Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4535-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4535-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 30-month data set of glider physico-chemical data off Mayotte Island near the Fani Maoré volcano
Alexandre Heumann
CORRESPONDING AUTHOR
ALSEAMAR, Rousset, France
Geo-Ocean UMR 6538 CNRS – Ifremer – UBO, Brest, France
Félix Margirier
ALSEAMAR, Rousset, France
Emmanuel Rinnert
Geo-Ocean UMR 6538 CNRS – Ifremer – UBO, Brest, France
Pascale Lherminier
LOPS UMR 6523 CNRS – Ifremer – UBO – IRD, Brest, France
Carla Scalabrin
Geo-Ocean UMR 6538 CNRS – Ifremer – UBO, Brest, France
Louis Géli
Geo-Ocean UMR 6538 CNRS – Ifremer – UBO, Brest, France
Orens Pasqueron de Fommervault
OceanOPS, World Meteorological Organization/Intergovernmental Oceanographic Commission (IOC) of UNESCO, Monaco, Monaco
Laurent Béguery
ALSEAMAR, Rousset, France
Related authors
No articles found.
Sabrina Homrani, Orens Pasqueron de Fommervault, Mathieu Gentil, Frédéric Jourdin, Xavier Durieu de Madron, and François Bourrin
EGUsphere, https://doi.org/10.5194/egusphere-2024-4072, https://doi.org/10.5194/egusphere-2024-4072, 2025
Short summary
Short summary
This article demonstrates that gliders equipped with current profilers and optical turbidity sensors are able to measure, with an acceptable accuracy of round 33 % (median of relative errors), the transport fluxes of suspended particulate matter flowing through the water column, in a tidal shelf sea (providing calibration of turbidity sensors). These results highlight the potential of gliders for quantifying sediment fluxes and advancing our understanding of coastal hydro-sedimentary processes.
Herlé Mercier, Damien Desbruyères, Pascale Lherminier, Antón Velo, Lidia Carracedo, Marcos Fontela, and Fiz F. Pérez
Ocean Sci., 20, 779–797, https://doi.org/10.5194/os-20-779-2024, https://doi.org/10.5194/os-20-779-2024, 2024
Short summary
Short summary
We study the Atlantic Meridional Overturning Circulation (AMOC) measured between Greenland and Portugal between 1993–2021. We identify changes in AMOC limb volume and velocity as two major drivers of AMOC variability at subpolar latitudes. Volume variations dominate on the seasonal timescale, while velocity variations are more important on the decadal timescale. This decomposition proves useful for understanding the origin of the differences between AMOC time series from different analyses.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Marion Lagarde, Nolwenn Lemaitre, Hélène Planquette, Mélanie Grenier, Moustafa Belhadj, Pascale Lherminier, and Catherine Jeandel
Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020, https://doi.org/10.5194/bg-17-5539-2020, 2020
Cited articles
Aiken, C., Saurel, J.-M., and Foix, O.: Earthquake location and detection modeling for a future seafloor observatory along Mayotte's volcanic ridge, J. Volcanol. Geoth. Res., 418, 107322, https://doi.org/10.1016/j.jvolgeores.2021.107322, 2021.
Collins, C., Hermes, J. C., and Reason, C. J. C.: Mesoscale activity in the Comoros Basin from satellite altimetry and a high-resolution ocean circulation model, J. Geophys. Res.-Oceans, 119, 4745–4760, https://doi.org/10.1002/2014JC010008, 2014.
Collins, C., Hermes, J. C., and Reason, C. J. C.: First dedicated hydrographic survey of the Comoros Basin, J. Geophys. Res.-Oceans, 121, 1291–1305, https://doi.org/10.1002/2015JC011418, 2016.
Deines, K. L.: Backscatter estimation using Broadband acoustic Doppler current profilers, in: Proc. IEEE Sixth Working Conf. Current Measurement, 13 March 1999, San Diego, CA, USA, 249–253, https://doi.org/10.1109/CCM.1999.755249, 1999.
de Ruijter, W. P., Ridderinkhof, H., Lutjeharms, J. R., Schouten, M. W., and Veth, C.: Observations of the flow in the Mozambique Channel, Geophys. Res. Lett., 29, 1–140, https://doi.org/10.1029/2001GL013714, 2002.
Di Marco, S. F., Chapman, P., Nowlin Jr, W. D., Hacker, P., Donohue, K., Luther, M., and Toole, J.: Volume transport and property distributions of the Mozambique Channel, Deep-Sea Res. Pt. II, 49, 1481–1511, https://doi.org/10.1016/S0967-0645(01)00159-X, 2002.
Feuillet, N., Jorry, S., Crawford, W. C., Deplus, C., Thinon, I., Jacques, E., and Van der Woerd, J.: Birth of a large volcanic edifice offshore Mayotte via lithosphere-scale dyke intrusion, Nat. Geosci., 14, 787–795, https://doi.org/10.31223/X5B89P, 2021.
Fiedler, B., Fietzek, P., Vieira, N., Silva, P., Bittig, H. C., and Körtzinger, A.: In situ CO2 and O2 measurements on a profiling float, J. Atmos. Ocean. Tech., 30, 112–126, https://doi.org/10.1175/JTECH-D-12-00043.1, 2013.
Fietzek, P., Fiedler, B., Steinhoff, T., and Körtzinger, A.: In situ quality assessment of a novel underwater pCO2 sensor based on membrane equilibration and NDIR spectrometry, J. Atmos. Ocean. Tech., 31, 181–196, https://doi.org/10.1175/JTECH-D-13-00083.1, 2014.
François, R. and Garrison, G.: Sound absorption based on ocean measurements: Part II: Boric acid contribution and equation for total absorption, J. Acoust. Soc. Am., 72, 1879–1890, https://doi.org/10.1121/1.388673, 1982.
Garau, B., Ruiz, S., Zhang, W. G., Pascual, A., Heslop, E., Kerfoot, J., and Tintoré, J.: Thermal lag correction on Slocum CTD glider data, J. Atmos. Ocean. Tech., 28, 1065–1071, https://doi.org/10.1175/JTECH-D-10-05030.1, 2011.
Garcia, H. E., Boyer, T. P., Baranova, O. K., Locarnini, R. A., Mishonov, A. V., Grodsky, A., Paver, C. R., Weathers, K. W., Smolyar, I. V., Reagan, J. R., Seidov, D., and Zweng, M. M.: World Ocean Atlas 2018, NCEI, https://doi.org/10.13140/RG.2.2.34758.01602, 2019.
GEBCO Bathymetric Compilation Group 2024: The GEBCO_2024 Grid – a continuous terrain model of the global oceans and land. NERC EDS British Oceanographic Data Centre NOC, https://doi.org/10.5285/1c44ce99-0a0d-5f4f-e063-7086abc0ea0f, 2024.
Gentil, M., Many, G., Durrieu de Madron, X., Cauchy, P., Pairaud, I., Testor, P., Verney, R., and Bourrin, F.: Glider-based active acoustic monitoring of currents and turbidity in the coastal zone, Remote Sens., 12, 2875, https://doi.org/10.3390/rs12182875, 2020.
E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS): Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Nrt, https://doi.org/10.48670/moi-00148, 2024. a
Halo, I., Backeberg, B., Penven, P., Ansorge, I., Reason, C., and Ullgren, J. E.: Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models, Deep-Sea Res. Pt. II, 100, 38–53, https://doi.org/10.1016/j.dsr2.2013.10.015, 2014.
Hauri, C., Irving, B., Hayes, D., Abdi, E., Kemme, J., Kinski, N., and McDonnell, A. M. P.: Expanding seawater carbon dioxide and methane measuring capabilities with a Seaglider, Ocean Sci., 20, 1403–1421, https://doi.org/10.5194/os-20-1403-2024, 2024.
Hedgpeth, J. W.: Treatise on marine ecology and paleoecology, in: Vol. 1, Ecology, The Geological Society of America Memoir 67, The Geological Society of America, https://www.persee.fr/doc/revec_0040-3865_1958_num_12_3_4186_t1_0240_0000_4 (last access: 2 April 2024), 1957.
Heumann, A., Margirier, F., Rinnert, E., Lherminier, P., Scalabrin, C., Geli, L., Pasqueron de Fommervault, O., and Beguery, L.: 30 months data set of glider physico-chemical data off Mayotte Island near the Fani Maore volcano, SEANOE [data set], https://doi.org/10.17882/99960, 2024.
IFREMER: MAYOBS 15 cruise, Flotte Océanographique Française, https://doi.org/10.17600/18001297, 2021.
IFREMER: MAYOBS cruises (2018–2025), Flotte Océanographique Française, https://doi.org/10.18142/291, 2025.
IOC – Intergovernmental Oceanographic Commission of UNESCO: Ocean Data Standards, Vol. 3: Recommendation for a Quality Flag Scheme for the Exchange of Oceanographic and Marine Meteorological Data, IOC Manuals and Guides 54, Vol. 3, IOC, https://doi.org/10.25607/OBP-6, 2013.
Leblond, I., Scalabrin, C., and Berger, L.: Acoustic monitoring of gas emissions from the seafloor. Part I: quantifying the volumetric flow of bubbles, Mar. Geophys. Res., 35, 191–210, https://doi.org/10.1007/s11001-014-9223-y, 2014.
Lemoine, A., Briole, P., Bertil, D., Roullé, A., Foumelis, M., Thinon, I., Raucoules, D., de Michele, M., Valty, P., and Hoste Colomer, R.: The 2018–2019 seismo-volcanic crisis east of Mayotte, Comoros islands: seismicity and ground deformation markers of an exceptional submarine eruption, Geophys. J. Int., 223, 22–44, https://doi.org/10.1093/gji/ggaa273, 2020.
López-García, P., Hull, T., Thomsen, S., Hahn, J., and Queste, B. Y.: OceanGliders Oxygen SOP, OceanGliders [guide], https://doi.org/10.25607/OBP-1756, 2022.
Manyilizu, M., Penven, P., and Reason, C.: Annual cycle of the upper-ocean circulation and properties in the tropical western Indian Ocean, Afr. J. Mar. Sci., 38, 81–99, https://doi.org/10.2989/1814232X.2016.1158123, 2016.
Mastin, M.: Fluid and gas emissions in a submarine eruption context offshore Mayotte Island: geochemical impact on the water column, PhD thesis, Université de Bretagne Occidentale, https://theses.hal.science/tel-04394229 (last access: 4 October 2024), 2023.
Meurer, W., Blum, J., and Shipman, G.: Volumetric Mapping of Methane Concentrations at the Bush Hill Hydrocarbon Seep, Gulf of Mexico, Front. Earth Sci., 9, https://doi.org/10.3389/feart.2021.604930, 2021.
Miloshevich, L. M., Paukkunen, A., Vömel, H., and Oltmans, S. J.: Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements, J. Atmos. Ocean. Tech., 21, 1305–1327, https://doi.org/10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2, 2004.
Miramontes, E., Penven, P., Fierens, R., Droz, L., Toucanne, S., Jorry, S., Jouet, G., Pastor, L., Silva Jacinto, R., Gaillot, A., Giraudeau, J., and Raisson, F.: The influence of bottom currents on the Zambezi Valley morphology (Mozambique Channel, SW Indian Ocean): In situ current observations and hydrodynamic modelling, Mar. Geol., 410, 42–55, https://doi.org/10.1016/j.margeo.2019.01.002, 2019.
Morison, J., Andersen, R., Larson, N., D'Asaro, E., and Boyd, T.: The correction for thermal-lag effects in Sea-Bird CTD data, J. Atmos. Ocean. Tech., 11, 1151–1164, https://doi.org/10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2, 1994.
Mullison, J.: Backscatter Estimation Using Broadband Acoustic Doppler Current Profilers – Updated, Hydraulic Measurements & Experimental Methods Conference, July 2017, https://www.researchgate.net/publication/318541921_Backscatter_Estimation_Using_Broadband_Acoustic_Doppler_Current_Profilers-Updated (last access: 2 December 2024), 2017.
Oremland, R. S. and Taylor, B. F.: Sulfate reduction and methanogenesis in marine sediments, Geochim. Cosmochim. Ac., 42, 209–214, https://doi.org/10.1016/0016-7037(78)90133-3, 1978.
Owens, W. B. and Millard, R. C.: A new algorithm for CTD oxygen calibration, J. Phys. Oceanogr., 15, 621–631, 1985.
Pasqueron de Fommervault, O., Besson, F., and Lattes, P.: SeaExplorer Underwater Glider: A New Tool to Measure Water Velocity, Mar. Technol., 42, 44–47, https://doi.org/10.1109/OCEANSE.2019.8867228, 2018.
Pouliquen, S., Schmid, C., Wong, A., Guinehut, S., and Belbeoch, M.: “Argo Data Management” in these proceedings, Vol. 2, https://doi.org/10.5270/OceanObs09.cwp.70, 2010.
Rehder, G., Leifer, I., Brewer, P. G., Friederich, G., and Peltzer, E. T.: Controls on methane bubble dissolution inside and outside the hydrate stability field from open ocean field experiments and numerical modeling, Mar. Chem., 114, 19–30, https://doi.org/10.1016/j.marchem.2009.03.004, 2009.
Roquet, F., Madec, G., McDougall, T. J., and Barker, P. M.: Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard, Ocean Model., 90, 29–43, https://doi.org/10.1016/j.ocemod.2015.04.002, 2015.
Russell-Cargill, L. M., Craddock, B. S., Dinsdale, R. B., Doran, J. G., Hunt, B. N., and Hollings, B.: Using autonomous underwater gliders for geochemical exploration surveys, APPEA J., 58, 367–380, https://doi.org/10.1071/AJ17079, 2018.
Scalabrin, C.: Site d'émissions de fluides, Mayotte, zone Fer à Cheval (2022), Ifremer GEO-OCEAN, https://doi.org/10.12770/070818f6-6520-49e4-bafd-9d4d0609bf7d, 2023.
Schmechtig, C. and Thierry, V.: Argo Quality Control Manual for Biogeochemical Data, The Bio Argo Team, https://doi.org/10.13155/40879, 2016.
Schott, F. A., Xie, S.-P., and McCreary Jr., J. P.: Indian Ocean circulation and climate variability, Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245, 2009.
Stommel, H.: The Slocum Mission, Oceanography, 2, 22–25, https://doi.org/10.5670/oceanog.1989.26, 1989.
Ternon, J. F., Bach, P., Barlow, R., Huggett, J., Jaquemet, S., Marsac, F., Ménard, F., Penven, P., Potier, M., and Roberts, M. J.: The Mozambique Channel: From physics to upper trophic levels, Deep-Sea Res. Pt. II, 100, 1–9, https://doi.org/10.1016/j.dsr2.2013.10.012, 2014.
Testor, P. Meyers, G., Pattiaratchi, C., Bachmayer, R., Hayes, D., Pouliquen, S., Villeon, L., Carval, T., Ganachaud, A., Gourdeau, L., Mortier, L., Claustre, H., Taillandier, V., Lherminier, P., Terre, T., Visbeck, M., Karstensen, J., Krahmann, G., Alvarez, A., and Owens, B.: Gliders as a component of future observing systems, in: Proc. OceanObs'09: Sustained Ocean Observations and Information for Society, edited by: Hall, J., Harrison, D. E., and Stammer, D., ESA Publ. WPP-306, ESA, https://doi.org/10.5270/OceanObs09.cwp.89, 2010.
Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X. P., Sprintall, J., Zilberman, N. V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S. F., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H. I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D. X., and Zhang, L. L.: Global Perspectives on Observing Ocean Boundary Current Systems, Front. Mar. Sci., 6, 423, https://doi.org/10.3389/fmars.2019.00423, 2019.
Van Haren, H. and Gostiaux, L.: A deep-ocean Kelvin-Helmholtz billow train, Geophys. Res. Lett., 37, L03605, https://doi.org/10.1029/2009GL041890, 2010.
Visbeck, M.: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions, J. Atmos. Ocean. Tech., 19, 794–807, https://doi.org/10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2, 2002.
Wyrtki, K.: Oceanographic Atlas of the International Indian Ocean Expedition, National Science Foundation, Washington, D.C., https://catalog.hathitrust.org/Record/001877510. Last access date (last access: 24 October 2024), 1971.
Zinke, J., Reijmer, J. J. G., Thomassin, B. A., Dullo, W.-C., Grootes, P. M., and Erlenkeuser, H.: Postglacial flooding history of Mayotte Lagoon (Comoro Archipelago, southwest Indian Ocean), Mar. Geol., 194, 181–196, https://doi.org/10.1016/s0025-3227(02)00705-3, 2003.
Zinke, J., Reijmer, J. J. G., Taviani, M., Dullo, W.-C., and Thomassin, B.: Facies and faunal assemblage changes in response to the Holocene transgression in the lagoon of Mayotte (Comoro Archipelago, SW Indian Ocean), Facies, 50, 391–408, https://doi.org/10.1007/s10347-004-0040-7, 2005.
Short summary
Following a seismic crisis in May 2018 in Mayotte, an observation network has been created with the given objective of monitoring the volcanic phenomena. A SeaExplorer glider has been deployed to supplement the data obtained during a series of oceanographic surveys. The glider performed a continuous monitoring over 30 months of the water column from the sea surface to 1250 m water depth, with the objective of acquiring the hydrological properties, water currents and dissolved gas concentrations.
Following a seismic crisis in May 2018 in Mayotte, an observation network has been created with...
Altmetrics
Final-revised paper
Preprint