Articles | Volume 17, issue 8
https://doi.org/10.5194/essd-17-3987-2025
https://doi.org/10.5194/essd-17-3987-2025
Data description paper
 | 
19 Aug 2025
Data description paper |  | 19 Aug 2025

An upgraded high-precision gridded precipitation dataset for the Chinese mainland considering spatial autocorrelation and covariates

Jinlong Hu, Chiyuan Miao, Jiajia Su, Qi Zhang, Jiaojiao Gou, and Qiaohong Sun

Data sets

CHM_PRE V2: An upgraded high-precision gridded precipitation dataset for the Chinese mainland considering spatial autocorrelation and covariates Jinlong Hu and Chiyuan Miao https://doi.org/10.11888/Atmos.tpdc.300523

Download
Short summary
We developed a high-precision daily precipitation dataset for the Chinese mainland called CHM_PRE V2. Using data from 3746 rain gauges, 11 precipitation-related variables, and advanced machine learning methods, we created a daily precipitation dataset spanning 1960–2023 with unprecedented accuracy. Compared to existing datasets, it better captures rainfall events while reducing false alarms. This work provides a reliable tool for studying water resources, climate change, and disaster management.
Share
Altmetrics
Final-revised paper
Preprint