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Abstract. Precipitation is a critical driver of the water cycle, profoundly influencing water resources, agri-
cultural productivity, and natural disasters. However, existing gridded precipitation datasets exhibit markable
deficiencies in capturing the spatial autocorrelation and associated environmental and climatic influences —
here referred to collectively as precipitation-related covariates — that limit their accuracy, particularly in re-
gions with sparse meteorological stations. To address these challenges, this study proposes a completely new
gridded precipitation generation scheme that integrates long-term daily observations from 3746 gauges with
11 key precipitation-related covariates. Building upon the improved inverse distance weighting interpolation
method used in our previous dataset CHM_PRE V1, we integrated a machine learning algorithm — light gra-
dient boosting machine (LGBM) — to incorporate precipitation-related covariates in a data-driven manner. This
integration allows for a more comprehensive characterization of precipitation patterns, jointly capturing spa-
tial autocorrelation and covariate-based variability. By this novel scheme, a new high-precision, long-term, daily
gridded precipitation dataset for the Chinese mainland (CHM_PRE V2) was developed. Validation against 63 397
high-density gauges demonstrated that CHM_PRE V2 significantly outperforms existing gridded precipitation
datasets. Specifically, it achieves a mean absolute error of 1.48 mmd~" and a Kling-Gupta efficiency of 0.88,
representing improvements of 12.84 % and 12.86 %, respectively, compared to the previously optimal dataset.
Regarding precipitation event detection, CHM_PRE V2 achieved a Heidke skill score of 0.68 and a false alarm
ratio of 0.24, surpassing the previously optimal dataset by 17.24 % and 29.17 %, respectively. These results
demonstrate that CHM_PRE V2 markedly enhances precipitation measurement accuracy, reduces overestima-
tion of precipitation events, and provides a reliable foundation for hydrological modeling and climate assess-
ments. This dataset features a resolution of 0.1°, spans from 1960 to 2023, and will be updated annually. Free
access to the dataset can be found at https://doi.org/10.11888/Atmos.tpdc.300523 (Hu and Miao, 2025).
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1 Introduction

Precipitation serves as a pivotal factor driving the water cy-
cle, directly influencing the distribution and variability of
water resources, agricultural productivity, ecosystem health,
and the occurrence and progression of natural disasters (Ham
et al., 2023; Sun et al., 2018; Zhang et al., 2017; Zheng et
al., 2025). At regional and global scales, gridded precipita-
tion datasets provide detailed spatial resolution and tempo-
ral continuity, making them fundamental in hydrological and
climate sciences and disaster forecasting (Qiu et al., 2024;
Sun et al., 2021; Tang et al., 2021; Xiong et al., 2024). How-
ever, due to the high spatiotemporal variability of precip-
itation and the complexity of observation conditions, gen-
erating high-precision gridded precipitation data remains a
formidable challenge (Jiang et al., 2023).

In China, various types of precipitation datasets have been
extensively utilized in research, encompassing products de-
rived from data assimilation techniques, remote sensing tech-
niques, and gauge-based interpolation techniques. Precipita-
tion data derived from data assimilation (Gelaro et al., 2017;
Hersbach et al., 2020; Rodell et al., 2004) integrate meteoro-
logical models with observational data to provide highly con-
sistent datasets. However, their accuracy is often constrained
by the physical parameterization schemes of the models.
Remote sensing-based precipitation datasets (Ashouri et al.,
2015; Huffman et al., 2007; Kubota et al., 2020) offer global
or regional precipitation distributions via satellite observa-
tions, ensuring extensive spatial coverage. Nonetheless, their
precision is limited by data resolution and satellite orbital
constraints, particularly in regions with complex terrain and
high latitudes. Precipitation gauges, the most direct and accu-
rate tools for measuring precipitation, allow gridded precip-
itation datasets to be generated through interpolation, effec-
tively capturing the localized characteristics of precipitation
with high accuracy (Harris et al., 2020; He et al., 2020; Qin
et al., 2022; Shen et al., 2010; Wu and Gao, 2013; Xie et al.,
2007).

Our previous study developed a gridded precipitation
dataset for the Chinese mainland (a member of the China
Hydro-Meteorology datasets, hereinafter called CHM_PRE
V1), based on the inverse distance weighting interpolation
method and the parameter-elevation regression on indepen-
dent slopes model (PRISM) (Daly et al., 1994, 2002), using
data from 2,839 gauges. The CHM_PRE V1 demonstrates
overall high accuracy across the Chinese mainland (Han et
al., 2023) and has received widespread attention and exten-
sive use, benefiting a large number of hydro-meteorology-
related studies (Hu et al.,, 2024; Wan and Zhou, 2024;
Yin et al., 2025). However, interpolation-based precipitation
datasets rely heavily on ground meteorological gauges, per-
forming poorly in areas with sparse station distribution or
missing data.

In summary, a key limitation of existing datasets is that
they tend to focus on either spatial autocorrelation or a lim-
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ited set of precipitation-related covariates but rarely incorpo-
rate multiple types of information simultaneously. However,
precipitation is influenced not only by spatial autocorrelation
— that is, the dependence of precipitation at a given location
on surrounding areas (Chen et al., 2010, 2016; Fan et al.,
2021; Huff and Shipp, 1969; Tang et al., 2020) — but also
by a wide array of covariates, such as elevation, land surface
conditions, atmospheric parameters, and recent precipitation
events (Adler et al., 2008; Ham et al., 2023; Ravuri et al.,
2021; Trucco et al., 2023). This lack of comprehensive con-
sideration for multiple covariates constrains the accuracy of
these datasets, particularly in regions with sparse meteoro-
logical stations, such as western China (Jiang et al., 2023).
Moreover, existing methods tend to generate excessive mi-
nor precipitation, leading to an overestimation of precipita-
tion events, which will have considerable impacts on hydro-
logic modeling (Dong et al., 2020; Kang et al., 2024; Wei et
al., 2022).

To address the aforementioned issues, this study intro-
duces a new high-precision, long-term daily gridded pre-
cipitation dataset for the Chinese mainland (a member of
the China Hydro-Meteorology datasets, hereinafter called
CHM_PRE V2). Building on CHM_PRE V1, CHM_PRE
V2 integrates precipitation gauges, remote sensing observa-
tions, reanalysis data, and various precipitation-related fac-
tors. Through the use of advanced spatial interpolation and
machine learning algorithms, our method captures spatial au-
tocorrelation while jointly modeling multiple covariates to
enhance precipitation accuracy. As a result, we obtain a high-
accuracy gridded dataset that covers the entire Chinese main-
land (18-54°N, 72-136°E). The spatial resolution of the
dataset is set to 0.1° to maintain consistency with our previ-
ous dataset (Han et al., 2023; Zhang et al., 2025). The dataset
spans the period from 1960 to 2023 and will be updated an-
nually. CHM_PRE V2 not only enhances the accuracy of pre-
cipitation measurements but also significantly reduces over-
estimations of precipitation events. The high-precision grid-
ded precipitation dataset can reduce the uncertainty in hy-
drological modeling and analysis, providing a more reliable
data foundation for hydrologic and climatological studies.
For clarity, a list of abbreviations used throughout this paper
is presented in Table S1 in the Supplement.

2 Data

The CHM_PRE V2 dataset was developed using extensive
precipitation gauge observations, supplemented with a di-
verse array of ancillary datasets that serve as precipitation
covariates. These covariates include satellite-derived prod-
ucts, land surface model outputs, and various geophysical
and meteorological variables, aiming to enhance the charac-
terization of precipitation, particularly in regions with sparse
observational coverage. This integration of multi-source in-
formation is designed to improve the spatial continuity and
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accuracy of the precipitation estimates across the Chinese
mainland. Figure 1 illustrates details of the various datasets
utilized in the CHM_PRE V2 construction, including dataset
names, original spatial and temporal resolutions, and cov-
erage periods. In total, 16 datasets from 11 distinct cate-
gories were incorporated. These datasets collectively pro-
vide critical information on land surface properties, atmo-
spheric conditions, and recent precipitation patterns that in-
fluence precipitation generation and distribution. In addition,
the CHM_PRE V2 dataset is designed to represent precipi-
tation characteristics across the Chinese mainland, excluding
Taiwan, Hong Kong SAR, Macau SAR, and other Chinese
islands. In the following sections, we will provide a detailed
introduction to the data sources employed in the construction
of the CHM_PRE V2 dataset.

2.1 Spatial autocorrelation data

CHM_PRE V2 incorporates comprehensive daily precipita-
tion gauge data to support spatial autocorrelation modeling.
The primary daily precipitation gauge data sourced
from the China Meteorological Administration (CMA;
http://data.cma.cn, last access: January 2024) span the entire
Chinese mainland, encompassing records from 2816 stations
between 1960 and 2023. Daily precipitation is defined as the
cumulative precipitation from 20:00 on the previous day to
20:00 on the current day (local time in Beijing), with all data
subjected to rigorous quality control (Zhang et al., 2020).
To mitigate the limitations of boundary effects (Ahrens,
2006), additional precipitation gauges near the Chinese
mainland were obtained from the Global Historical Clima-
tology Network-Daily Version 3 (GHCND) dataset. The
GHCND is a reliable and globally comprehensive climate
dataset and is maintained by the National Climatic Data
Center (NCDC) of the National Oceanic and Atmospheric
Administration (NOAA) (Durre et al., 2008, 2010; Menne et
al., 2012). The GHCND dataset was sourced from NOAA
(https://www.ncei.noaa.gov/products/land-based-station/
global-historical-climatology-network-daily, last access:
11 September 2024).

To ensure data quality, only stations with more than 70 %
effective days (over 255 d) in a year were retained for dataset
construction. Figure 2a illustrates the spatial distribution of
both CMA and GHCND stations, while Fig. 2b shows their
annual availability. Over time, the number of available CMA
stations increased from 1992 in 1960 to 2767 in 2023, im-
proving spatial coverage considerably. In contrast, the num-
ber of accessible GHCND stations in the region declined
from 674 in 1960 to 264 in 2023.

2.2 Precipitation-related covariate data

The Shuttle Radar Topography Mission (SRTM) Digital Ele-
vation Model (DEM) dataset was utilized to characterize the
influence of elevation on precipitation and to generate slope
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data. In this study, we used the SRTM DEM V4 acquired
from the Consortium for Spatial Information, Consultative
Group for International Agricultural Research (CGIAR-CSI,
https://srtm.csi.cgiar.org/, last access: 8§ August 2024), with
a spatial resolution of 3arcsec (approximately 90 m near
the Equator). The SRTM DEM V4 was generated based on
the National Aeronautics and Space Administration (NASA)
SRTM DEM V1 and has undergone post-processing of the
NASA data to “fill in” the no data voids, such as water bodies
(lakes and rivers), areas with snow cover, and mountainous
regions (e.g., the Himalayas), resulting in seamless elevation
for the globe.

To enhance the spatial and temporal detail of precipitation
estimation, two satellite-based precipitation products — the
Global Satellite Mapping of Precipitation (GSMaP) and the
Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN-CDR) dataset
— were incorporated as covariates. GSMaP V8 data span
from 1998 to the present with 0.1° spatial and 1h tempo-
ral resolution (Kubota et al., 2020). We acquired the GSMaP
data from the Japan Aerospace Exploration Agency (JAXA;
https://sharaku.eorc.jaxa.jp, last access: 8 August 2024) and
used the data from 1998 to 2023. PERSIANN-CDR data span
from 1983 to the present (Ashouri et al., 2015), and the data
from 1983 to 1997 were used for the retrieval.

The precipitation and soil moisture from the Global
Land Data Assimilation System Noah Land Surface Model
(GLDAS NOAH) (Rodell et al., 2004) were also used for
the retrieval. The data spanning from 1960 to 1999 and the
data spanning from 2000 to 2023 were acquired from the
GLDAS Noah L4 V2.0 and GLDAS Noah L4 V2.1 datasets.
The NOAA Climate Data Record (CDR) of AVHRR Nor-
malized Difference Vegetation Index (NDVI) (Vermote and
NOAA CDR Program, 2019) was utilized to depict the veg-
etation characteristics, and the data from 1981 to 2023 were
used.

In addition to spatial and environmental variables, precip-
itation temporal features were also introduced as covariates.
Two types of temporal indicators were constructed: (1) the
cumulative precipitation of the current month and year, repre-
senting broader-scale precipitation conditions; and (2) daily
lagged precipitation values from the previous five days, cap-
turing short-term fluctuations. Each of these five recent days
was treated as a separate variable. For example, the variable
named “lst-day prior Prec.” refers to precipitation one day
before the current date, while “Sth-day prior Prec.” corre-
sponds to five days prior.

2.3 Other datasets

To verify the reliability of the proposed CHM_PRE V2,
we compared it with five existing gridded precipitation
datasets. These datasets include GSMaP, PERSIANN-CDR,
and GLDAS precipitation datasets, as mentioned above. Ad-
ditionally, CHM_PRE V1 (Han et al., 2023), previously de-
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Figure 1. The data used for precipitation retrieval.

veloped by our team, and the Integrated Multi-satellitE Re-
trievals for GPM (IMERG) Final L3 V7 precipitation dataset
(Huffman et al., 2023) were also included in the comparison.
Details of the original spatiotemporal resolution and accessi-
ble time span of these datasets are provided in Table S2 in the
Supplement. All datasets were resampled to daily values at a
resolution of 0.1°. To ensure a fair comparison, the analysis
focused on the period from 2001 to 2022, during which all
datasets were available.

To further validate the reliability of the precipitation data,
we obtained daily precipitation observations from 72901
high-density automatic rain gauge stations across the Chi-
nese mainland (hereafter we refer to it as CMA-HD), pro-
vided by the National Meteorological Information Center
of CMA (Li et al., 2018). The data span the period from
2013 to 2019, and we obtained 63 397 available stations af-
ter quality control and annual integrity control. Figure 2c
illustrates the number of CMA-HD stations within each
0.1° grid cell. The dataset demonstrates high station density
throughout the eastern region, while maintaining basic cov-
erage in the northwest and Tibetan Plateau areas. This ex-
tensive distribution ensures that the validation results based
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1980 1990 2000 2010 2020
Year

on this dataset are highly reliable. Additionally, to examine
the dataset’s performance across various regions, we adopted
the climatic regionalization scheme proposed by Ren et al.
(1985), dividing China into seven distinct regions as shown
in Fig. 2d: Northeast China (NEC), North China (NC), South
and Central China (SCC), Inner Mongolia (IM), Northwest
China (NWC), Southwest China (SWC), and Qinghai-Tibet
Plateau (QT).

3 Methodology

The generation of CHM_PRE V2 can be divided into three
stages: data preprocessing, precipitation interpolation based
on spatial autocorrelation, and precipitation retrieval based
on covariates. Figure 3 depicts the detailed steps involved in
creating the dataset, which we will now introduce step by
step.

3.1 Data preprocessing

Data preprocessing consists of two main components: gauge
data preprocessing and gridded data preprocessing. Initially,

https://doi.org/10.5194/essd-17-3987-2025
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Figure 2. (a) Locations of CMA and GHCND stations used for precipitation retrieval; (b) number of annual availability of precipitation
stations; (c) locations of CMA-HD stations used for validation; (d) climatic regions.

we performed quality control on the CMA and GHCND
gauge data and excluded stations outside the region of in-
terest. The latitude and longitude range of primary interest to
us in the Chinese mainland spans approximately 18 to 54° N
and 72 to 136° E. However, to mitigate boundary effects, we
have extended the area of interest outward by roughly 3°,
defining it as 15 to 57°N and 70 to 140° E. The remaining
stations were merged to serve as the gauge dataset for re-
trieval. Similarly, for various gridded datasets, data outside
the region of interest were removed, and all data were resam-
pled to a spatial resolution of 0.1°. Finally, the gridded data
were converted to a daily time scale, resulting in the final
gridded covariate data for retrieval.

3.2 Precipitation interpolation based on spatial
autocorrelation

Spatial autocorrelation is the most significant characteris-
tic of precipitation data, and the most common approach to
constructing gridded precipitation datasets involves interpo-
lation based on gauge data (Harris et al., 2020; He et al.,
2020). Consequently, in this section, we also utilize gauge-
based interpolation to characterize the spatial autocorrela-
tion of precipitation. The inverse distance weighting (IDW)
method is widely used for interpolation due to its simplic-
ity and computational efficiency. As a global interpolation
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method, IDW considers only the distance factor, applying
inverse distance weighting to all stations for interpolation.
However, the spatial autocorrelation of many geographical
features is often non-uniform. For example, many features
may exhibit strong spatial autocorrelation within a specific
distance range, which rapidly diminishes beyond that range.
To address this, Shepard (1968) introduced the concept of
correlation decay distance (CDD) into interpolation and pro-
posed the adaptive distance weighting (ADW) method. CDD
measures how the spatial correlation between stations de-
creases with increasing distance and ensures that the search
radius is set to an appropriate value, rather than using a
fixed value for all situations (Dunn et al., 2020). Numer-
ous datasets employ this method to interpolate gauge data
to grids (Caesar et al., 2006; Dunn et al., 2020; Harris et al.,
2020; Zhang et al., 2025). Based on this, Han et al. (2023)
incorporated CDD into the IDW method and calculated the
CDD values suitable for interpolating precipitation over the
Chinese mainland. Given a target grid cell G surrounded by
n known stations P{Py, P»,..., P,}, where the precipitation
value at station P; is z;, the precipitation value at grid cell G
is calculated as:

Y d(G, P) Pz

D= 4G Ry

)

Earth Syst. Sci. Data, 17, 3987-4004, 2025
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where d(G, P;) represents the distance (km) between grid
cell G and gauge station P;, and p is the distance weighting
exponent. In this study, p is set to 2, representing the Eu-
clidean distance.

The selection of the station set P for interpolation
markedly impacts the interpolated results. In this study, we
adopt the improved IDW method and use the CDD val-
ues calculated by Han et al. (2023) for interpolating pre-
cipitation over the Chinese mainland (CDD1 =244.7 km,
CDD2 = 1336 km). When more than three stations are avail-
able within the CDD1 range, CDD1 is used as the interpola-
tion CDD; otherwise, CDD?2 is applied. Meanwhile, if more
than 10 stations are available within the interpolation CDD
range, only the 10 closest stations to the grid cell are used to
mitigate overestimation of precipitation events in the densely
populated station areas of eastern China.

Furthermore, previous research has demonstrated that in-
terpolated precipitation anomalies (Harris et al., 2020; He et
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al., 2020) generally yield higher accuracy compared to direct
precipitation interpolation. Thus, we adopt the interpolation
scheme based on climatology anomaly rather than interpo-
lating the raw precipitation values. To achieve this, daily and
monthly precipitation climatology data were generated. First,
we calculated the average daily precipitation for 1971-2000
to derive preliminary station-level daily climatology data by
using the daily precipitation gauges from the previous step.
The daily climatology series at each station was then pro-
cessed using the Fourier truncation, retaining only the first
six harmonic components to suppress high-frequency noise
(Xie et al., 2007). Subsequently, the station-level daily cli-
matology data were interpolated using the improved IDW,
producing preliminary gridded daily climatology data. To en-
hance the reliability of the daily climatology data, we fol-
lowed the same procedure to generate gridded monthly pre-
cipitation climatology data. These monthly data were used to
correct the gridded daily climatology, yielding the adjusted
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gridded daily climatology data (Han et al., 2023). The pre-
cipitation anomalies were defined as the difference between
the actual station precipitation and the adjusted gridded daily
climatology data. Finally, the station-level daily precipita-
tion anomalies were interpolated using the improved IDW
method. The gridded daily precipitation data based on inter-
polation were finally obtained by summing the interpolated
anomalies with the adjusted gridded daily climatology data.

3.3 Precipitation retrieval based on covariates

Except for spatial autocorrelation, precipitation is influenced
by a range of meteorological factors that vary over space and
time. However, most existing gridded precipitation datasets
tend to model these aspects in isolation, often focusing
solely on spatial autocorrelation or meteorological inputs,
which may constrain the accuracy and generalizability of the
datasets, especially in regions with sparse gauge coverage.
To address this limitation, we propose a novel framework
that integrates multiple precipitation covariates into a unified
machine learning-based retrieval system, thereby enhancing
the fidelity of precipitation estimates. To model spatial auto-
correlation, we employed gridded precipitation data derived
from gauge-based interpolation in Sect. 3.2, along with ge-
ographic coordinates (longitude and latitude). Precipitation
covariates were drawn from various sources, including topo-
graphic features (elevation and slope), satellite-derived pre-
cipitation estimates, reanalysis-based precipitation products,
soil moisture, and the normalized difference vegetation in-
dex (NDVI). Recent daily precipitation records and aggre-
gate precipitation metrics were also incorporated to capture
the temporal variability and underlying climatological pat-
terns. The details of the retrieval data can be found in Fig. 1.

To synthesize these spatial and covariate-based features,
we employed a machine learning regression framework us-
ing the light gradient boosting machine (LGBM) algorithm.
This model enables the flexible representation of complex
nonlinear relationships between precipitation and its asso-
ciated covariates, surpassing the limitations of conventional
linear regression models. While linear regression models are
the most commonly used response models, they are limited
by their inability to capture nonlinear relationships and their
relatively weak fitting capacity (Breiman, 2001; Chen and
Guestrin, 2016; Yang et al., 2021). Machine learning-based
models, in contrast, offer significant improvements in fitting
performance and are more effective in representing nonlin-
ear relationships (Guo et al., 2024; Hu et al., 2023). Among
numerous machine learning-based models, LGBM, devel-
oped by Microsoft (Ke et al., 2017), is renowned for its high
precision and high generalizability. Fundamentally, it em-
ploys a series of decision tree models for iterative training,
progressively minimizing errors (or residuals) to ultimately
generate predictions through a weighted summation. Unlike
traditional gradient-boosted decision tree (GBDT) methods,
LGBM utilizes a histogram-based technique for data bin-
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ning, rather than processing each individual data record. This
method iterates, calculates gains, and splits data accordingly
(Zhang and Gong, 2020). Gradient-based one-side sampling
is employed to sample the dataset, assigning greater weights
to data points with larger gradients during gain computa-
tion. Under equivalent sampling rates, this method often out-
performs random sampling (Candido et al., 2021). Owing
to these features, LGBM demonstrates exceptional accuracy
and generalization, making it widely applicable to various
tasks such as classification, regression, and ranking (Bian
et al., 2023; Jiang et al., 2024; Zhang et al., 2024). Hu et
al. (2023) applied LGBM to the retrieval of suspended sedi-
ment concentration in the lower Yellow River and found that
LGBM outperformed methods such as partial least squares
regression, support vector regression, and random forest in
terms of retrieval accuracy. Consequently, we employed the
LGBM method to integrate all these variables for precipita-
tion retrieval, effectively accounting for the spatiotemporal
and physical correlations of precipitation.

In the precipitation retrieval process, we employed a two-
stage strategy: precipitation event classification and precip-
itation value retrieval. Sixteen variables were used as inde-
pendent variables in the retrieval process, and all of them are
listed in Table S3 in the Supplement. For the precipitation
event classification model, the variable indicating whether a
precipitation event occurred was used as the dependent vari-
able, while the precipitation value was used as the depen-
dent variable in the precipitation value retrieval model. For
the convenience of updating and maintaining data every year
in the future, we constructed separate models for each year.
That is, for each year, the same independent variables were
used to develop two different models based on the LGBM
method, with precipitation event and precipitation amount
as the dependent variables, respectively. One model is used
for precipitation event classification, and the other is used
for precipitation value retrieval. From 1960 to 2023, a total
of 64 years, 128 different models were generated. Specif-
ically, for a given year, all variables required for retrieval
were consolidated and split into training and validation sets
at a ratio of 8 : 2. The training set was utilized to develop a
precipitation event classification model based on the LGBM
method, while the validation set was used for hyperparam-
eter optimization. Then, the established classification model
was applied to all samples to determine whether each sam-
ple was a precipitation event. Samples identified as precipi-
tation events were used to train a precipitation value reversal
model based on the LGBM method, while non-precipitation
samples were excluded from the retrieval process. This ap-
proach effectively removed the majority of non-precipitation
samples, simplifying the capture of precipitation characteris-
tics and enhancing the accuracy of the reversal model. Ad-
ditionally, this strategy notably improved the discrimination
of precipitation events and mitigated the overestimation of
precipitation events commonly associated with traditional
interpolation-based methods. Upon completing the retrieval

Earth Syst. Sci. Data, 17, 3987—4004, 2025



3994

process, the trained precipitation value retrieval models were
used to generate the final gridded daily precipitation for the
entire Chinese mainland from 1960 to 2023.

3.4 Validation

We compared the CHM_PRE V2 precipitation dataset with
five existing gridded precipitation datasets to verify its high
precision and reliability. To ensure comparability, the com-
parison focused on the period from 2001 to 2022 for which
all data have time coverage. A total of 63397 available
CMA-HD station observations were utilized to validate the
accuracy of precipitation data. There are two approaches to
using station observations to validate the accuracy of grid-
ded precipitation data. The first approach involves interpo-
lating the station data — using methods such as IDW — to
generate gridded data at the same spatial resolution as the
dataset being validated. This method can produce spatially
consistent results with the target gridded dataset. However, as
previously mentioned, interpolation methods have some lim-
itations and inevitably introduce interpolation-related uncer-
tainties (McMillan et al., 2018; Wagner et al., 2012). More-
over, the uneven spatial distribution of stations makes the val-
idation results in sparsely monitored areas less reliable. The
second approach is to directly compare the station observa-
tions with the corresponding grid cell values in the dataset
being validated. Although this method only provides valida-
tion results for grid cells that contain observation stations, it
avoids the uncertainties introduced by interpolation and en-
sures the reliability of the accuracy assessment. In this study,
we adopted the second approach for the validation. To align
with the 0.1° gridded precipitation data, station observations
were mapped onto a 0.1° grid, and the average precipitation
of all stations within each grid cell was regarded as the true
precipitation value for that grid cell. Metrics such as absolute
error (AE), Kling-Gupta efficiency (KGE; the range of val-
ues is (—o0, 1], with 1 being optimal), and relative standard
deviation (RSD; the range of values is (0, +00), with 1 being
optimal) were employed to evaluate precipitation accuracy:

AE = abs(y — y) )

KGE = 1—

J(R(.5) =12+ ®RSD (3. 5) — 1)* + (Bias (v.5) — 1)> (3)

RsD = /1 )
oy/ Iy

where y and y represent the observed precipitation values
and the gridded precipitation values (mmd~!), respectively;
1 denotes the mean value, o signifies the standard deviation;
R denotes the correlation coefficient, and Bias represents the
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variability ratio, each defined as follows:

=

¥ 01 = 1) (i =1 ()

4)
O'yO'yA

Bias = 12 6)
Hy

Precipitation errors can be categorized into systematic errors,
random errors, and precipitation event detection errors (Tian
et al., 2009; Wei et al., 2022). Beyond precipitation amount
(systematic errors and random errors), the occurrence of pre-
cipitation events also markedly impacts hydrological model-
ing (Dong et al., 2020). However, commonly used precipi-
tation accuracy metrics such as KGE and RSD only account
for systematic and random errors, neglecting the precipita-
tion event detection errors. Thus, we adopted the Heidke skill
score (HSS; the range of values is (0, 1], with 1 being opti-
mal), false alarm ratio (FAR; the range of values is [0, 1],
with 0 being optimal), and accuracy score (the range of val-
ues is (0, 1], with 1 being optimal) to assess the accuracy
of precipitation event detection (AghaKouchak and Mehran,
2013; Dong et al., 2020):

2(TP x TN — FP x FN)

HSS = (7
(TP +FN)(FN 4 TN) + (TP + FP) (FP + TN)
TP+ TN
Accuracy = (8)
TP+ TN 4 FP 4 FN
FP
FAR= ———— ®
TP 4 FP

where TP, FP, TN, and FN represent the precipitation events’
matching relationship between gauged precipitation and pre-
cipitation products, with their meanings outlined in Table S4
in the Supplement. The threshold for whether it is a precipi-
tation event is more than 0.1 mm of precipitation per day. No-
tably, to ensure the comparability of the accuracy, instances
where any precipitation products lack values were excluded
during the accuracy calculations.

4 Results and discussion

4.1 Precipitation amount and spatial patterns

Figure 4 illustrates the spatial distribution patterns of
the multi-year average annual total precipitation for these
datasets. It can be seen that all datasets exhibit similar pre-
cipitation distribution patterns, with annual totals generally
decreasing from southeastern to northwestern China. No-
tably, CHM_PRE V2, CHM_PRE V1, GSMaP, and IMERG
datasets effectively capture the high precipitation character-
istics of the southern Tibetan Plateau, whereas PERSIANN-
CDR and GLDAS datasets tend to underestimate precipita-
tion in this region. Moreover, compared to satellite remote
sensing-based datasets like GSMaP and IMERG, CHM_PRE
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V2 and CHM_PRE V1, which are based on extensive gauged
observations, provide finer spatial patterns in precipitation
distribution, particularly in regions with high variability,
such as southeastern China. Figure 5a-b depicts the tempo-
ral characteristics of precipitation across the Chinese main-
land. The various datasets show highly consistent patterns
in monthly average precipitation (Fig. 5a) and multi-year
monthly average precipitation (Fig. 5b) across all grid cells.
Precipitation is higher in spring and summer (March to Au-
gust), peaking in July, and lower in autumn and winter
(September to February). This indicates that CHM_PRE V2
shows good consistency with the previous gridded precipita-
tion dataset in terms of spatial patterns and temporal distri-
bution.

4.2 Accuracy validation of precipitation value

Figure 6 illustrates the overall accuracy of these datasets
based on CMA-HD. Precipitation datasets derived from
gauge-based interpolation (CHM_PRE V1 and CHM_PRE
V2) demonstrate significantly higher accuracy compared
to those based on remote sensing (GSMaP, IMERG, and
PERSIANN-CDR) and reanalysis (GLDAS), as evidenced
by lower absolute error and higher KGE and RSD (Fig. 6a—
¢). CHM_PRE V2 achieved an overall MAE, KGE, and RSD
of 1.48mmd~!, 0.79, and 0.88, respectively, outperforming
other datasets by 12.84 %, 12.86 %, and 4.76 % (Table S5
in the Supplement). Furthermore, the accuracy of precip-
itation datasets was analyzed across different climatic re-
gions. Given the superior performance of CHM_PRE V2 and
CHM_PRE V1, the comparison focused exclusively on these
two datasets. Figure 6d—e presents their absolute error, KGE,
and RSD across different climatic regions. The results reveal
a marked improvement in CHM_PRE V2’s accuracy over
CHM_PRE V1, with MAE increasing by 6.18 % to 14.58 %
and KGE improving by 7.63 % to 14.94 % across various re-
gions (Fig. 6d—e and Table S6 in the Supplement). Specif-
ically, Fig. 6d shows that both the CHM_PRE V2 and V1
datasets exhibit larger absolute errors in regions such as NC,
SCC, and QT compared to other areas. This is mainly at-
tributed to the higher precipitation amounts in these regions,
which naturally lead to greater absolute errors. In contrast,
accuracy metrics that are not affected by the magnitude of the
variables, such as KGE (Fig. 6e) and RSD (Fig. 6f), demon-
strate better stability across different regions. The KGE and
RSD in SWC and QT exhibit relatively greater variability,
which could possibly be explained by the sparse distribution
of precipitation observation stations and the high spatiotem-
poral variability of precipitation in these regions (Li et al.,
2015; Liu et al., 2019).

Further comparison at the grid scale of the three precipita-
tion datasets with the relatively highest accuracy (CHM_PRE
V2, CHM_PRE V1, and GSMaP) was conducted. Figure 7
illustrates the spatial distribution of KGE and RSD for the
three datasets. CHM_PRE V2 demonstrates a significant im-
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provement in KGE compared to CHM_PRE V1 and GSMaP,
with many grid cells in the NWC and IM regions showing
an increase from below 0.2 to above 0.4 and numerous grid
cells in the SCC and NC regions rising from the 0.6-0.8
range to above 0.8. The median KGE value of CHM_PRE V2
across all grid cells reaches 0.738, representing an approxi-
mate 13.87 % improvement over CHM_PRE V1. Regarding
RSD, GSMaP’s accuracy slightly outperforms CHM_PRE
V1; however, CHM_PRE V2 exhibits a distinct advantage
over the other datasets, with a median RSD value of 0.880,
reflecting an 8.64 % enhancement compared to the other
datasets.

4.3 Accuracy validation of precipitation event detection
capability

Figure 8a—c illustrates the HSS, accuracy score, and FAR
metrics, evaluated using CMA-HD across different datasets.
CHM_PRE V2 demonstrates a significantly superior ability
to capture precipitation events across all three metrics com-
pared to other precipitation datasets. Specifically, CHM_PRE
V2 achieves an overall HSS of 0.68, an accuracy score of
0.85, and a FAR of 0.24, surpassing other datasets by ap-
proximately 17.24 %, 7.59 %, and 29.17 %, respectively (Ta-
ble S7 in the Supplement). Notably, a lower FAR value in-
dicates better performance, with 0 being optimal, which dis-
tinguishes it from the other two metrics. Similarly, we an-
alyzed the precision of CHM_PRE V2 and CHM_PRE V1
in capturing precipitation events across different climatic re-
gions. Figure 8d—f and Table S8 in the Supplement reveal
that CHM_PRE V2 consistently outperforms CHM_PRE V1
across all regions. The overall HSS values for CHM_PRE
V2 in different regions reach 0.52-0.68, representing an
improvement of approximately 10.16 % to 22.98 % over
CHM_PRE V1. Further analysis of the FAR and probabil-
ity of detection (POD) metrics shows that CHM_PRE V2
achieves improvements in FAR by 15.73 % to 70.79 % com-
pared to CHM_PRE V1 across different climatic regions.
However, the POD values for CHM_PRE V2 decrease by ap-
proximately 6.79 % to 11.25 % compared to CHM_PRE V1.
This indicates that the improved accuracy of CHM_PRE V2
in capturing precipitation events is primarily due to a reduc-
tion in overestimation, attributable to the two-stage retrieval
approach described in Sect. 3.3.

We further analyze the accuracy of precipitation events
from the CHM_PRE V2, CHM_PRE V1, and GSMaP
datasets across different grids. Figure 9 illustrates the spa-
tial distribution of the HSS and accuracy scores for the
three datasets. The KGE for CHM_PRE V2 shows a signif-
icant improvement over both CHM_PRE V1 and GSMaP,
with the HSS values for many grid cells rising from 0.2—
0.6 to 0.6-0.8. The total HSS across all grid cells reaches
0.654, representing a 23.16 % improvement compared to
other datasets. Regarding the accuracy score, it is evident
that GSMaP outperforms CHM_PRE V1 in regions such
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Figure 4. Spatial distribution patterns of multi-year average annual total precipitation from 2001 to 2020.

as NWC, NEC, and IM, while CHM_PRE V1 surpasses
GSMaP in regions like SCC and NC. In contrast, CHM_PRE
V2, which combines the advantages of interpolation-based
and remote sensing-based precipitation data, outperforms all
other datasets across all regions.

4.4 Improvements compared to the previous CHM_PRE

V1 dataset

CHM_PRE V2 is a continuation and improvement of our
previously published CHM_PRE V1. Therefore, we fur-

Earth Syst. Sci. Data, 17, 3987-4004, 2025

ther summarize the differences between CHM_PRE V2 and
CHM_PRE V1 in Table 1 and highlight the improvements
of CHM_PRE V2 over the previous version by using bold
font. It can be observed that CHM_PRE V2 shares the same
spatiotemporal resolution and coverage as V1 (except for the
extended time range up to 2023), mainly to maintain consis-
tency with other datasets in the CHM family (Zhang et al.,
2025). The spatial interpolation method used in CHM_PRE
V2 is largely consistent with that in V1, but it incorpo-
rates precipitation-related covariates in a data-driven man-
ner by integrating the LGBM method. Eleven precipitation-
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Figure 6. Accuracy of different precipitation datasets on the testing dataset CMA-HD. The green and yellow boxes in panels (d)—(f) represent
CHM_PRE V2 and CHM_PRE V1, respectively. The ideal values for absolute error, KGE, and RSD are 0 mm d-! , 1.0, and 1.0, respectively.

related variables were considered, including topographic fea-
tures (elevation and slope), satellite-derived precipitation es-
timates, reanalysis-based precipitation products, soil mois-
ture, NDVI, recent daily precipitation records, and aggregate
precipitation metrics. The inclusion of these covariates al-
lows for a better representation of the spatiotemporal vari-
ability of precipitation (Gu et al., 2023; Ma et al., 2025), re-
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sulting in improved precipitation accuracy (with MAE and
KGE reaching 1.48 mmd~" and 0.79, representing improve-
ments of approximately 12.84 % and 12.86 % compared to
CHM_PRE V1, respectively). In addition, the capability of
detecting precipitation events is a critical indicator of the ac-
curacy of precipitation datasets (Dong et al., 2020; Kang et
al., 2024). CHM_PRE V2 applies a two-stage modeling ap-
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(a) CHM_PRE V2, median value of KGE: 0.738
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Figure 7. Accuracy of different precipitation datasets at each grid cell on the testing data CMA-HD. (a), (c), and (e) show the KGE of each
grid for CHM_PRE V2, PRE V1, and GSMaP, respectively; (b), (d), and (f) show the RSD of each grid for CHM_PRE V2, PRE V1, and

GSMaP, respectively.

proach to distinguish and correct precipitation events, which
reduces overestimation of such precipitation events and im-
proves event detection accuracy (with FAR and HSS reach-
ing 0.24 and 0.68, respectively, reflecting improvements of
approximately 54.17 % and 17.24 % over CHM_PRE V1).
Overall, CHM_PRE V2 demonstrates obvious improvements
over CHM_PRE V1 and serves as a high-accuracy daily grid-
ded precipitation dataset for the Chinese mainland.

Earth Syst. Sci. Data, 17, 3987—-4004, 2025

5 Data availability

The CHM_PRE V2 dataset provides daily precipitation data
with a resolution of 0.1°, covering the entire Chinese main-
land (18-54°N, 72-136°E). This dataset covers the pe-
riod of 1960-2023 and will be continuously updated an-
nually (data for 2024 were made available in July 2025).
The daily precipitation data are provided in NetCDF format;
and for the convenience of users, we also offer annual and
monthly total precipitation data in both NetCDF and Geo-
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in subfigures (d)—(f) represent CHM_PRE V2 and CHM_PRE V1, respectively.

Table 1. Comparison between CHM_PRE V2 and CHM_PRE V1. The bold formatting indicates a better case.

Category Item CHM_PRE V1 CHM_PRE V2
Metadata Spatial resolution 0.1° 0.1°
Temporal resolution Daily Daily
Spatial coverage 18-54°N, 72-136°E 18-54°N, 72-136°E
Time Span 1961-2022 1960-2023
Method Spatial autocorrelation considered v’ v

Interpolation method

Improved IDW method

Improved IDW method

Precipitation-related covariates

Only PRISM climatology data

11 precipitation covariates

Covariate modeling approach X LGBM
Precipitation event considered X v
Accuracy of precipitation value MAE (mm a1 1.67 1.48
KGE 0.70 0.79
RSD 0.78 0.88
Accuracy of precipitation event  HSS 0.58 0.68
Accuracy score 0.79 0.85
FAR 0.37 0.24
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(a) CHM_PRE V2, median value of HSS: 0.654
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(b) CHM_PRE V2, median value of Accuracy: 0.853
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Figure 9. Accuracy of precipitation events for different precipitation datasets at each grid cell on the testing data CMA-HD. (a), (c), and (e)
show the HSS of each grid for CHM_PRE V2, PRE V1, and GSMaP, respectively; (b), (d), and (f) show the accuracy score of each grid for

CHM_PRE V2, PRE V1, and GSMaP, respectively.

TIFF formats. All of these data can be freely accessed at
https://doi.org/10.11888/Atmos.tpdc.300523 (Hu and Miao,
2025).

6 Conclusions

In this study, we developed a new high-resolution daily
gridded precipitation dataset for the Chinese mainland
(CHM_PRE V2) covering the period from 1960 to 2023 at
a 0.1° spatial resolution. This dataset was constructed us-

Earth Syst. Sci. Data, 17, 3987—-4004, 2025

ing long-term precipitation observations from 3746 gauges
and 11 carefully selected precipitation covariates. By in-
tegrating an improved inverse distance weighting interpo-
lation method with a machine learning-based light gradi-
ent boosting machine (LGBM) algorithm, our approach ac-
counts for spatial autocorrelation and a broad suite of co-
variates that represent both environmental and climatic influ-
ences on precipitation variability. The resulting CHM_PRE
V2 dataset was compared with five existing gridded precip-
itation datasets and validated for accuracy using precipita-
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tion data from over 63 000 automated rain gauge stations.
The results demonstrate that CHM_PRE V2 aligns closely
with the overall spatiotemporal distribution patterns of exist-
ing gridded precipitation datasets while achieving substantial
improvements in precipitation event detection and precipi-
tation value estimation. Specifically, compared to the pre-
vious dataset with the highest accuracy (CHM_PRE V1),
CHM_PRE V2 achieves a 12.84 % reduction in mean ab-
solute error and a 12.86 % improvement in Kling-Gupta ef-
ficiency, reaching 1.48 mmd~' and 0.88, respectively. In
terms of precipitation event capture, CHM_PRE V2 achieves
an overall Heidke skill score, accuracy score, and false alarm
ratio of 0.68, 0.85, and 0.24, respectively, improving upon
reference datasets by 17.24 %, 7.59 %, and 29.17 %, respec-
tively. Particularly in the precipitation-heavy regions of north
China and central-south China, the false alarm ratio reduc-
tion reaches 53.33 % and 68.42 %, significantly reducing the
overestimation of precipitation events. These findings prove
that CHM_PRE V2 is a high-precision precipitation dataset,
offering substantial support for various studies in hydrology,
climatology, and climate change research.
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