and bias reduction of satellite-based evapotranspiration retrievals via use of in situ meteorology and constrained canopy surface resistance, J. Geophys. Res.-Biogeo., 124, 342–352, https://doi.org/10.1029/2018JG004744, 2019b.
Sullivan, R. C., Kotamarthi, V. R., and Feng, Y.: Recovering evapotranspiration trends from biased CMIP5 simulations and sensitivity to changing climate over North America, J. Hydrometeorol., 20, 1619–1633, https://doi.org/10.1175/JHM-D-18-0259.1, 2019c.
Sullivan, R., Billesbach, D., and Cook, D.: Intercomparison data for ARM near-surface turbulent fluxes at Fermilab and SGP, Zenodo [data set], https://doi.org/10.5281/zenodo.14261417, 2024.
Sullivan, R., Billesbach, D., Cook, D., and Biraud, B.: AmeriFlux BASE US-A03 ARM-AMF3-Oliktok, Ver. 5-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1498752, 2025a.
Sullivan, R., Billesbach, D., Cook, D., and Biraud, B.: AmeriFlux BASE US-A10 ARM-NSA-Barrow, Ver. 4-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1498753, 2025b.
Tang, S., Xie, S., Zhang, M., Tang, Q., Zhang, Y., Klein, S. A., Cook, D. R., and Sullivan, R. C.: Differences in eddy-correlation and energy-balance surface turbulent heat flux measurements and their impacts on the large-scale forcing fields at the ARM SGP site, J. Geophys. Res.-Atmos., 124, 3301–3318, https://doi.org/10.1029/2018JD029689, 2019a.
Tang, S., Xie, S., Zhang, Y., and Cook, D. R.: The QCECOR Value-Added Product: Quality-Controlled Eddy CORrelation flux measurements, DOE/SC-ARM-TR-223, U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington, https://doi.org/10.2172/1557426, 2019b.
Tao, C., Xie, S., Sullivan, R. C., Tang, S., Zhang, Y., Cook, D. R., and Gaustad, K. L.: The QCECOR Value-Added Product: Quality-Controlled Eddy Correlation flux measurements, DOE/SC-ARM-TR-223, U.S. Department of Energy, Atmospheric Radiation Measurement user facility, Richland, Washington, https://doi.org/10.2172/1557426, 2024.
Theisen, A., Kehoe, K., Sherman, Z., Jackson, B., Grover, M., Sockol, A. J., Godine, C., Hemedinger, J., O'Brien, J., Kyrouac, J., Levin, M., and Hackel, D.: ARM-DOE/ACT: ACT Release Version 2.1.4 (v2.1.4), Zenodo [software], https://doi.org/10.5281/zenodo.13685523, 2024.
Tian, J., Zhang, Y., Klein, S. A., Öktem, R., and Wang, L.: How does land cover and its heterogeneity length scales affect the formation of summertime shallow cumulus clouds in observations from the US Southern Great Plains?, Geophys. Res. Lett., 49, e2021GL097070, https://doi.org/10.1029/2021GL097070, 2022.
Turner, D. D. and Ellingson, R. G.: Introduction (to The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years), Meteorol. Monogr., 57, v–x, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0001.1, 2016.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol., 103, 279–300, 2000.
U.S. Department of Energy: Atmospheric Radiation Measurement (ARM) User Facility, https://arm.gov, last access: 8 September 2025a.
U.S. Department of Energy: Atmospheric Radiation Measurement (ARM) Data Discovery, https://adc.arm.gov/discovery, last access: 8 September 2025b.
Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S., and Verdin, J. P.: A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET, Remote Sens. Environ., 139, 35–49, 2013.
Wakefield, R. A., Turner, D. D., Rosenberger, T., Heus, T., Wagner, T. J., Santanello, J., and Basara, J.: A methodology for estimating the energy and moisture budget of the convective boundary layer using continuous ground-based infrared spectrometer observations, J. Appl. Meteorol. Clim., 62, 901–914, 2023.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapour transfer, Q. J. Roy. Meteor. Soc., 106, 85–100, 1980.
Wesely, M. L., Cook, D. R., and Coulter, R. L.: Surface heat flux data from energy balance Bowen ratio systems, in: Ninth Symposium on Meteorological Observations and Instrumentation, Argonne National Lab.(ANL), Argonne, IL, United States, OSTI ID 69120, https://www.osti.gov/biblio/69120 1995.
Williams, I. N. and Torn, M. S.: Vegetation controls on surface heat flux partitioning, and land-atmosphere coupling, Geophys. Res. Lett., 42, 9416–9424, 2015.
Yamamoto, S., Saigusa, N., Gamo, M., Fujinuma, Y., Inoue, G., and Hirano, T.: Findings through the AsiaFlux network and a view toward the future, J. Geogr. Sci., 15, 142–148, 2005.
Yang, Y., Roderick, M. L., Guo, H., Miralles, D. G., Zhang, L., Fatichi, S., Luo, X., Zhang, Y., McVicar, T. R., and Tu, Z.: Evapotranspiration on a greening Earth, Nat. Rev. Earth Environ., 4, 626–641, 2023.
Zolkos, S., Tank, S. E., Kokelj, S. V., Striegl, R. G., Shakil, S., Voigt, C., Sonnentag, O., Quinton, W. L., Schuur, E. A. G., Zona, D., Lafleur, P. M., Sullivan, R. C., Ueyama, M., Billesbach, D., Cook, D., Humphreys, E. R., and Marsh, P.: Permafrost landscape history shapes fluvial chemistry, ecosystem carbon balance, and potential trajectories of future change, Global Biogeochem. Cy., 36, e2022GB007403, https://doi.org/10.1029/2022gb007403, 2022.
Short summary
Turbulent fluxes quantify the exchange of energy, water, or trace gases into and out of the atmosphere. The U.S. Department of Energy Atmospheric Radiation Measurement user facility has been making atmospheric measurements since the early 1990s, including measurements of turbulent fluxes using two well-established methods: the energy balance Bowen ratio and eddy covariance. This paper documents key aspects of these datasets, including their history, changes through time, and best use practices.
Turbulent fluxes quantify the exchange of energy, water, or trace gases into and out of the...
Altmetrics
Final-revised paper
Preprint