Articles | Volume 17, issue 8
https://doi.org/10.5194/essd-17-3987-2025
https://doi.org/10.5194/essd-17-3987-2025
Data description paper
 | 
19 Aug 2025
Data description paper |  | 19 Aug 2025

An upgraded high-precision gridded precipitation dataset for the Chinese mainland considering spatial autocorrelation and covariates

Jinlong Hu, Chiyuan Miao, Jiajia Su, Qi Zhang, Jiaojiao Gou, and Qiaohong Sun

Related authors

A new high-resolution multi-drought-index dataset for mainland China
Qi Zhang, Chiyuan Miao, Jiajia Su, Jiaojiao Gou, Jinlong Hu, Xi Zhao, and Ye Xu
Earth Syst. Sci. Data, 17, 837–853, https://doi.org/10.5194/essd-17-837-2025,https://doi.org/10.5194/essd-17-837-2025, 2025
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Meteorology
PL1GD-T: a high-resolution gridded daily air temperature dataset for Poland
Adam Jaczewski, Michał Marosz, and Mirosław Miętus
Earth Syst. Sci. Data, 17, 3857–3871, https://doi.org/10.5194/essd-17-3857-2025,https://doi.org/10.5194/essd-17-3857-2025, 2025
Short summary
A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data, 17, 3721–3740, https://doi.org/10.5194/essd-17-3721-2025,https://doi.org/10.5194/essd-17-3721-2025, 2025
Short summary
An updated reconstruction of Antarctic near-surface air temperatures at monthly intervals since 1958
David Bromwich, Sheng-Hung Wang, Xun Zou, and Alexandra Ensign
Earth Syst. Sci. Data, 17, 2953–2962, https://doi.org/10.5194/essd-17-2953-2025,https://doi.org/10.5194/essd-17-2953-2025, 2025
Short summary
HighResClimNevada: a high-resolution climatological dataset for a high-altitude region in southern Spain (Sierra Nevada)
Matilde García-Valdecasas Ojeda, Feliciano Solano-Farias, David Donaire-Montaño, Emilio Romero-Jiménez, Juan José Rosa-Cánovas, Yolanda Castro-Díez, Sonia R. Gámiz-Fortis, and María Jesús Esteban-Parra
Earth Syst. Sci. Data, 17, 2809–2829, https://doi.org/10.5194/essd-17-2809-2025,https://doi.org/10.5194/essd-17-2809-2025, 2025
Short summary
Estimation of long-term gridded cloud radiative kernel and radiative effects based on cloud fraction
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data, 17, 2405–2435, https://doi.org/10.5194/essd-17-2405-2025,https://doi.org/10.5194/essd-17-2405-2025, 2025
Short summary

Cited articles

Adler, R. F., Gu, G., Wang, J.-J., Huffman, G. J., Curtis, S., and Bolvin, D.: Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006), J. Geophys. Res.-Atmos., 113, D22104, https://doi.org/10.1029/2008JD010536, 2008. 
AghaKouchak, A. and Mehran, A.: Extended contingency table: Performance metrics for satellite observations and climate model simulations, Water Resour. Res., 49, 7144–7149, https://doi.org/10.1002/wrcr.20498, 2013. 
Ahrens, B.: Distance in spatial interpolation of daily rain gauge data, Hydrol. Earth Syst. Sci., 10, 197–208, https://doi.org/10.5194/hess-10-197-2006, 2006. 
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies, B. Am. Meteor. Soc., 96, 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1, 2015. 
Bian, L., Qin, X., Zhang, C., Guo, P., and Wu, H.: Application, interpretability and prediction of machine learning method combined with LSTM and LightGBM-a case study for runoff simulation in an arid area, J. Hydrol., 625, 130091, https://doi.org/10.1016/j.jhydrol.2023.130091, 2023. 
Download
Short summary
We developed a high-precision daily precipitation dataset for the Chinese mainland called CHM_PRE V2. Using data from 3746 rain gauges, 11 precipitation-related variables, and advanced machine learning methods, we created a daily precipitation dataset spanning 1960–2023 with unprecedented accuracy. Compared to existing datasets, it better captures rainfall events while reducing false alarms. This work provides a reliable tool for studying water resources, climate change, and disaster management.
Share
Altmetrics
Final-revised paper
Preprint