Articles | Volume 17, issue 8
https://doi.org/10.5194/essd-17-4213-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4213-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DebDaB: a database of supraglacial debris thickness and physical properties
Adrià Fontrodona-Bach
CORRESPONDING AUTHOR
Institute of Science and Technology Austria ISTA, Earth Science Faculty, Klosterneuburg, Austria
Lars Groeneveld
Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
Evan Miles
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Mountain Hydrology and Mass Movements Unit, Birmensdorf, Switzerland
Glaciology and Geomorphodynamics Group, Department of Geography, University of Zurich, Zurich, Switzerland
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Michael McCarthy
Institute of Science and Technology Austria ISTA, Earth Science Faculty, Klosterneuburg, Austria
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Mountain Hydrology and Mass Movements Unit, Birmensdorf, Switzerland
British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
Thomas Shaw
Institute of Science and Technology Austria ISTA, Earth Science Faculty, Klosterneuburg, Austria
Vicente Melo Velasco
Institute of Science and Technology Austria ISTA, Earth Science Faculty, Klosterneuburg, Austria
Francesca Pellicciotti
Institute of Science and Technology Austria ISTA, Earth Science Faculty, Klosterneuburg, Austria
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Mountain Hydrology and Mass Movements Unit, Birmensdorf, Switzerland
Related authors
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Adrià Fontrodona-Bach, Bettina Schaefli, Ross Woods, Adriaan J. Teuling, and Joshua R. Larsen
Earth Syst. Sci. Data, 15, 2577–2599, https://doi.org/10.5194/essd-15-2577-2023, https://doi.org/10.5194/essd-15-2577-2023, 2023
Short summary
Short summary
We provide a dataset of snow water equivalent, the depth of liquid water that results from melting a given depth of snow. The dataset contains 11 071 sites over the Northern Hemisphere, spans the period 1950–2022, and is based on daily observations of snow depth on the ground and a model. The dataset fills a lack of accessible historical ground snow data, and it can be used for a variety of applications such as the impact of climate change on global and regional snow and water resources.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
The Cryosphere, 18, 5965–5983, https://doi.org/10.5194/tc-18-5965-2024, https://doi.org/10.5194/tc-18-5965-2024, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60–70 % and that accounting for this effect results in less ice loss by the end of the century.
Orie Sasaki, Evan Stewart Miles, Francesca Pellicciotti, Akiko Sakai, and Koji Fujita
EGUsphere, https://doi.org/10.5194/egusphere-2024-2026, https://doi.org/10.5194/egusphere-2024-2026, 2024
Short summary
Short summary
This study proposes a new method to detect snowline altitude (SLA) using the Google Earth Engine platform with high-resolution satellite imagery, applicable anywhere in the world. Applying this method to five glaciated watersheds in the Himalayas reveals regional consistencies and differences in snow dynamics. We also investigate the primary controls of these dynamics by analyzing climatic factors and topographic characteristics.
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Short summary
This paper quantifies the thinning and surface mass balance of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau during different seasons, based on high spatio-temporal resolution UAV-derived (unpiloted aerial
vehicle) data and in situ observations. Through a comparison approach and high-precision results, we identify that the glacier dynamic and debris thickness are strongly related to the future fate of the debris-covered glaciers in this region.
Adrià Fontrodona-Bach, Bettina Schaefli, Ross Woods, Adriaan J. Teuling, and Joshua R. Larsen
Earth Syst. Sci. Data, 15, 2577–2599, https://doi.org/10.5194/essd-15-2577-2023, https://doi.org/10.5194/essd-15-2577-2023, 2023
Short summary
Short summary
We provide a dataset of snow water equivalent, the depth of liquid water that results from melting a given depth of snow. The dataset contains 11 071 sites over the Northern Hemisphere, spans the period 1950–2022, and is based on daily observations of snow depth on the ground and a model. The dataset fills a lack of accessible historical ground snow data, and it can be used for a variety of applications such as the impact of climate change on global and regional snow and water resources.
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Cited articles
Adhikary, S., Nakawo, M., Seko, K., and Shakya, B.: Dust influence on the melting process of glacier ice: experimental results from Lirung Glacier, Nepal Himalayas, IAHS-AISH P., 264, 43–52, 2000. a
Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers: response to steady debris deposition, The Cryosphere, 10, 1105–1124, https://doi.org/10.5194/tc-10-1105-2016, 2016. a, b, c, d
Anderson, L. S. and Anderson, R. S.: Debris thickness patterns on debris-covered glaciers, Geomorphology, 311, 1–12, https://doi.org/10.1016/j.geomorph.2018.03.014, 2018. a, b
Anderson, L. S., Armstrong, W. H., Anderson, R. S., and Buri, P.: Measurements and datasets from the debris-covered tongue of Kennicott Glacier, Alaska, Version Number: 1.0.0, Zenodo [data set], https://doi.org/10.5281/zenodo.4118671, 2020. a
Anderson, L. S., Armstrong, W. H., Anderson, R. S., and Buri, P.: Debris cover and the thinning of Kennicott Glacier, Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates, The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, 2021. a
Aubry-Wake, C.: Debris-cover surface temperature from TIR imagery, Peyto Glacier, http://www.hydroshare.org/resource/d2768996e761412381c2051b99d02c87 (last access: 28 April 2023), 2022. a
Aubry-Wake, C., Lamontagne-Hallé, P., Baraër, M., McKenzie, J. M., and Pomeroy, J. W.: Using ground-based thermal imagery to estimate debris thickness over glacial ice: fieldwork considerations to improve the effectiveness, J. Glaciol., 69, 353–369, https://doi.org/10.1017/jog.2022.67, 2023. a, b
Ayala, A., Pellicciotti, F., MacDonell, S., McPhee, J., Vivero, S., Campos, C., and Egli, P.: Modelling the hydrological response of debris‐free and debris‐covered glaciers to present climatic conditions in the semiarid Andes of central Chile, Hydrol. Process., 30, 4036–4058, https://doi.org/10.1002/hyp.10971, 2016. a
Azzoni, R. S., Senese, A., Zerboni, A., Maugeri, M., Smiraglia, C., and Diolaiuti, G. A.: Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps, The Cryosphere, 10, 665–679, https://doi.org/10.5194/tc-10-665-2016, 2016. a, b
Banerjee, A.: Supplemental materials for preprint: Estimation of the total sub-debris ablation from point-scale ablation data on a debris-covered glacier, OSF, https://doi.org/10.17605/OSF.IO/KR2Q7, 2022. a, b
Banerjee, A. and Wani, B. A.: Exponentially decreasing erosion rates protect the high-elevation crests of the Himalaya, Earth Planet. Sc. Lett., 497, 22–28, https://doi.org/10.1016/j.epsl.2018.06.001, 2018. a
Benn, D., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards, Earth-Sci. Rev., 114, 156–174, https://doi.org/10.1016/j.earscirev.2012.03.008, 2012. a, b
Benn, D. I. and Lehmkuhl, F.: Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments, Quaternary Int., 65–66, 15–29, https://doi.org/10.1016/S1040-6182(99)00034-8, 2000. a, b
Bishop, M. P., Shroder, J. F., Hickman, B. L., and Copland, L.: Scale-dependent analysis of satellite imagery for characterization of glacier surfaces in the Karakoram Himalaya, Geomorphology, 21, 217–232, https://doi.org/10.1016/S0169-555X(97)00061-5, 1998. a
Bisset, R. R., Nienow, P. W., Goldberg, D. N., Wigmore, O., Loayza-Muro, R. A., Wadham, J. L., Macdonald, M. L., and Bingham, R. G.: Using thermal UAV imagery to model distributed debris thicknesses and sub-debris melt rates on debris-covered glaciers, J. Glaciol., 69, 981–996, https://doi.org/10.1017/jog.2022.116, 2023. a
Bocchiola, D., Senese, A., Mihalcea, C., Mosconi, B., D'Agata, C., Smiraglia, C., and Diolaiuti, G.: An ablation model for debris-covered ice: the case study of Venerocolo Glacier (Italian Alps), Geogr. Fis. Din. Quat., 38, 113–128, https://doi.org/10.4461/GFDQ.2015.38.11, 2015. a, b, c
Bozhinskiy, A. N., Krass, M. S., and Popovnin, V. V.: Role of Debris Cover in the Thermal Physics of Glaciers, J. Glaciol., 32, 255–266, https://doi.org/10.3189/S0022143000015598, 1986. a
Brock, B., Rivera, A., Casassa, G., Bown, F., and Acuña, C.: The surface energy balance of an active ice-covered volcano: Villarrica Volcano, southern Chile, Ann. Glaciol., 45, 104–114, https://doi.org/10.3189/172756407782282372, 2007. a, b, c, d
Brock, B. W.: Seasonal and spatial variations in the surface energy-balance of valley glaciers, PhD thesis, University of Cambridge, 1996. a
Brock, B. W.: 5_Miage Data, Zenodo [data set], https://doi.org/10.5281/zenodo.3050557, 2019. a
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization of albedo variations at Haut Glacier d’Arolla, Switzerland, J. Glaciol., 46, 675–688, https://doi.org/10.3189/172756500781832675, 2000. a, b
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland, J. Glaciol., 52, 281–297, https://doi.org/10.3189/172756506781828746, 2006. a, b
Brock, B. W., Mihalcea, C., Kirkbride, M. P., Diolaiuti, G., Cutler, M. E. J., and Smiraglia, C.: Meteorology and surface energy fluxes in the 2005–2007 ablation seasons at the Miage debris‐covered glacier, Mont Blanc Massif, Italian Alps, J. Geophys. Res.-Atmos., 115, 2009JD013224, https://doi.org/10.1029/2009JD013224, 2010. a, b, c, d, e, f, g, h, i
Brook, M., Hagg, W., and Winkler, S.: Debris cover and surface melt at a temperate maritime alpine glacier: Franz Josef Glacier, New Zealand, New Zeal. J. Geol. Geop., 56, 27–38, https://doi.org/10.1080/00288306.2012.736391, 2013. a
Brook, M. S. and Paine, S.: Ablation of ice‐cored moraine in a humid, maritime climate: fox glacier, new zealand, Geografiska Annaler: Series A, Physical Geography, 94, 339–349, https://doi.org/10.1111/j.1468-0459.2011.00442.x, 2012. a
Buri, P., Truffer, M., Fochesatto, J., and Aschwanden, A.: Automatic weather station data from the debris-covered Kennicott Glacier, Alaska (May–Aug 2019), Zenodo [data set], https://doi.org/10.5281/zenodo.6424158, 2022. a
Carenzo, M., Pellicciotti, F., Mabillard, J., Reid, T., and Brock, B.: An enhanced temperature index model for debris-covered glaciers accounting for thickness effect, Adv. Water Resour., 94, 457–469, https://doi.org/10.1016/j.advwatres.2016.05.001, 2016. a
Casey, K. and Kääb, A.: Estimation of Supraglacial Dust and Debris Geochemical Composition via Satellite Reflectance and Emissivity, Remote Sens., 4, 2554–2575, https://doi.org/10.3390/rs4092554, 2012. a, b
CEAZA: Modelación del balance de masa y descarga de agua en glaciares del Norte Chico y Chile Central, Informe Final, Centro de Estudios Avanzados en Zonas Áridas. Ministerio de Obras Públicas, Dirección General de Aguas, Gobierno de Chile, Santiago, https://snia.mop.gob.cl/repositoriodga/handle/20.500.13000/6866 (last access: 12 January 2023), 2015. a
CEAZA: Apoyo para el Monitoreo de Detalle Intensivo del Glaciar Tapado, Región de Coquimbo, Macrozona Norte, 2020–2021, Informe Final, Centro de Estudios Avanzados en Zonas Áridas. Ministerio de Obras Públicas, Dirección General de Aguas, Gobierno de Chile, Santiago, https://snia.mop.gob.cl/repositoriodga/bitstream/handle/20.500.13000/125424/GLA5935.PDF?sequence=1 (last access: 12 January 2023), 2021. a
Chambers, J. R., Smith, M. W., Quincey, D. J., Carrivick, J. L., Ross, A. N., and James, M. R.: Glacial Aerodynamic Roughness Estimates: Uncertainty, Sensitivity, and Precision in Field Measurements, J. Geophys. Res.-Earth, 125, e2019JF005167, https://doi.org/10.1029/2019JF005167, 2020. a, b, c, d
Chand, M. B. and Kayastha, R. B.: Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal, Sciences in Cold and Arid Regions, 10, 357–368, 2018. a
Chand, M. B. and Kayastha, R. B.: Debris temperature and ablation measurements from the Lirung Debris-Covered Glacier (2013–2014), Nepal, Zenodo [data set], https://doi.org/10.5281/zenodo.4446387, 2021. a
Collier, E., Nicholson, L. I., Brock, B. W., Maussion, F., Essery, R., and Bush, A. B. G.: Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach, The Cryosphere, 8, 1429–1444, https://doi.org/10.5194/tc-8-1429-2014, 2014. a, b, c
Collier, E., Maussion, F., Nicholson, L. I., Mölg, T., Immerzeel, W. W., and Bush, A. B. G.: Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram, The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015, 2015. a
Comitato Ev-K2-CNR: Plan de Accion para la Conservación de Glaciares ante el Cambio Climático, Informe Final, Volumen II, Ministerio de Obras Públicas, Dirección General de Aguas, Unidad de Glaciología y Nieves, Gobierno de Chile, Santiago, https://www.researchgate.net/publication/292145572_PLAN_DE_ACCION_PARA_LA_CONSERVACION_DE_GLACIARES_ANTE_EL_CAMBIO_CLIMATICO_Vol_II (last access: 9 January 2023), 2012. a
Crump, S. E., Anderson, L. S., Miller, G. H., and Anderson, R. S.: Interpreting exposure ages from ice‐cored moraines: a Neoglacial case study on Baffin Island, Arctic Canada, J. Quaternary Sci., 32, 1049–1062, https://doi.org/10.1002/jqs.2979, 2017. a
Das, S., Sharma, M. C., and Murari, M. K.: Spatially heterogeneous glacier elevation change in the Jankar Chhu Watershed, Lahaul Himalaya, India derived using ASTER DEMs, Geocarto Int., 37, 17799–17825, https://doi.org/10.1080/10106049.2022.2136254, 2022. a
del Gobbo, C.: Debris thickness investigation of Solda glacier, southern Rhaetian Alps, Italy: Methodological considerations about the use of ground penetrating radar over a debris-covered glacier, Master's thesis, University of Innsbruck, Innsbruck, https://diglib.uibk.ac.at/urn:nbn:at:at-ubi:1-7122 (last access: 21 February 2024), 2017. a
Dobhal, D., Mehta, M., and Srivastava, D.: Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India, J. Glaciol., 59, 961–971, https://doi.org/10.3189/2013JoG12J180, 2013. a
Drewry, D. J.: A Quantitative Assessment of Dirt-Cone Dynamics, J. Glaciol., 11, 431–446, https://doi.org/10.3189/S0022143000022383, 1972. a
Evatt, G. W., Abrahams, I. D., Heil, M., Mayer, C., Kingslake, J., Mitchell, S. L., Fowler, A. C., and Clark, C. D.: Glacial melt under a porous debris layer, J. Glaciol., 61, 825–836, https://doi.org/10.3189/2015JoG14J235, 2015. a, b
Evatt, G. W., Mayer, C., Mallinson, A., Abrahams, I. D., Heil, M., and Nicholson, L.: The secret life of ice sails, J. Glaciol., 63, 1049–1062, https://doi.org/10.1017/jog.2017.72, 2017. a
Foster, L., Brock, B., Cutler, M., and Diotri, F.: A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data, J. Glaciol., 58, 677–691, https://doi.org/10.3189/2012JoG11J194, 2012. a, b
Fugger, S., Fyffe, C. L., Fatichi, S., Miles, E., McCarthy, M., Shaw, T. E., Ding, B., Yang, W., Wagnon, P., Immerzeel, W., Liu, Q., and Pellicciotti, F.: Understanding monsoon controls on the energy and mass balance of glaciers in the Central and Eastern Himalaya, The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, 2022. a, b, c, d
Fujita, K. and Sakai, A.: Modelling runoff from a Himalayan debris-covered glacier, Hydrol. Earth Syst. Sci., 18, 2679–2694, https://doi.org/10.5194/hess-18-2679-2014, 2014. a, b
Fyffe, C., Brock, B., Kirkbride, M., Mair, D., Arnold, N., Smiraglia, C., Diolaiuti, G., and Diotri, F.: Do debris-covered glaciers demonstrate distinctive hydrological behaviour compared to clean glaciers?, Elsevier BV, https://doi.org/10.17863/CAM.36254, 2019. a, b
Fyffe, C. L., Reid, T. D., Brock, B. W., Kirkbride, M. P., Diolaiuti, G., Smiraglia, C., and Diotri, F.: A distributed energy-balance melt model of an alpine debris-covered glacier, J. Glaciol., 60, 587–602, https://doi.org/10.3189/2014JoG13J148, 2014. a, b
Fyffe, C. L., Woodget, A. S., Kirkbride, M. P., Deline, P., Westoby, M. J., and Brock, B. W.: Processes at the margins of supraglacial debris cover: Quantifying dirty ice ablation and debris redistribution, Earth Surf. Proc. Land., 45, 2272–2290, https://doi.org/10.1002/esp.4879, 2020. a
Garg, P. K., Garg, S., Yousuf, B., Shukla, A., Kumar, V., and Mehta, M.: Stagnation of the Pensilungpa glacier, western Himalaya, India: causes and implications, J. Glaciol., 68, 221–235, https://doi.org/10.1017/jog.2021.84, 2022. a
Gibson, M. J., Glasser, N. F., Quincey, D. J., Mayer, C., Rowan, A. V., and Irvine-Fynn, T. D.: Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012, Geomorphology, 295, 572–585, https://doi.org/10.1016/j.geomorph.2017.08.012, 2017. a
Giese, A., Boone, A., Wagnon, P., and Hawley, R.: Incorporating moisture content in surface energy balance modeling of a debris-covered glacier, The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020, 2020. a, b, c
Giese, A., Arcone, S., Hawley, R., Lewis, G., and Wagnon, P.: Detecting supraglacial debris thickness with GPR under suboptimal conditions, J. Glaciol., 67, 1108–1120, https://doi.org/10.1017/jog.2021.59, 2021. a
Giese, A. L.: Heat Flow, Energy Balance, and Radar Propagation: Porous Media Studies Applied to the Melt of Changri Nup Glacier, Nepal Himalaya, Doctoral dissertation, Dartmouth College, Hanover, https://www.proquest.com/dissertations-theses/heat-flow-energy-balance-radar-propagation-porous/docview/2236460380/se-2 (last access: 13 February 2024), 2019. a
Groeneveld, L., Fontrodona-Bach, A., Miles, E., McCarthy, M., Melo Velasco, V., Shaw, T., Pellicciotti, F., Bauder, A., Buri, P., Kneib, M., Kumar, A., Mishra, A., Petersen, L., Renner, R., and Schmid, S.: DebDaB: A database of supraglacial debris thickness and physical properties (Version v2), Zenodo [data set], https://doi.org/10.5281/zenodo.14224835, 2025. a, b, c, d, e
Groos, A. R., Mayer, C., Smiraglia, C., Diolaiuti, G., and Lambrecht, A.: A first attempt to model region-wide glacier surface mass balances in the Karakoram: findings and future challenges, Geogr. Fis. Din. Quat., 40, 137–159, 2017. a
Gök, D., Scherler, D., and Anderson, L. S.: High-resolution debris cover mapping using UAV-derived thermal imagery, GFZ data services, https://doi.org/10.5880/GFZ.3.3.2022.003, 2022. a
Gök, D. T., Scherler, D., and Anderson, L. S.: High-resolution debris-cover mapping using UAV-derived thermal imagery: limits and opportunities, The Cryosphere, 17, 1165–1184, https://doi.org/10.5194/tc-17-1165-2023, 2023. a
Hagg, W., Mayer, C., Lambrecht, A., and Helm, A.: Sub‐debris melt rates on southern inylchek glacier, central tian shan, Geogr. Ann. A, 90, 55–63, https://doi.org/10.1111/j.1468-0459.2008.00333.x, 2008. a
Haidong, H., Yongjing, D., and Shiyin, L.: A simple model to estimate ice ablation under a thick debris layer, J. Glaciol., 52, 528–536, https://doi.org/10.3189/172756506781828395, 2006. a
Han, H.-d., Ding, Y.-j., Liu, S.-y., and Wang, J.: Regimes of runoff components on the debris-covered Koxkar glacier in western China, J. Mt. Sci., 12, 313–329, https://doi.org/10.1007/s11629-014-3163-5, 2015. a
He, Z., Yang, W., Wang, Y., Zhao, C., Ren, S., and Li, C.: Dynamic Changes of a Thick Debris-Covered Glacier in the Southeastern Tibetan Plateau, Remote Sens., 15, 357, https://doi.org/10.3390/rs15020357, 2023. a
Heimsath, A. M. and McGlynn, R.: Quantifying periglacial erosion in the Nepal high Himalaya, Geomorphology, 97, 5–23, https://doi.org/10.1016/j.geomorph.2007.02.046, 2008. a
Herreid, S.: What Can Thermal Imagery Tell Us About Glacier Melt Below Rock Debris?, Front. Earth Sci., 9, 681059, https://doi.org/10.3389/feart.2021.681059, 2021. a, b
Herreid, S. and Pellicciotti, F.: The state of rock debris covering Earth's glaciers, Nat. Geosci., 13, 621–627, https://doi.org/10.1038/s41561-020-0615-0, 2020. a, b
Huang, L., Li, Z., Tian, B. S., Han, H. D., Liu, Y. Q., Zhou, J. M., and Chen, Q.: Estimation of supraglacial debris thickness using a novel target decomposition on L‐band polarimetric SAR images in the Tianshan Mountains, J. Geophys. Res.-Earth, 122, 925–940, https://doi.org/10.1002/2016JF004102, 2017. a, b
Huang, L., Li, Z., Han, H., Tian, B., and Zhou, J.: Analysis of thickness changes and the associated driving factors on a debris-covered glacier in the Tienshan Mountain, Remote Sens. Environ., 206, 63–71, https://doi.org/10.1016/j.rse.2017.12.028, 2018. a
Huo, D., Bishop, M. P., and Bush, A. B. G.: Understanding Complex Debris-Covered Glaciers: Concepts, Issues, and Research Directions, Front. Earth Sci., 9, 652279, https://doi.org/10.3389/feart.2021.652279, 2021. a
Inoue, J. and Yoshida, M.: Ablation and Heat Exchange over the Khumbu Glacier, Journal of the Japanese Society of Snow and Ice, 41, 26–33, https://doi.org/10.5331/seppyo.41.Special_26, 1980. a
Juen, M., Mayer, C., Lambrecht, A., Wirbel, A., and Kueppers, U.: Thermal properties of a supraglacial debris layer with respect to lithology and grain size, Geogr. Ann. A, 95, 197–209, https://doi.org/10.1111/geoa.12011, 2013. a, b, c
Kellerer-Pirklbauer, A.: The Supraglacial Debris System at the Pasterze Glacier, Austria: Spatial Distribution, Characteristics and Transport of Debris, Z. Geomorphol., 52, 3–25, https://doi.org/10.1127/0372-8854/2008/0052S1-0003, 2008. a
Khan, M. I.: Ablation on Barpu glacier, Karakoram Himalaya, Pakistan: A study of melt processes on a faceted, debris-covered ice surface, PhD thesis, Wilfrid Laurier University, https://scholars.wlu.ca/etd/311 (last access: 27 October 2022), 1989. a
Kirkbride, M. P. and Deline, P.: The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands, Earth Surf. Proc. Land., 38, 1779–1792, https://doi.org/10.1002/esp.3416, 2013. a
Kirkbride, M. P. and Warren, C. R.: Tasman Glacier, New Zealand: 20th-century thinning and predicted calving retreat, Global Planet. Change, 22, 11–28, https://doi.org/10.1016/S0921-8181(99)00021-1, 1999. a, b
Kneib, M., Miles, E. S., Buri, P., Fugger, S., McCarthy, M., Shaw, T. E., Chuanxi, Z., Truffer, M., Westoby, M. J., Yang, W., and Pellicciotti, F.: Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry, The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, 2022. a
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W. W.: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers, Nature, 549, 257–260, https://doi.org/10.1038/nature23878, 2017. a, b
Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E., and Kargel, J. S.: Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?, The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, 2021. a, b
Laha, S., Winter-Billington, A., Banerjee, A., Shankar, R., Nainwal, H., and Koppes, M.: Estimation of ice ablation on a debris-covered glacier from vertical debris-temperature profiles, J. Glaciol., 69, 1–12, https://doi.org/10.1017/jog.2022.35, 2023. a, b, c, d
Lejeune, Y., Bertrand, J.-M., Wagnon, P., and Morin, S.: A physically based model of the year-round surface energy and mass balance of debris-covered glaciers, J. Glaciol., 59, 327–344, https://doi.org/10.3189/2013JoG12J149, 2013. a, b, c
Lukas, S., Nicholson, L. I., Ross, F. H., and Humlum, O.: Formation, Meltout Processes and Landscape Alteration of High-Arctic Ice-Cored Moraines – Examples From Nordenskiold Land, Central Spitsbergen, Polar Geogr., 29, 157–187, https://doi.org/10.1080/789610198, 2005. a
MacPhee, J., Ayala, A., and MacDonell, S.: 8_Tapado Data, Zenodo [data set], https://doi.org/10.5281/zenodo.3362402, 2019. a
Mattson, L., Gardner, J., and Young, G.: Ablation on Debris Covered Glaciers: An Example from the Rakhiot Glacier, Punjab, Himalaya, in: Snow and Glacier Hydrology, vol. 218, p. 289, International Association of Hydrological Sciences (IAHS), Kathmandu, 1993. a
Mayer, C. and Licciulli, C.: The Concept of Steady State, Cyclicity and Debris Unloading of Debris-Covered Glaciers, Front. Earth Sci., 9, 710276, https://doi.org/10.3389/feart.2021.710276, 2021. a
Mayer, C., Lambrecht, A., Mihalcea, C., Belò, M., Diolaiuti, G., Smiraglia, C., and Bashir, F.: Analysis of Glacial Meltwater in Bagrot Valley, Karakoram: Based on Short-term Ablation and Debris Cover Observations on Hinarche Glacier, Mot. Res. Dev., 30, 169–177, https://doi.org/10.1659/MRD-JOURNAL-D-09-00043.1, 2010. a
McCarthy, M., Pritchard, H., Willis, I., and King, E.: Ground-penetrating radar measurements of debris thickness on Lirung Glacier, Nepal, J. Glaciol., 63, 543–555, https://doi.org/10.1017/jog.2017.18, 2017. a, b, c
McCarthy, M., Miles, E., Kneib, M., Buri, P., Fugger, S., and Pellicciotti, F.: Supraglacial debris thickness and supply rate in High-Mountain Asia, Commun. Earth Environ., 3, 269, https://doi.org/10.1038/s43247-022-00588-2, 2022. a, b
McCarthy, M. J.: Quantifying supraglacial debris thickness at local to regional scales, Apollo – University of Cambridge Repository, https://doi.org/10.17863/CAM.41172, 2018. a, b
McPhee, J., MacDonnel, S., and Shaw, T.: 6_Pirámide Data, Zenodo [data set], https://doi.org/10.5281/zenodo.3056072, 2019. a
Melo-Velasco, V., Miles, E., McCarthy, M., Shaw, T. E., Fyffe, C., Fontrodona-Bach, A., and Pellicciotti, F.: Method Dependence in Thermal Conductivity and Aerodynamic Roughness Length Estimates on a Debris-Covered Glacier, J. Geophys. Res.-Earth, 130, e2025JF008360, https://doi.org/10.1029/2025JF008360, 2025. a, b, c, d, e, f, g
Mihalcea, C., Mayer, C., Diolaiuti, G., Lambrecht, A., Smiraglia, C., and Tartari, G.: Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan, Ann. Glaciol., 43, 292–300, https://doi.org/10.3189/172756406781812104, 2006. a
Mihalcea, C., Brock, B., Diolaiuti, G., D'Agata, C., Citterio, M., Kirkbride, M., Cutler, M., and Smiraglia, C.: Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy), Cold Reg. Sci. Technol., 52, 341–354, https://doi.org/10.1016/j.coldregions.2007.03.004, 2008a. a, b
Mihalcea, C., Mayer, C., Diolaiuti, G., D'Agata, C., Smiraglia, C., Lambrecht, A., Vuillermoz, E., and Tartari, G.: Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan, Ann. Glaciol., 48, 49–57, https://doi.org/10.3189/172756408784700680, 2008b. a
Miles, E. S., Steiner, J. F., Buri, P., Immerzeel, W. W., and Pellicciotti, F.: Controls on the relative melt rates of debris-covered glacier surfaces, Environ. Res. Lett., 17, 064004, https://doi.org/10.1088/1748-9326/ac6966, 2022. a, b, c, d
Miles, K. E., Hubbard, B., Irvine-Fynn, T. D., Miles, E. S., Quincey, D. J., and Rowan, A. V.: Hydrology of debris-covered glaciers in High Mountain Asia, Earth-Sci. Rev., 207, 103212, https://doi.org/10.1016/j.earscirev.2020.103212, 2020. a, b
Minora, U., Senese, A., Bocchiola, D., Soncini, A., D’agata, C., Ambrosini, R., Mayer, C., Lambrecht, A., Vuillermoz, E., Smiraglia, C., and Diolaiuti, G.: A simple model to evaluate ice melt over the ablation area of glaciers in the Central Karakoram National Park, Pakistan, Ann. Glaciol., 56, 202–216, https://doi.org/10.3189/2015AoG70A206, 2015. a
Moore, P. L., Nelson, L. I., and Groth, T. M. D.: Debris properties and mass-balance impacts on adjacent debris-covered glaciers, Mount Rainier, USA, Arct. Antarct. Alp. Res., 51, 70–83, https://doi.org/10.1080/15230430.2019.1582269, 2019. a
Muhammad, S., Tian, L., Ali, S., Latif, Y., Wazir, M. A., Goheer, M. A., Saifullah, M., Hussain, I., and Shiyin, L.: Thin debris layers do not enhance melting of the Karakoram glaciers, Sci. Total Environ., 746, 141119, https://doi.org/10.1016/j.scitotenv.2020.141119, 2020. a, b
Mölg, N., Bolch, T., Walter, A., and Vieli, A.: Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age, The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, 2019. a
Nakawo, M. and Young, G.: Estimate of Glacier Ablation under a Debris Layer from Surface Temperature and Meteorological Variables, J. Glaciol., 28, 29–34, https://doi.org/10.3189/S002214300001176X, 1982. a, b
Nicholson, L.: Supraglacial debris thickness data from Ngozumpa Glacier, Nepal, Zenodo [data set], https://doi.org/10.5281/zenodo.1451560, 2018. a
Nicholson, L.: 7_Suldenferner Data, Zenodo [data set], https://doi.org/10.5281/zenodo.3056524, 2019. a
Nicholson, L. and Benn, D. I.: Properties of natural supraglacial debris in relation to modelling sub‐debris ice ablation, Earth Surf. Proc. Land., 38, 490–501, https://doi.org/10.1002/esp.3299, 2013. a, b, c, d
Nicholson, L. and Boxall, K.: Supraglacial debris thickness measurements from excavation pits at Suldenferner, Zenodo [data set], https://doi.org/10.5281/zenodo.3711581, 2020. a
Nicholson, L. and Mertes, J.: Thickness estimation of supraglacial debris above ice cliff exposures using a high-resolution digital surface model derived from terrestrial photography, J. Glaciol., 63, 989–998, https://doi.org/10.1017/jog.2017.68, 2017. a, b
Nicholson, L. and Stiperski, I.: Comparison of turbulent structures and energy fluxes over exposed and debris-covered glacier ice, J. Glaciol., 66, 543–555, https://doi.org/10.1017/jog.2020.23, 2020. a, b
Nicholson, L. I., McCarthy, M., Pritchard, H. D., and Willis, I.: Supraglacial debris thickness variability: impact on ablation and relation to terrain properties, The Cryosphere, 12, 3719–3734, https://doi.org/10.5194/tc-12-3719-2018, 2018. a, b, c
Nield, J. M., Chiverrell, R. C., Darby, S. E., Leyland, J., Vircavs, L. H., and Jacobs, B.: Complex spatial feedbacks of tephra redistribution, ice melt and surface roughness modulate ablation on tephra covered glaciers, Earth Surf. Proc. Land., 38, 95–102, https://doi.org/10.1002/esp.3352, 2013. a, b
Patel, L. K., Sharma, P., Thamban, M., Singh, A., and Ravindra, R.: Debris control on glacier thinning – a case study of the Batal glacier, Chandra basin, Western Himalaya, Arab. J. Geosci., 9, 309, https://doi.org/10.1007/s12517-016-2362-5, 2016. a
Patel, L. K., Sharma, P., Singh, A., Oulkar, S., Pratap, B., and Thamban, M.: Influence of Supraglacial Debris Thickness on Thermal Resistance of the Glaciers of Chandra Basin, Western Himalaya, Front. Earth Sci., 9, 706312, https://doi.org/10.3389/feart.2021.706312, 2021. a
Pellicciotti, F. and Fontrodona-Bach, A.: 1_Arolla Data, Zenodo [data set], https://doi.org/10.5281/zenodo.3047649, 2019. a
Pellicciotti, F., Fugger, S., and Miles, E.: 4_Lirung Data, Zenodo [data set], https://doi.org/10.5281/zenodo.3050327, 2019. a
Pelto, M. S.: Mass balance of adjacent debris-covered and clean glacier ice in the North Cascades, Washington, IAHS-AISH P., 264, 35–42, 2000. a
Petersen, E., Hock, R., Fochesatto, G. J., and Anderson, L. S.: The Significance of Convection in Supraglacial Debris Revealed Through Novel Analysis of Thermistor Profiles, J. Geophys. Res.-Earth, 127, e2021JF006520, https://doi.org/10.1029/2021JF006520, 2022. a
Popovnin, V. V. and Rozova, A. V.: Influence of Sub-Debris Thawing on Ablation and Runoff of the Djankuat Glacier in the Caucasus, Hydrol. Res., 33, 75–94, https://doi.org/10.2166/nh.2002.0005, 2002. a, b
Popovnin, V. V., Rezepkin, A. A., and Tielidze, L. G.: Superficial Moraine Expansion On The Djankuat Glacier Snout Over The Direct Glaciological Monitoring Period, Earth Cryosphere, 19, 79–87, 2015. a
Postnikova, T., Rybak, O., Gubanov, A., Zekollari, H., Huss, M., and Shahgedanova, M.: Debris cover effect on the evolution of Northern Caucasus glaciers in the 21st century, Front. Earth Sci., 11, 1256696, https://doi.org/10.3389/feart.2023.1256696, 2023. a, b
Pratap, B., Dobhal, D., Mehta, M., and Bhambri, R.: Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, central Himalaya, India, Ann. Glaciol., 56, 9–16, https://doi.org/10.3189/2015AoG70A971, 2015. a
Pratap, B., Sharma, P., Patel, L. K., Singh, A. T., Oulkar, S. N., and Thamban, M.: Differential surface melting of a debris-covered glacier and its geomorphological control – A case study from Batal Glacier, western Himalaya, Geomorphology, 431, 108686, https://doi.org/10.1016/j.geomorph.2023.108686, 2023. a
Purdie, H.: Intra-annual Variations in Ablation and Surface Velocity on the lower Fox Glacier, South Westland, New Zealand, PhD thesis, Massey University, http://hdl.handle.net/10179/6733 (last access: 23 November 2022), 2005. a
Purdie, H.: 9_Tasman Data, Zenodo [data set], https://doi.org/10.5281/zenodo.3354105, 2019. a
Purdie, H., Anderson, B., Mackintosh, A., and Lawson, W.: Revisiting glaciological measurements on Haupapa/Tasman Glacier, New Zealand, in a contemporary context, Geogr. Ann. A, 100, 351–369, https://doi.org/10.1080/04353676.2018.1522958, 2018. a
Purdie, J. and Fitzharris, B.: Processes and rates of ice loss at the terminus of Tasman Glacier, New Zealand, Global Plane. Change, 22, 79–91, https://doi.org/10.1016/S0921-8181(99)00027-2, 1999. a
Puyu, W., Zhongqin, L., Wenbin, W., Huilin, L., Ping, Z., and Shuang, J.: Changes of six selected glaciers in the Tomor region, Tian Shan, Central Asia, over the past ∼50 years, using high-resolution remote sensing images and field surveying, Quaternary Int., 311, 123–131, https://doi.org/10.1016/j.quaint.2013.04.031, 2013. a
Quincey, D., Luckman, A., and Benn, D.: Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking, J. Glaciol., 55, 596–606, https://doi.org/10.3189/002214309789470987, 2009. a, b
Quincey, D., Smith, M., Rounce, D., Ross, A., King, O., and Watson, C.: Evaluating morphological estimates of the aerodynamic roughness of debris covered glacier ice, Earth Surf. Proc. Land., 42, 2541–2553, https://doi.org/10.1002/esp.4198, 2017. a, b, c, d
Racoviteanu, A., Nicholson, L., Glasser, N., Miles, E., Harrison, S., and Reynolds, J.: Debris-covered glacier systems and associated glacial lake outburst flood hazards: challenges and prospects, J. Geol. Soc., 179, jgs2021–084, https://doi.org/10.1144/jgs2021-084, 2022. a, b, c, d
Rana, B., Nakawo, M., Fukushima, Y., and Agkta, Y.: Application of a conceptual precipitation-runoff model (HYGYMODEL) in a debris-covered glacierized basin in the Langtang Valley, Nepal Himalaya, Ann. Glaciol., 25, 226–231, https://doi.org/10.3189/S0260305500014087, 1997. a
Reid, T. and Brock, B.: Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy, J. Glaciol., 60, 3–13, https://doi.org/10.3189/2014JoG13J045, 2014. a
Reid, T. D. and Brock, B. W.: An energy-balance model for debris-covered glaciers including heat conduction through the debris layer, J. Glaciol., 56, 903–916, https://doi.org/10.3189/002214310794457218, 2010. a, b, c
Reid, T. D., Carenzo, M., Pellicciotti, F., and Brock, B. W.: Including debris cover effects in a distributed model of glacier ablation, J. Geophys. Res.-Atmos., 117, 2012JD017795, https://doi.org/10.1029/2012JD017795, 2012. a, b
Rets, E., Popovnin, V., and Shahgedanova, M.: 3_Djankuat Data, Zenodo [data set], https://doi.org/10.5281/zenodo.3049871, 2019. a
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines, Version 6, National Snow and Ice Data Center [data set], https://doi.org/10.7265/4M1F-GD79, 2017. a, b, c, d
Robertson, E. C.: General and Engineering Geology of the Northern Part of Pueblo, Colorado, Open-File Report 88-441, U.S. Geological Survey, https://pubs.usgs.gov/of/1988/0441/report.pdf (last access: 1 December 2022), 1988. a
Rogerson, R., Olson, M., and Branson, D.: Medial Moraines and Surface Melt on Glaciers of the Torngat Mountains, Northern Labrador, Canada, J. Glaciol., 32, 350–354, https://doi.org/10.3189/S0022143000012028, 1986. a
Romshoo, S. A., Murtaza, K. O., and Abdullah, T.: Towards understanding various influences on mass balance of the Hoksar Glacier in the Upper Indus Basin using observations, Sci. Rep., 12, 15669, https://doi.org/10.1038/s41598-022-20033-w, 2022. a
Romshoo, S. A., Nabi, B., and Dar, R. A.: Influence of debris cover on the glacier melting in the Himalaya, Cold Reg. Sci. Technol., 222, 104204, https://doi.org/10.1016/j.coldregions.2024.104204, 2024. a
Rounce, D. R. and McKinney, D. C.: Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model, The Cryosphere, 8, 1317–1329, https://doi.org/10.5194/tc-8-1317-2014, 2014. a, b
Rounce, D. R., Hock, R., McNabb, R. W., Millan, R., Sommer, C., Braun, M. H., Malz, P., Maussion, F., Mouginot, J., Seehaus, T. C., and Shean, D. E.: Distributed Global Debris Thickness Estimates Reveal Debris Significantly Impacts Glacier Mass Balance, Geophys. Res. Lett., 48, e2020GL091311, https://doi.org/10.1029/2020GL091311, 2021. a, b, c, d, e, f, g
Rounce, D. R., Hock, R., Maussion, F., Hugonnet, R., Kochtitzky, W., Huss, M., Berthier, E., Brinkerhoff, D., Compagno, L., Copland, L., Farinotti, D., Menounos, B., and McNabb, R. W.: Global glacier change in the 21st century: Every increase in temperature matters, Science, 379, 78–83, https://doi.org/10.1126/science.abo1324, 2023. a, b
Rowan, A. and Gibson, M.: Supraglacial debris thickness data from Khumbu Glacier, Nepal, Zenodo [data set], https://doi.org/10.5281/zenodo.3775571, 2020. a
Rowan, A., Stewart, R., and Foster, L.: Supraglacial debris thickness measurements from Miage Glacier, Italy, Zenodo [data set], https://doi.org/10.5281/zenodo.3971785, 2020. a
Rowan, A. V., Nicholson, L. I., Quincey, D. J., Gibson, M. J., Irvine-Fynn, T. D., Watson, C. S., Wagnon, P., Rounce, D. R., Thompson, S. S., Porter, P. R., and Glasser, N. F.: Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya, J. Glaciol., 67, 170–181, https://doi.org/10.1017/jog.2020.100, 2021. a
Röhl, K.: Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand, J. Glaciol., 54, 867–880, https://doi.org/10.3189/002214308787779861, 2008. a
Schauwecker, S.: Mapping supraglacial debris thickness on mountain glaciers using satellite data: validation of a new, physically-based method, Master thesis, ETH Zürich, 121 pp., https://doi.org/10.13140/2.1.2176.6087, 2012. a
Schauwecker, S., Rohrer, M., Huggel, C., Kulkarni, A., Ramanathan, A., Salzmann, N., Stoffel, M., and Brock, B.: Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya, J. Glaciol., 61, 675–688, https://doi.org/10.3189/2015JoG14J102, 2015. a
Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable response of Himalayan glaciers to climate change affected by debris cover, Nat. Geosci., 4, 156–159, https://doi.org/10.1038/ngeo1068, 2011. a, b, c
Scherler, D., Wulf, H., and Gorelick, N.: Global Assessment of Supraglacial Debris‐Cover Extents, Geophys. Res. Lett., 45, 11798–11805, https://doi.org/10.1029/2018GL080158, 2018. a, b, c, d
Shah, S. S., Banerjee, A., Nainwal, H. C., and Shankar, R.: Estimation of the total sub-debris ablation from point-scale ablation data on a debris-covered glacier, J. Glaciol., 65, 759–769, https://doi.org/10.1017/jog.2019.48, 2019. a
Sharma, P., Patel, L. K., Ravindra, R., Singh, A., K, M., and Thamban, M.: Role of debris cover to control specific ablation of adjoining Batal and Sutri Dhaka glaciers in Chandra Basin (Himachal Pradesh) during peak ablation season, J. Earth Syst. Sci., 125, 459–473, https://doi.org/10.1007/s12040-016-0681-2, 2016. a
Shaw, T. E., Brock, B. W., Fyffe, C. L., Pellicciotti, F., Rutter, N., and Diotri, F.: Air temperature distribution and energy-balance modelling of a debris-covered glacier, J. Glaciol., 62, 185–198, https://doi.org/10.1017/jog.2016.31, 2016. a
Shroder, J. F., Bishop, M. P., Copland, L., and Sloan, V. F.: Debris‐covered glaciers and rock glaciers in the nanga parbat himalaya, pakistan, Geogr. Ann. A, 82, 17–31, https://doi.org/10.1111/j.0435-3676.2000.00108.x, 2000. a
Shukla, A. and Garg, P. K.: Evolution of a debris-covered glacier in the western Himalaya during the last four decades (1971–2016): A multiparametric assessment using remote sensing and field observations, Geomorphology, 341, 1–14, https://doi.org/10.1016/j.geomorph.2019.05.009, 2019. a
Sicart, J. E., Litt, M., Helgason, W., Tahar, V. B., and Chaperon, T.: A study of the atmospheric surface layer and roughness lengths on the high‐altitude tropical Zongo glacier, Bolivia, J. Geophys. Res.-Atmos., 119, 3793–3808, https://doi.org/10.1002/2013JD020615, 2014. a, b
Soncini, A., Bocchiola, D., Confortola, G., Minora, U., Vuillermoz, E., Salerno, F., Viviano, G., Shrestha, D., Senese, A., Smiraglia, C., and Diolaiuti, G.: Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin, Sci. Total Environ., 565, 1084–1101, https://doi.org/10.1016/j.scitotenv.2016.05.138, 2016. a
Steiner, J. F., Pellicciotti, F., Buri, P., Miles, E. S., Immerzeel, W. W., and Reid, T. D.: Modelling ice-cliff backwasting on a debris-covered glacier in the Nepalese Himalaya, J. Glaciol., 61, 889–907, https://doi.org/10.3189/2015JoG14J194, 2015. a, b
Steiner, J. F., Litt, M., Stigter, E. E., Shea, J., Bierkens, M. F. P., and Immerzeel, W. W.: The Importance of Turbulent Fluxes in the Surface Energy Balance of a Debris-Covered Glacier in the Himalayas, Front. Earth Sci., 6, 144, https://doi.org/10.3389/feart.2018.00144, 2018. a, b
Steiner, J. F., Kraaijenbrink, P. D. A., and Immerzeel, W. W.: Distributed Melt on a Debris-Covered Glacier: Field Observations and Melt Modeling on the Lirung Glacier in the Himalaya, Front. Earth Sci., 9, 678375, https://doi.org/10.3389/feart.2021.678375, 2021. a, b, c, d
Stewart, R. L., Westoby, M., Pellicciotti, F., Rowan, A., Swift, D., Brock, B., and Woodward, J.: Using climate reanalysis data in conjunction with multi-temporal satellite thermal imagery to derive supraglacial debris thickness changes from energy-balance modelling, J. Glaciol., 67, 366–384, https://doi.org/10.1017/jog.2020.111, 2021. a, b
Takeuchi, Y., Kayastha, R. B., and Nakawo, M.: Characteristics of ablation and heat balance in debris-free and debris-covered areas on Khumbu Glacier, Nepal Himalayas, in the pre-monsoon season, IAHS-AISH P., 264, 53–62, 2000. a
Thornton, J. M., Palazzi, E., Pepin, N. C., Cristofanelli, P., Essery, R., Kotlarski, S., Giuliani, G., Guigoz, Y., Kulonen, A., Pritchard, D., Li, X., Fowler, H. J., Randin, C. F., Shahgedanova, M., Steinbacher, M., Zebisch, M., and Adler, C.: Toward a definition of Essential Mountain Climate Variables, One Earth, 4, 805–827, https://doi.org/10.1016/j.oneear.2021.05.005, 2021. a
Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Soruco, A., Arnaud, Y., Brun, F., Berthier, E., and Sherpa, S. F.: Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal, The Cryosphere, 10, 1845–1858, https://doi.org/10.5194/tc-10-1845-2016, 2016. a
Wagnon, P.: 2_Changri Nup Data, Zenodo [data set], https://doi.org/10.5281/zenodo.3048780, 2019. a
Wang, P., Li, Z., Li, H., Wang, W., Zhou, P., and Wang, L.: Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China, Global Planet. Change, 159, 11–24, https://doi.org/10.1016/j.gloplacha.2017.10.006, 2017. a
Wei, Y., Tandong, Y., Baiqing, X., and Hang, Z.: Influence of supraglacial debris on summer ablation and mass balance in the 24k glacier, southeast tibetan plateau, Geogr. Ann. A, 92, 353–360, https://doi.org/10.1111/j.1468-0459.2010.00400.x, 2010. a
Westoby, M. J., Rounce, D. R., Shaw, T. E., Fyffe, C. L., Moore, P. L., Stewart, R. L., and Brock, B. W.: Geomorphological evolution of a debris‐covered glacier surface, Earth Surf. Proc. Land., 45, 3431–3448, https://doi.org/10.1002/esp.4973, 2020. a
Winter-Billington, A., Dadić, R., Moore, R. D., Flerchinger, G., Wagnon, P., and Banerjee, A.: Modelling Debris-Covered Glacier Ablation Using the Simultaneous Heat and Water Transport Model. Part 1: Model Development and Application to North Changri Nup, Front. Earth Sci., 10, 796877, https://doi.org/10.3389/feart.2022.796877, 2022. a, b
Yang, W., Yao, T., Zhu, M., and Wang, Y.: Comparison of the meteorology and surface energy fluxes of debris-free and debris-covered glaciers in the southeastern Tibetan Plateau, J. Glaciol., 63, 1090–1104, https://doi.org/10.1017/jog.2017.77, 2017. a
Zhang, Y., Fujita, K., Liu, S., Liu, Q., and Nuimura, T.: Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery, J. Glaciol., 57, 1147–1157, https://doi.org/10.3189/002214311798843331, 2011. a
Zhao, C., Yang, W., Miles, E., Westoby, M., Kneib, M., Wang, Y., He, Z., and Pellicciotti, F.: Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau, The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, 2023. a
Short summary
Glaciers with a layer of rocky debris on their surfaces are distinct from clean-ice glaciers, with debris mostly insulating the glacier ice. However, debris data are scarce. We present the Debris Database (DebDaB), a database of debris thickness and physical properties of debris, with data from 84 glaciers in 13 global glacier regions compiled from 172 sources and including previously unpublished data. DebDaB serves as an open central repository for the scientific community to do research on debris-covered glaciers.
Glaciers with a layer of rocky debris on their surfaces are distinct from clean-ice glaciers,...
Altmetrics
Final-revised paper
Preprint