Articles | Volume 17, issue 8
https://doi.org/10.5194/essd-17-3807-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-3807-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The JapanFlux2024 dataset for eddy covariance observations covering Japan and East Asia from 1990 to 2023
Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan
Yuta Takao
Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Japan
Hiromi Yazawa
Center for Environmental Remote Sensing (CEReS), Chiba University, Chiba 263-8522, Japan
Makiko Tanaka
Center for Environmental Remote Sensing (CEReS), Chiba University, Chiba 263-8522, Japan
Hironori Yabuki
National Institute of Polar Research (NIPR), Tokyo 190-8518, Japan
Tomo'omi Kumagai
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
Hiroki Iwata
Department of Environmental Science, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan
Md. Abdul Awal
Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
Mingyuan Du
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang 830011, China
Yoshinobu Harazono
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Yoshiaki Hata
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
Takashi Hirano
Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
Tsutom Hiura
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
Reiko Ide
National Institute for Environmental Studies, Tsukuba 305-8506, Japan
Sachinobu Ishida
Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
Mamoru Ishikawa
Faculty of Earth Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
Kenzo Kitamura
Kyushu Research Center, Forestry and Forest Products Research Institute, Kumamoto 860-0862, Japan
Yuji Kominami
Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
Shujiro Komiya
Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
Ayumi Kotani
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
Yuta Inoue
Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
Takashi Machimura
Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
Kazuho Matsumoto
Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
Yojiro Matsuura
Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
Yasuko Mizoguchi
Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan
Shohei Murayama
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan
Hirohiko Nagano
Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan
Taro Nakai
School of Forestry and Resource Conservation, National Taiwan University, Taipei 106319, Taiwan
Tatsuro Nakaji
Sapporo Experimental Forest, Hokkaido University, Sapporo 060-0809, Japan
Ko Nakaya
Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Abiko 270-1194, Japan
Shinjiro Ohkubo
Forestry Research Institute, Forest Research Department, Hokkaido Research Organization, Bibai 079-0198, Japan
Takeshi Ohta
Nagoya University, Nagoya 464-8601, Japan
retired
Keisuke Ono
Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan
Taku M. Saitoh
Center for Environmental and Societal Sustainability, Gifu University, Gifu 501-1193, Japan
Ayaka Sakabe
Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 Japan
Takanori Shimizu
Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
Seiji Shimoda
Memuro Research Station, Hokkaido Agricultural Research Center, NARO, (HARC/M /NARO), Memuro 082-0081, Japan
Michiaki Sugita
Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
Kentaro Takagi
Field Science Center for Northern Biosphere, Hokkaido University, Toikanbetsu 098-2943, Japan
Yoshiyuki Takahashi
National Institute for Environmental Studies, Tsukuba 305-8506, Japan
Naoya Takamura
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
Satoru Takanashi
Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan
Takahiro Takimoto
Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan
Yukio Yasuda
Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
Qinxue Wang
National Institute for Environmental Studies, Tsukuba 305-8506, Japan
Jun Asanuma
Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tsukuba 305-8572, Japan
Hideo Hasegawa
Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan
Tetsuya Hiyama
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan
Yoshihiro Iijima
Department of Geography, Tokyo Metropolitan University, Tokyo 192-0397 Japan
Shigeyuki Ishidoya
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan
Masayuki Itoh
Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
Tomomichi Kato
Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
Hiroaki Kondo
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan
Yoshiko Kosugi
Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 Japan
Tomonori Kume
Kasuya Research Forest, Kyushu University, Fukuoka 811-2415, Japan
Takahisa Maeda
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan
Shoji Matsuura
Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan
Trofim Maximov
Institute for Biological Problems of Cryolithozone, Yakutsk 677980, Russia
Takafumi Miyama
Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
Ryo Moriwaki
Faculty of Engineering, Ehime University, Matsuyama 790-8577, Japan
Hiroyuki Muraoka
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
Roman Petrov
Institute for Biological Problems of Cryolithozone, Yakutsk 677980, Russia
Jun Suzuki
Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
Shingo Taniguchi
Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan
Kazuhito Ichii
Center for Environmental Remote Sensing (CEReS), Chiba University, Chiba 263-8522, Japan
Related authors
Taku Umezawa, Yukio Terao, Masahito Ueyama, Satoshi Kameyama, Mark Lunt, and James Lawrence France
EGUsphere, https://doi.org/10.5194/egusphere-2025-3285, https://doi.org/10.5194/egusphere-2025-3285, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
To take effective mitigation actions, accurate understanding of methane emission characteristics in cities is important. We conducted atmospheric methane and ethane measurements using a vehicle in the world’s largest megacity, Tokyo, to identify locations and types of emissions and estimate their magnitudes. Waste sectors and fugitive natural gas emissions were found to be the major urban sources, and our data suggested need of improved accounting of natural gas related emissions.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Masahito Ueyama, Taku Umezawa, Yukio Terao, Mark Lunt, and James Lawrence France
EGUsphere, https://doi.org/10.5194/egusphere-2024-3926, https://doi.org/10.5194/egusphere-2024-3926, 2025
Short summary
Short summary
Methane (CH4) emissions were measured in Megacity Osaka, Japan, using mobile and eddy covariance methods. The CH4 emissions were much higher than those reported in local inventories, with natural gas contributing up to 74 % of the emissions. Several CH4 sources not accounted for in current inventories were identified. These results emphasize the need for more comprehensive emissions tracking in urban areas to enhance climate change mitigation efforts.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Yanyan Cheng, Kalli Furtado, Cenlin He, Fei Chen, Alan Ziegler, Song Chen, Matteo Detto, Yuna Mao, Baoxiang Pan, Yoshiko Kosugi, Marryanna Lion, Shoji Noguchi, Satoru Takanashi, Lulie Melling, and Baoqing Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3898, https://doi.org/10.5194/egusphere-2025-3898, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Tropical land surface processes shape the Earth’s climate, but models often lack accuracy in the tropics due to limited data for validation. We improved the Noah-MP land surface model for the tropics using data from forests in Panama and Malaysia, and an urban site in Singapore. Calibration enhanced simulations of energy and water fluxes, and revealed key vegetation and soil parameters, as well as future directions for model improvement in tropical regions.
Taku Umezawa, Yukio Terao, Masahito Ueyama, Satoshi Kameyama, Mark Lunt, and James Lawrence France
EGUsphere, https://doi.org/10.5194/egusphere-2025-3285, https://doi.org/10.5194/egusphere-2025-3285, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
To take effective mitigation actions, accurate understanding of methane emission characteristics in cities is important. We conducted atmospheric methane and ethane measurements using a vehicle in the world’s largest megacity, Tokyo, to identify locations and types of emissions and estimate their magnitudes. Waste sectors and fugitive natural gas emissions were found to be the major urban sources, and our data suggested need of improved accounting of natural gas related emissions.
Satoshi Sugawara, Ikumi Oyabu, Kenji Kawamura, Shigeyuki Ishidoya, Shinji Morimoto, Shuji Aoki, Takakiyo Nakazawa, Sakae Toyoda, and Hideyuki Honda
EGUsphere, https://doi.org/10.5194/egusphere-2025-2916, https://doi.org/10.5194/egusphere-2025-2916, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Stratospheric air samples have been collected using balloon-borne cryogenic samplers over Japan and analyzed for the isotopic and elemental ratios of noble gases. We report the results of the first study on the vertical changes of Kr, Xe, and Ne in the stratosphere. The observed results suggest that not only gravitational separation but also kinetic fractionation occurred in the stratosphere. The kinetic fractionations would be an additional tool to diagnose stratospheric transport processes.
Santiago Botía, Saqr Munassar, Thomas Koch, Danilo Custodio, Luana S. Basso, Shujiro Komiya, Jost V. Lavric, David Walter, Manuel Gloor, Giordane Martins, Stijn Naus, Gerbrand Koren, Ingrid T. Luijkx, Stijn Hantson, John B. Miller, Wouter Peters, Christian Rödenbeck, and Christoph Gerbig
Atmos. Chem. Phys., 25, 6219–6255, https://doi.org/10.5194/acp-25-6219-2025, https://doi.org/10.5194/acp-25-6219-2025, 2025
Short summary
Short summary
This study uses dry CO2 mole fractions from the Amazon Tall Tower Observatory together with airborne profiles to estimate net carbon exchange in tropical South America. We found that the biogeographic Amazon is a net carbon sink, while the Cerrado and Caatinga biomes are net carbon sources, resulting in an overall neutral balance. Finally, to further reduce the uncertainty in our estimates we call for an expansion of the monitoring capacity, especially in the Amazon–Andes foothills.
Nobuyuki Aoki and Shigeyuki Ishidoya
EGUsphere, https://doi.org/10.5194/egusphere-2025-2618, https://doi.org/10.5194/egusphere-2025-2618, 2025
Short summary
Short summary
In this study, offsets of CO2 values due to thermal diffusion effect were observed in the outflowing gas from cylinders finding that the CO2 mole fraction in a cylinder deviate by this effect as the pressure dropped. This result suggests that the deviation in the CO2 value in the cylinder is caused not only by the adsorption and desorption effects but also by the thermal diffusion fractionation effect.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Marin Nagata, Astrid Yusara, Tomomichi Kato, and Yuji Masutomi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1885, https://doi.org/10.5194/egusphere-2025-1885, 2025
Short summary
Short summary
We developed maize version of process-based crop model coupled with a land surface model (MATCRO). It extends the original MATCRO-Rice by incorporating C4 photosynthesis and maize-specific parameters. The model was validated using field data from four sites and global yield data from FAOSTAT. MATCRO-Maize captured the interannual yield variability in global and county-level yield data, demonstrating its potential for climate impact assessments on maize production.
Yuki Ota, Takuya Saito, Stephen J. Andrews, Tetsuo I. Kohyama, Yoshihisa Suyama, Yoshihiko Tsumura, and Tsutom Hiura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2063, https://doi.org/10.5194/egusphere-2025-2063, 2025
Short summary
Short summary
We developed a portable system to measure biogenic volatile organic compounds (BVOCs) naturally emitted by trees, which can affect air quality and climate. Our tool reduces interference from contact with tree branches and allows measurements from several trees in a single day. Tests on Japanese cedar showed reliable results and revealed large differences between individual trees. This helps us better understand how forests influence the atmosphere.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025, https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical model developed based on the Vegetation Integrative Simulator for Trace gases (VISIT) to represent satellite-observed SIF. Our simulations reproduced the global distribution and seasonal variations in observed SIF. VISIT-SIF helps to improve photosynthetic processes through a combination of biogeochemical modeling and observed SIF.
Satoshi Sugawara, Shinji Morimoto, Shigeyuki Ishidoya, Taku Umezawa, Shuji Aoki, Takakiyo Nakazawa, Sakae Toyoda, Kentaro Ishijima, Daisuke Goto, and Hideyuki Honda
EGUsphere, https://doi.org/10.5194/egusphere-2025-1003, https://doi.org/10.5194/egusphere-2025-1003, 2025
Short summary
Short summary
We have been collected stratospheric air samples since 1985 over Japan and analyzed them for δ13CO2. δ13CO2 has decreased through time in the mid-stratosphere with an average rate of change of −0.026 ± 0.001 ‰ yr−1. It has become clear that the oxidation of methane and gravitational separation are important for stratospheric δ13CO2 variations. We newly defined ‘stratospheric potential δ13C’ as a quasi-conservative parameter and demonstrated that it can be used as an air age tracer.
Astrid Yusara, Tomomichi Kato, Elizabeth A. Ainsworth, Rafael Battisti, Etsushi Kumagai, Satoshi Nakano, Yushan Wu, Yutaka Tsusumi-Morita, Kazuhiko Kobayashi, and Yuji Masutomi
EGUsphere, https://doi.org/10.5194/egusphere-2025-453, https://doi.org/10.5194/egusphere-2025-453, 2025
Short summary
Short summary
We developed a soybean model, an ecosystem model for crop yield (namely MATCRO-Soy), integrating crop response toward climate variable. It offers a detailed yield estimation. Parameter tuning in the model used literature and field experiments. The model shows a moderate correlation with observed yields at the global, national, and grid levels. Development of MATCRO-Soy enhances crop modeling diversity approaches, particularly in climate change impact studies.
Hirofumi Hashimoto, Weile Wang, Taejin Park, Sepideh Khajehei, Kazuhito Ichii, Andrew Michaelis, Alberto Guzman, Ramakrishna Nemani, Margaret Torn, Koong Yi, and Ian Brosnan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-33, https://doi.org/10.5194/essd-2025-33, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We create the GeoNEX Coincident Ground Observations dataset (GeCGO) by extracting point data at observational network sites across Americas from the gridded GeoNEX products. The GeoNEX dataset is the high temporal frequent dataset of the latest geostationary satellites observations. We also release the software, GeoNEXTools, that helps handling the GeCGO data. GeCGO data and GeoNEXTools could help scientists use geostationary satellite data at their interested ground observational sites.
Robbert Petrus Johannes Moonen, Getachew Agmuas Adnew, Jordi Vilà-Guerau de Arellano, Oscar Karel Hartogensis, David Joan Bonell Fontas, Shujiro Komiya, Sam P. Jones, and Thomas Röckmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-452, https://doi.org/10.5194/egusphere-2025-452, 2025
Short summary
Short summary
Understory ejections are distinct turbulent features emerging in prime tall forest ecosystems. We share a method to isolate understory ejections based on H2O-CO2 anomalie quadrants. From these, we calculate the flux contributions of understory ejections and all flux quadrants. In addition we show that a distinctly depleted isotopic composition can be found in the ejected water vapour. Finally, we explored the role of clouds as a potential trigger for understory ejections.
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
Atmos. Chem. Phys., 25, 1965–1987, https://doi.org/10.5194/acp-25-1965-2025, https://doi.org/10.5194/acp-25-1965-2025, 2025
Short summary
Short summary
The 18O/16O ratio of atmospheric oxygen, δatm(18O), is higher than that of ocean water due to isotopic effects during biospheric activities. This is known as the Dole–Morita effect, and its millennial-scale variations are recorded in ice cores. However, small variations of δatm(18O) in the present day have never been detected so far. This paper presents the first observations of diurnal, seasonal, and secular variations in δatm(18O) and applies them to evaluate oxygen, carbon, and water cycles.
Masahito Ueyama, Taku Umezawa, Yukio Terao, Mark Lunt, and James Lawrence France
EGUsphere, https://doi.org/10.5194/egusphere-2024-3926, https://doi.org/10.5194/egusphere-2024-3926, 2025
Short summary
Short summary
Methane (CH4) emissions were measured in Megacity Osaka, Japan, using mobile and eddy covariance methods. The CH4 emissions were much higher than those reported in local inventories, with natural gas contributing up to 74 % of the emissions. Several CH4 sources not accounted for in current inventories were identified. These results emphasize the need for more comprehensive emissions tracking in urban areas to enhance climate change mitigation efforts.
Yuri Suzuki, Syuntaro Hiradate, Jun Koarashi, Mariko Atarashi-Andoh, Takumi Yomogida, Yuki Kanda, and Hirohiko Nagano
SOIL, 11, 35–49, https://doi.org/10.5194/soil-11-35-2025, https://doi.org/10.5194/soil-11-35-2025, 2025
Short summary
Short summary
We incubated 10 Japanese soils to study CO2 release under drying–rewetting cycles (DWCs). CO2 release was increased by DWCs among all soils, showing soil-by-soil variations in CO2 release increase magnitude. The organo-Al complex was the primary predictor for the increase magnitude, suggesting vulnerability of carbon protection by reactive minerals against DWCs. Microbial biomass decrease by DWCs was also suggested, although its link with the CO2 release increase is still unclear.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024, https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Short summary
SPITFIRE (SPread and InTensity of FIRE) was integrated into a spatially explicit individual-based dynamic global vegetation model to improve the accuracy of depicting Siberian forest fire frequency, intensity, and extent. Fires showed increased greenhouse gas and aerosol emissions in 2006–2100 for Representative Concentration Pathways. This study contributes to understanding fire dynamics, land ecosystem–climate interactions, and global material cycles under the threat of escalating fires.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Hiroaki Kondo, Kentaro Ishijima, Nobuyuki Aoki, Hidekazu Matsueda, and Kazuyuki Saito
Atmos. Chem. Phys., 24, 1059–1077, https://doi.org/10.5194/acp-24-1059-2024, https://doi.org/10.5194/acp-24-1059-2024, 2024
Short summary
Short summary
A method evaluating techniques for carbon neutrality, such as carbon capture and storage (CCS), is important. This study presents a method to evaluate CO2 emissions from a cement plant based on atmospheric O2 and CO2 measurements. The method will also be useful for evaluating CO2 capture from flue gas at CCS plants, since the plants remove CO2 from the atmosphere without causing any O2 changes, just as cement plants do, differing only in the direction of CO2 exchange with the atmosphere.
Kazuki Kamezaki, Sebastian O. Danielache, Shigeyuki Ishidoya, Takahisa Maeda, and Shohei Murayama
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-209, https://doi.org/10.5194/amt-2023-209, 2023
Revised manuscript not accepted
Short summary
Short summary
Recently, MIRA Pico, a portable continuous carbonyl sulfide (COS) concentration analyzer using mid-infrared absorption, has been released. MIRA Pico has a lower cost and is smaller than conventional laser COS analyzers. However, actual COS atmospheric measurement results using MIRA Pico have not yet been reported. In this study, we modified and tested the MIRA Pico for atmospheric COS concentration measurements. We used the modified MIRA Pico for observations at Tsukuba, Japan.
Hideki Ninomiya, Tomomichi Kato, Lea Végh, and Lan Wu
Geosci. Model Dev., 16, 4155–4170, https://doi.org/10.5194/gmd-16-4155-2023, https://doi.org/10.5194/gmd-16-4155-2023, 2023
Short summary
Short summary
Non-structural carbohydrates (NSCs) play a crucial role in plants to counteract the effects of climate change. We added a new NSC module into the SEIB-DGVM, an individual-based ecosystem model. The simulated NSC levels and their seasonal patterns show a strong agreement with observed NSC data at both point and global scales. The model can be used to simulate the biotic effects resulting from insufficient NSCs, which are otherwise difficult to measure in terrestrial ecosystems globally.
Eliane Gomes Alves, Raoni Aquino Santana, Cléo Quaresma Dias-Júnior, Santiago Botía, Tyeen Taylor, Ana Maria Yáñez-Serrano, Jürgen Kesselmeier, Efstratios Bourtsoukidis, Jonathan Williams, Pedro Ivo Lembo Silveira de Assis, Giordane Martins, Rodrigo de Souza, Sérgio Duvoisin Júnior, Alex Guenther, Dasa Gu, Anywhere Tsokankunku, Matthias Sörgel, Bruce Nelson, Davieliton Pinto, Shujiro Komiya, Diogo Martins Rosa, Bettina Weber, Cybelli Barbosa, Michelle Robin, Kenneth J. Feeley, Alvaro Duque, Viviana Londoño Lemos, Maria Paula Contreras, Alvaro Idarraga, Norberto López, Chad Husby, Brett Jestrow, and Iván Mauricio Cely Toro
Atmos. Chem. Phys., 23, 8149–8168, https://doi.org/10.5194/acp-23-8149-2023, https://doi.org/10.5194/acp-23-8149-2023, 2023
Short summary
Short summary
Isoprene is emitted mainly by plants and can influence atmospheric chemistry and air quality. But, there are uncertainties in model emission estimates and follow-up atmospheric processes. In our study, with long-term observational datasets of isoprene and biological and environmental factors from central Amazonia, we show that isoprene emission estimates could be improved when biological processes were mechanistically incorporated into the model.
Nobuyuki Aoki, Shigeyuki Ishidoya, Shohei Murayama, and Nobuhiro Matsumoto
Atmos. Meas. Tech., 15, 5969–5983, https://doi.org/10.5194/amt-15-5969-2022, https://doi.org/10.5194/amt-15-5969-2022, 2022
Short summary
Short summary
The CO2 concentration in a cylinder is affected by carbon dioxide (CO2) adsorption to a cylinder’s internal surface and fractionation of CO2 and air in the preparation of standard mixtures. We demonstrate that the effects make the CO2 molar fractions deviate in standard mixtures prepared by diluting pure CO2 with air three times. This means that CO2 standard gases are difficult to gravimetrically prepare through multistep dilution.
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Yosuke Niwa, Hidekazu Matsueda, Shohei Murayama, Kentaro Ishijima, and Kazuyuki Saito
Atmos. Chem. Phys., 22, 6953–6970, https://doi.org/10.5194/acp-22-6953-2022, https://doi.org/10.5194/acp-22-6953-2022, 2022
Short summary
Short summary
The atmospheric O2 / N2 ratio and CO2 concentration over the western North Pacific are presented. We found significant modification of the seasonal APO cycle in the middle troposphere due to the interhemispheric mixing of air. APO driven by the net marine biological activities indicated annual sea–air O2 flux during El Niño. Terrestrial biospheric and oceanic CO2 uptakes during 2012–2019 were estimated to be 1.8 and 2.8 Pg C a−1, respectively.
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022, https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary
Short summary
This paper extends the applicability of the SUEWS to extensive pervious areas outside cities. We derived various parameters such as leaf area index, albedo, roughness parameters and surface conductance for non-urban areas. The relation between LAI and albedo is also explored. The methods and parameters discussed can be used for both online and offline simulations. Using appropriate parameters related to non-urban areas is essential for assessing urban–rural differences.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Nobuyuki Aoki, Shigeyuki Ishidoya, Yasunori Tohjima, Shinji Morimoto, Ralph F. Keeling, Adam Cox, Shuichiro Takebayashi, and Shohei Murayama
Atmos. Meas. Tech., 14, 6181–6193, https://doi.org/10.5194/amt-14-6181-2021, https://doi.org/10.5194/amt-14-6181-2021, 2021
Short summary
Short summary
Observing the minimal long-term change in atmospheric O2 molar fraction combined with CO2 observation enables us to estimate terrestrial biospheric and oceanic CO2 uptakes separately. In this study, we firstly identified the span offset between the laboratory O2 scales using our developed high-precision standard mixtures, suggesting that the result may allow us to estimate terrestrial biospheric and oceanic CO2 uptakes precisely.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Shujiro Komiya, Fumiyoshi Kondo, Heiko Moossen, Thomas Seifert, Uwe Schultz, Heike Geilmann, David Walter, and Jost V. Lavric
Atmos. Meas. Tech., 14, 1439–1455, https://doi.org/10.5194/amt-14-1439-2021, https://doi.org/10.5194/amt-14-1439-2021, 2021
Short summary
Short summary
The Amazon basin influences the atmospheric and hydrological cycles on local to global scales. To better understand how, we plan to perform continuous on-site measurements of the stable isotope composition of atmospheric water vapour. For making accurate on-site observations possible, we have investigated the performance of two commercial analysers and determined the best calibration strategy. Well calibrated, both analysers will allow us to record natural signals in the Amazon rainforest.
Shigeyuki Ishidoya, Satoshi Sugawara, Yasunori Tohjima, Daisuke Goto, Kentaro Ishijima, Yosuke Niwa, Nobuyuki Aoki, and Shohei Murayama
Atmos. Chem. Phys., 21, 1357–1373, https://doi.org/10.5194/acp-21-1357-2021, https://doi.org/10.5194/acp-21-1357-2021, 2021
Short summary
Short summary
The surface Ar / N2 ratio showed not only secular increasing trends, but also interannual variations in phase with the global ocean heat content (OHC). Sensitivity test by using a two-dimensional model indicated that the secular trend in the Ar / N2 ratio is modified by the gravitational separation in the stratosphere. The analytical results imply that the surface Ar/N2 ratio is an important tracer for detecting spatiotemporally integrated changes in OHC and stratospheric circulation.
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020, https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary
Short summary
Air in polar ice cores provides information on past atmosphere and climate. We present a new method for simultaneously measuring eight gases (CH4, N2O and CO2 concentrations; isotopic ratios of N2 and O2; elemental ratios between N2, O2 and Ar; and total air content) from single ice-core samples with high precision.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Yuma Sakai, Hideki Kobayashi, and Tomomichi Kato
Geosci. Model Dev., 13, 4041–4066, https://doi.org/10.5194/gmd-13-4041-2020, https://doi.org/10.5194/gmd-13-4041-2020, 2020
Short summary
Short summary
Chlorophyll fluorescence is one of the energy release pathways of excess incident light in the photosynthetic process. The canopy-scale Sun-induced chlorophyll fluorescence (SIF), which potentially provides a direct pathway to link leaf-level photosynthesis to global GPP, can be observed from satellites. We develop the three-dimensional Monte Carlo plant canopy radiative transfer model to understand the biological and physical mechanisms behind SIF emission from complex forest canopies.
Cited articles
Arctic Data archive System (ADS): JapanFlux2024 dataset, https://ads.nipr.ac.jp/japan-flux2024/, last access: 27 December 2024.
Asanuma, J.: JapanFlux2024 MN-Kbu Kherlenbayan Ulaan, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121004, 2025a.
Asanuma, J.: JapanFlux2024 MN-Skt Southern Khentei Taiga, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121011, 2025b.
Asanuma, J. and Shimoda, S.: JapanFlux2024 JP-Tgf Terrestrial Environment Research Center, University of Tsukuba, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121013, 2025.
Awal, M. A. and Ohta, T.: JapanFlux2024 JP-Nuf Nagoya University Forest, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121008, 2025a.
Awal, M. A. and Ohta, T.: JapanFlux2024 JP-Tdf Toyota Deciduous Forest, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121012, 2025b.
Awal, M. A., Ohta, T., Matsumoto, K., Toba, T., Daikoku, K., Hattori, S., Hiyama, T., and Park, H.: Comparing the carbon sequestration capacity of temperate deciduous forests between urban and rural landscapes in central Japan, Urban For. Urban Gree., 9, 261–170, https://doi.org/10.1016/j.ufug.2010.01.007, 2010.
Baldocchi, D., Novick, K., Keenan, T., and Torn, M.: AmeriFlux: Its Impact on our understanding of the “breathing of the biosphere”, after 25 years, Agr. Forest Meteorol., 348, 109929, https://doi.org/10.1016/j.agrformet.2024.109929, 2024.
Beer, C., Reichstein, M.,Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Ian Woodward, F., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate, Science, 329, 834–838, https://doi.org/10.1126/science.1184984, 2010.
Boiarskii, B. and Hasegawa, H.: Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content, Internatl. Conf. Appl. Sci., Tech. Engin. J. Mech. Cont. & Math. Sci., 4, 20–29, https://doi.org/10.26782/jmcms.spl.4/2019.11.00003, 2019.
Bonan, G. B., Oleson, K. W., Fisher, R. A., Lasslop, G., and Reichstein, M.: Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4, J. Geophys. Res.-Biogeo., 117, G02026, https://doi.org/10.1029/2011JG001913, 2012.
Bond-Lamberty, B., Christianson, D. S., Malhotra, A., Pennington, S. C., Sihi, D., Agha-Kouchak, A., Anjileli, H., Arain, M. A., Armesto, J. J., Ashraf, S., Ataka, M,, Baldocchi, D., Black, T. A., Buchmann, N., Carbone, M. S., Chang, S.-C., Crill, P., Curtis, P. S., Davidson, E. A., Desai, A. R., Drake, J., El-Madany, T. S., Gavazzi, M., Görres, C.-M., Gough, C. M., Goulden, M., Gregg, J., del Arroyo, O. G., He, J.-S., Hirano, T., Hopple, A., Hughes, H., Järveoja, J., Jassal, R., Jian, J., Kan, H., Kaye, J., Kominami, Y., Liang, N., Lipson, D., Macdonald, C., Maseyk, K., Mathes, K., Mauritz, M., Mayes, M. A., McNulty, S., Miao, G., Migliavacca, M., Miller, S., Miniat, C. F., Nietz, J. G., Nilsson, M. B., Noormets, A., Norouzi, H., O'Connell, C. S., Osborne, B., Oyonarte, C., Pang, Z., Peichl, M., Pendall, E., Perez-Quezada, J. F., Phillips, C. L., Phillips, R. P., Raich, J. W., Renchon, A. A., Ruehr, N. K., Sánchez-Cañete, E. P., Saunders, M., Savage, K. E., Schrumpf, M., Scott, R. L., Seibt, U., Silver, W. L., Sun, W., Szutu, D., Takagi, K., Takagi, M., Teramoto, M., Tjoelker, M. G., Trumbore, S., Ueyama, M., Vargas, R., Varner, R. K., Verfaillie, J., Vogel, C., Wang, J., Winston, G., Wood, T. E., Wu, J., Wutzler, T., Zeng, J., Zha, T., Zhang, Q., and Zou, J.: COSORE: A community database for continuous soil respiration and other soil-atmosphere greenhouse gas flux data, Glob. Change Biol., 26, 7268–7283, https://doi.org/10.1111/gcb.15353, 2020.
Burba, G., McDermitt, D. K., Grelle, A., Anderson, D. J., and Xu, L.: Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers, Glob. Change Biol., 14, 1854–1876, https://doi.org/10.1111/j.1365-2486.2008.01606.x, 2008.
Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol, G., Feron, S., Ouyang, Z., Papale, D., Trotta, C., Canfora, E., Cheah, Y.-W., Christianson, D., Alberto, Ma. C. R., Alekseychik, P., Aurela, M., Baldocchi, D., Bansal, S., Billesbach, D. P., Bohrer, G., Bracho, R., Buchmann, N., Campbell, D. I., Celis, G., Chen, J., Chen, W., Chu, H., Dalmagro, H. J., Dengel, S., Desai, A. R., Detto, M., Dolman, H., Eichelmann, E., Euskirchen, E., Famulari, D., Fuchs, K., Goeckede, M., Gogo, S., Gondwe, M. J., Goodrich, J. P., Gottschalk, P., Graham, S. L., Heimann, M., Helbig, M., Helfter, C., Hemes, K. S., Hirano, T., Hollinger, D., Hörtnagl, L., Iwata, H., Jacotot, A., Jurasinski, G., Kang, M., Kasak, K., King, J., Klatt, J., Koebsch, F., Krauss, K. W., Lai, D. Y. F., Lohila, A., Mammarella, I., Belelli Marchesini, L., Manca, G., Matthes, J. H., Maximov, T., Merbold, L., Mitra, B., Morin, T. H., Nemitz, E., Nilsson, M. B., Niu, S., Oechel, W. C., Oikawa, P. Y., Ono, K., Peichl, M., Peltola, O., Reba, M. L., Richardson, A. D., Riley, W., Runkle, B. R. K., Ryu, Y., Sachs, T., Sakabe, A., Sanchez, C. R., Schuur, E. A., Schäfer, K. V. R., Sonnentag, O., Sparks, J. P., Stuart-Haëntjens, E., Sturtevant, C., Sullivan, R. C., Szutu, D. J., Thom, J. E., Torn, M. S., Tuittila, E.-S., Turner, J., Ueyama, M., Valach, A. C., Vargas, R., Varlagin, A., Vazquez-Lule, A., Verfaillie, J. G., Vesala, T., Vourlitis, G. L., Ward, E. J., Wille, C., Wohlfahrt, G., Wong, G. X., Zhang, Z., Zona, D., Windham-Myers, L., Poulter, B., and Jackson, R. B.: FLUXNET-CH4: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands, Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, 2021.
Delwiche, K. B., Nelson, J., Kowalska, N., Moore, C. E., Shirkey, G., Tarin, T., Cleverly, J. R., and Keenan, T. F.: Charting the Future of the FLUXNET Network, B. Am. Meteorol. Soc., 105, E466–E473, https://doi.org/10.1175/BAMS-D-23-0316.1, 2024.
Du, M., Li, Y., Zhang, F., Zhao, L., Li, H., Gu, S., Yonemura, S., and Tang, Y.: Characteristics and scenarios projection of NEE change in an alpine meadow on the Tibetan Plateau, Internatl. J. Glob. Warming, 24, 307–325, https://doi.org/10.1504/IJGW.2021.116711, 2021.
Du, M., Kato, T., Tang, Y., Li, Y., Gu, S., Zhao, L., and Zhang, F.: JapanFlux2024 CN-HaM Qinghai Flux Research Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102214, 2025.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Lai, C. T., Law B. E., Meyers, T., Moncrieff, J., Moors, E.. Munger, W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual sums of net ecosystem exchange, Agr. Forest Meteorol., 107, 43–69, https://doi.org/10.1016/S0168-1923(00)00225-2, 2001.
Hamada, S., Ohta, T., Hiyama, T., Kuwada, T., Takahashi, A., and Maximov, T. C.: Hydrometeorological behaviour of pine and larch forests in eastern Siberia, Hydrol. Process., 18, 23–29, https://doi.org/10.1002/hyp.1308, 2004.
Hammerle, A., Haslwanter, A., Schmitt, M., Bahn, M., Tappeiner, U., Cernusca, A., and Wohlfahrt, G.: Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope, Bound.-Lay. Meteorol., 122, 397–416, https://doi.org/10.1007/s10546-006-9109-x, 2007.
Harazono, Y.: JapanFlux2024 JP-Nsb NIAES Soybean, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102240, 2025a.
Harazono, Y.: JapanFlux2024 JP-Yrp Yawara Rice paddy, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121019, 2025b.
Harazono, Y.: JapanFlux2024 JP-Hc1 Hachihama Experimental Farm: the International Rice Experiment, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102237, 2025c.
Harazono, Y. and Miyata, A.: JapanFlux2024 JP-Km1 Kushiro Mire: Onnenai Fen, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102239, 2025a.
Harazono, Y. and Miyata, A.: JapanFlux2024 JP-Km2 Kushiro Mire: Akanuma Bog, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121026, 2025b.
Harazono, Y. and Takagi, K.: JapanFlux2024 CN-In1 Inner Mongolia dune, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102241, 2025a.
Harazono, Y. and Takagi, K.: JapanFlux2024 CN-In2 Inner Mongolia grassland, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102242, 2025b.
Harazono, Y. and Takagi, K.: JapanFlux2024 CN-In3 Inner Mongolia soybean, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102243, 2025c.
Harazono, Y. and Takagi, K.: JapanFlux2024 CN-In4 Inner Mongolia maize, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102244, 2025d.
Harazono, Y. and Takagi, K.: JapanFlux2024 CN-In5 Inner Mongolia no grazing, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102245, 2025e.
Harazono, Y. and Takagi, K.: JapanFlux2024 CN-In6 Inner Mongolia heavy grazing, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102246, 2025f.
Harazono, Y. and Takagi, K.: JapanFlux2024 CN-In7 Inner Mongolia light grazing, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102247, 2025g.
Harazono, Y. and Takagi, K.: JapanFlux2024 CN-In8 Inner Mongolia medium grazing, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102248, 2025h.
Harazono, Y., Kim, J., Miyata, A., Choi, T., Yun, J.-I.,and Kim, J.-W.: Measurement of energy budget components during the International Rice Experiment (IREX) in Japan, Hydrol. Process., 12, 2081–2092, https://doi.org/10.1002/(SICI)1099-1085(19981030)12:13/14<2081::AID-HYP721>3.0.CO;2-M, 1998.
Harazono, Y., Takagi, K., and Miyata, A.: JapanFlux2024 JP-KaP Kasumigaura lotus paddy, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102238, 2025.
Harazono, Y., Yamada, C., and Nishizawa, T.: Characteristics of Aerodynamic Parameters and Turbulent Transport of Momentum and CO2 Over a Soybean Canopy, Bull. Environ. Res. Cent., the University of Tsukuba, 16, 13–25, 1992.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc. 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hirano, T.: JapanFlux2024 JP-Sb1 Sarobetsu Mire Moss, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102216, 2025a.
Hirano, T.: JapanFlux2024 JP-Sb2 Sarobetsu Mire Sasa, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102217, 2025b.
Hirano, T. and Hirata, R.: JapanFlux2024 JP-Tmd Tomakomai Flux Research Site Disturbed, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102230, 2025.
Hirano, T., Hirata, R., Fujinuma, Y., Saigusa, N., Yamamoto, S., Harazono, Y., Takada, M., Inukai, K., and Inoue, G.: CO2 and water vapor exchange of a larch forest in northern Japan, Tellus B, 55, 244–257, https://doi.org/10.3402/tellusb.v55i2.16753, 2003.
Hirano, T. and Ohkubo, S.: JapanFlux2024 ID-PaB Palangkaraya Drained Burnt forest, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102213, 2025a.
Hirano, T. and Ohkubo, S.: JapanFlux2024 ID-PaD Palangkaraya drained forest, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102232, 2025b.
Hirano, T. and Ohkubo, S.: JapanFlux2024 ID-Pag Palangkaraya Undrained Forest, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102233, 2025c.
Hirano, T., Yamada, H., Takada, M., Fujimura, Y., Fujita, H., and Takahashi, H.: Effects of the expansion of vascular plants in Sphagnum-dominated bog on evapotranspiration, Agr. Forest Meteorol., 220, 90–100, https://doi.org/10.1016/j.agrformet.2016.01.039, 2016.
Hirano, T., Suzuki, K., and Hirata, R.: Energy balance and evapotranspiration changes in a larch forest caused by severe disturbance during an early secondary succession, Agr. Forest Meteorol., 232, 457–468, https://doi.org/10.1016/j.agrformet.2016.10.003, 2017.
Hirano, T., Ohkubo, S., Itoh, M., Tsuzuki, H., Sakabe, A., Takahashi, H., Kusin, K., and Osaki, M.: Large variation in carbon dioxide emissions from tropical peat swamp forests due to disturbances, Comm. Earth Environ., 5, 221, https://doi.org/10.1038/s43247-024-01387-7, 2024.
Hirata, R. and Hirano, T.: JapanFlux2024 JP-Tmk Tomakomai Flux Research Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102222, 2025.
Hirata, R., Saigusa, N., Yamamoto, S., Ohtani, Y., Ide, R., Asanuma, J., Gamo, M., Hirano, T., Kondo, H., Kosugi, Y., Li, S. -G., Nakai, Y., Takagi, K., Tani, M., and Wang, H.: Spatial distribution of carbon balance in forest ecosystems across East Asia, Agr. Forest Meteorol., 148, 761–775, https://doi.org/10.1016/j.agrformet.2007.11.016, 2008.
Hiyama, T., Kochi, K., Kobayashi, N., and Sirisampan, S.: Seasonal variation in stomatal conductance and physiological factors observed in a secondary warm-temperate forest, Ecol. Res., 20, 333–346, https://doi.org/10.1007/s11284-005-0049-6, 2005.
Ichii, K., Ueyama, M., Kondo, M., Saigusa, N., Kim, J., Alberto, M. C., Ardö, J., Euskirchen, E., Kang, M., Hirano, T., Joiner, J., Kobayashi, H., Marchesini, L. B., Merbold, L., Miyata, A., Saitoh, T. M., Takagi, K., Varlagin, A., Bret-Harte, M. S., Kitamura, K., Kosugi, Y., Kotani, A., Kumar, K., Li, S. -G., Machimura, T., Matsuura, Y., Mizoguchi, Y., Ohta, T., Mukherjee, S., Yanagi, Y., Yasuda, Y., Zhang, Y., and Zhao, F.: New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression, J. Geophys. Res.-Biogeo., 122, 767–795, https://doi.org/10.1002/2016JG003640, 2017.
Igarashi, Y., Katul, G. G., Kumagai, T., Yoshifuji, N., Sato, T., Tanaka, N., Tanaka, K., Fujinami, H., Suzuki, M., and Tantasirin, C.: Separating physical and biological controls on long-term evapotranspiration fluctuations in a tropical deciduous forest subjected to monsoonal rainfall, J. Geophys. Res.-Biogeo., 120, 1262–1278, https://doi.org/10.1002/2014JG002767, 2015.
Iida, S., Shimizu, T., Shinohara, Y., Takeuchi, S., and Kumagai, T.: The necessity of sensor calibration for the precise measurement of water fluxes in forest ecosystems, in: Forest-Water Interactions, Ecological Studies, edited by: Levia, D. F., Carlyle-Moses, D. E., Iida, S., Michalzik, B., Nanko, K., Tischer, A., vol. 240, Springer, Cham, https://doi.org/10.1007/978-3-030-26086-6_2, 2020.
Ishida, S.: JapanFlux2024 JP-Srk Shirakami Beech Forest Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102218, 2025.
Ishida S., Ito, D., and Matsuura, Y.: Overview of Shirakami Flux Tower and General Meteorological Conditions between July and October, 2008, Shirakami Kenkyu, 6, 18–25, 2009 (in Japanese with English abstract).
Ishikawa, M.: JapanFlux2024 MN-Udg Udleg practice forest,1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121017, 2025.
Iwata, H.: JapanFlux2024 JP-Nkm Nishikoma Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102231, 2025a.
Iwata, H.: JapanFlux2024 JP-SwL Suwa Lake Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102219, 2025b.
Iwata, H. and Suzuki, J.: JapanFlux2024 JP-Shn Shinshu University Experimental Forest Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121009, 2025.
Iwata, H., Hirata, R., Takahashi, Y., Miyabara, Y., Itoh, M., and Iizuka, K.: Partitioning eddy-covariance methane fluxes from a shallow lake into diffusive and ebullitive fluxes, Bound.-Lay. Meteorol., 169, 413–428, https://doi.org/10.1007/s10546-018-0383-1, 2018.
Kabeya, N., Shimizu, A., Shimizu, T., Iida, S., Tamai, K., Miyamato, A., Chann, S., Araki, M., and Ohnuki, Y.: Long-term Hydrological Observations in a Lowland Dry Evergreen Forest Catchment Area of the Lower Mekong River, Cambodia, JARQ-Jpn. Agr. Res. Q., 55, 177–190, https://doi.org/10.6090/jarq.55.177, 2021.
Kanda, M. and Moriwaki, R.: JapanFlux2024 JP-Kgu Kugahara urban residential area, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121018, 2025.
Kang, M. and Cho, S.: Progress in water and energy flux studies in Asia: A review focused on eddy covariance measurements, J. Agric. Meteorol., 77, 2–23, https://doi.org/10.2480/agrmet.D-20-00036, 2021.
Kato, T. and Tang, Y.: Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data, Glob. Change Biol., 14, 2333–2348, https://doi.org/10.1111/j.1365-2486.2008.01646.x, 2008.
Keenan, T. F., Luo, X., Stocker, B. D., De Kauwe, M. G., Medlyn, B. E., Prentice, I. C., Smith, N. G., Terrer, C., Wang, H., Zhang, Y., and Zhou, S.: A constraint on historic growth in global photosynthesis due to rising CO2, Nat. Clim. Change, 13, 1376–1381, https://doi.org/10.1038/s41558-023-01867-2, 2023.
Kitamura, K., Shimizu, T., Kominami, Y., Hagino, K., Mizoguchi, Y., Tamai, K. Shimizu, A., Ohnuki, Y., Kobayashi, M.: JapanFlux2024 JP-Khw Kahoku Experiment watershed, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121005, 2025.
Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E., Zhang, Z., Hugelius, G., Bousquet, P., Canadell, J. G., Saunois, M., Papale, D., Chu, H., Keenan, T. F., Baldocchi, D., Torn, M. S., Mammarella, I., Trotta, C., Aurela, M., Bohrer, G., Campbell, D. I., Cescatti, A., Chamberlain, S., Chen, J., Chen, W., Dengel, S., Desai, A. R., Euskirchen, E., Friborg, T., Gasbarra, D., Goded, I., Goeckede, M., Heimann, M., Helbig, M., Hirano, T., Hollinger, D. Y., Iwata, H., Kang, M., Klatt, J., Krauss, K. W., Kutzbach, L., Lohila, A., Mitra, B., Morin, T. H., Nilsson, M. B., Niu, S., Noormets, A., Oechel, W. C., Peichl, M., Peltola, O., Reba, M. L., Richardson, A. D., Runkle, B. R., Ryu, Y., Sachs, T., Schäfer, K. B. R., Schmid, H. P., Shurpali, N., Sonnentag, O., Tang, A. C. I., Ueyama, M., Vargas, R., Vesala, T., Ward, E. J., Windham-Myers, L., Wohlfahrt, G., and Zona, D.: FLUXNET-CH4 synthesis activity: objectives, observations, and future directions, B. Am. Meteorol. Soc., 100, 2607–2632, https://doi.org/10.1175/BAMS-D-18-0268.1, 2019.
Kominami, Y., Jomura, M., Dannoura, M., Goto, Y., Tamai, K., Miyama, T., Kanazawa, Y., Kaneko, S., Okumura, M., Misawa, N., Hamada, S., Sasaki, T., Kimura, H., and Ohtani, Y.: Biometric and eddy-covariance-based estimates of carbon balance for a warm-temperate mixed forest in Japan, Agr. Forest Meteorol., 148, 723–737, https://doi.org/10.1016/j.agrformet.2008.01.017, 2008.
Komiya, S.: Methane and carbon dioxide dynamics in temperate and tropical rice paddy fields, PhD thesis, Meiji University, 118 pp., https://meiji.repo.nii.ac.jp/records/14850 (last access: 27 December 2024), 2015.
Komiya, S.: JapanFlux2024 JP-Hrt Hiratsuka Rice Paddy, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121020, 2025a.
Komiya, S.: JapanFlux2024 TH-Kms Kamphaeng Saen Rice Paddy, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121021, 2025b.
Kosugi, Y. and Takanashi, S.: JapanFlux2024 JP-Ako JP-Ako Akou green belt, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121001, 2025.
Kosugi, Y., Tanaka, H., Takanashi, S., Matsuo, N., Ohte, N., Shibata, S., and Tani, M.: Three years of carbon and energy fluxes from Japanese evergreen broad-leaved forest, Agr. Forest Meteorol., 132, 329–343, https://doi.org/10.1016/j.agrformet.2005.08.010, 2005.
Kotani, A. and Ohta, T.: JapanFlux2024 JP-SMF Seto Mixed Forest Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102234, 2025.
Kotani, A., Kononov, A. V., Ohta, T., and Maximov, T. C.: Temporal variations in the linkage between the net ecosystem exchange of water vapour and CO2 over boreal forests in eastern Siberia, Ecohydrology, 7, 209–225, https://doi.org/10.1002/eco.1449, 2014.
Kotani, A., Ohta, T., Yabuki, H., Maximov, T., and Petrov, R.: JapanFlux2024 RU-Sk2 Yakutsk Pine, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102236, 2025.
Kumagai, T. and Takamura, N.: JapanFlux2024 TH-Kog Kog-Ma Watershed, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121023, 2025a.
Kumagai, T. and Takamura, N.: JapanFlux2024 TH-Mae Mae Moh plantation, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121024, 2025b.
Kumagai, T., Hata, Y., Matsumoto, K., and Kume, T.: JapanFlux2024 MY-LHP Lambir Hills National Park, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102206, 2025.
Kume, T., Takizawa, H., Yoshifuji, N., Tanaka, K., Tantasirin, C., Tanaka, N., and Suzuki, M.: Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand, Forest Ecol. Manag., 238, 220–230, https://doi.org/10.1016/j.foreco.2006.10.019, 2007.
Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., and Wohlfahrt, G.: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Glob. Change Biol., 16, 187–208, https://doi.org/10.1111/j.1365-2486.2009.02041.x, 2010.
Li, S. G., Harazono, Y., Oikawa, T., Zhao, H. L., He, Z. Y., and Chang, X. L.: Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia, Agr. Forest Meteorol., 102, 125–137, https://doi.org/10.1016/S0168-1923(00)00101-5, 2000.
Li, S.-G., Asanuma, J., Eugster, W., Kotani, A., Davaa, G., Oyunbaatar, D., and Sugita, M.: Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia, Glob. Change Biol., 11, 1941–1955, https://https://doi.org/10.1111/j.1365-2486.2005.01047.x, 2005a.
Li, S.-G., Asanuma, J., Kotani, A., Eugster, W., Davaa, G., Oyunbaatar, D., and Sugita, M.: Year-round measurements of net ecosystem CO2 flux over a montane larch forest in Mongolia, J. Geophys. Res., 110, D0930, https://https://doi.org/10.1029/2004JD005453, 2005b.
Liu, H. Z., Feng, J. W., Järvi, L., and Vesala, T.: Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing, Atmos. Chem. Phys., 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, 2012.
Lloyd, J. and Taylor, J. A.: On the temperature dependence of soil respiration, Funct. Ecol., 8, 315323, https://doi.org/10.2307/2389824, 1994.
Machimura, T.: JapanFlux2024 RU-NeB Neleger Burnt Forest, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102210, 2025a.
Machimura, T.: JapanFlux2024 RU-NeC Neleger Cutover, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102211, 2025b.
Machimura, T.: JapanFlux2024 RU-NeF Neleger larch forest, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102212, 2025c.
Matsuda, K., Watanabe, I., Mizukami, K., Ban, S., and Takahashi, A.: Dry deposition of PM2.5 sulfate above a hilly forest using relaxed eddy accumulation, Atmos. Environ., 107, 255–261, https://doi.org/10.1016/j.atmosenv.2015.02.050, 2015.
Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H., Kononov, A. V., van der Molen, M. K., Kodama, Y., Maximov, T. C., Dolman, A. J., and Hattori, S.: Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East, Agr. Forest Meteorol., 148, 1978–1989, https://doi.org/10.1016/j.agrformet.2008.09.008, 2008.
Matsumoto, K., Terasawa, K., Taniguchi, S., Ohashi, M., Katayama, A., Kume, T., and Takashima, A.: Spatial and seasonal variations in soil respiration in a subtropical forest in Okinawa, Japan, Ecol. Res., 38, 367–490, https://doi.org/10.1111/1440-1703.12386, 2023.
Matsumoto, K., Taniguchi, S., and Takashima, A.: JapanFlux2024 JP-Ynf Yona-Field Tower Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102225, 2025.
Matsuo, T. and Sasyo, Y.: Non-melting phenomena of snowflakes observed in subsaturated air below freezing level, J. Meteorol. Soc. Jpn, 59, 26–32, https://doi.org/10.2151/jmsj1965.59.1_26, 1981.
Matsuura, S.: JapanFlux2024 JP-NsM Nasu Research Station, Manure Application Plot, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121028, 2025a.
Matsuura, S.: JapanFlux2024 JP-NsC Nasu Research Station, Manure Application Plot, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121029, 2025b.
Matsuura, S., Mori, A., Miyata, A., and Hatano, R.: Effects of farmyard manure application and grassland renovation on net ecosystem carbon balance in a temperate grassland: analysis of 11-year eddy covariance data, J. Agric. Meteorol., 79, 2–17, https://doi.org/10.2480/agrmet.D-22-00007, 2023.
Matsuura, Y. and Morishita, T.: JapanFlux2024 RU-Tur Tura, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102223, 2025.
Maximov, T., Kotani, A., Petrov, R., Hiyama, T., and Ohta, T.: JapanFlux2024 RU-Ege Elgeeii forest station, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102229, 2025a.
Maximov, T., Kotani, A., Petrov, R., Iijima, Y., Yabuki, H., Hiyama, T., and Ohta, T.: JapanFlux2024 RU-SkP Yakutsk Spasskaya Pad larch, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102235, 2025b.
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V., Crous, K. Y., De Angelis, P., Freeman, M, and Wingate, L.: Reconciling the optimal and empirical approaches to modelling stomatal conductance, Glob. Change Biol., 17, 2134–2144, https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011.
Miyata, A., Harazono, Y., Yoshimoto, M., and Terai, H.: The influence of temperature on CO2 and methane fluxes at a flooded boreal wetland in Hokkaido, Japan, J. Agric. Meteorol., 52, 807–810, https://doi.org/10.2480/agrmet.52.807, 1997.
Miyata, A., Harazono, Y., Kim, J., Terai, H., Takahashi, H., and Nishio, F.: Carbon dioxide and methane fluxes at Kushiro Mire, in: Proc. International Workshop for Advanced Flux Network and Flux Evaluation, Sapporo, Japan, 27–29 September 2000, 29–32, https://cger.nies.go.jp/publications/report/m011/m011_2001.html (last access: 27 December 2024), 2001.
Miyazaki, S., Ishikawa, M., Baatarbileg, N., Damdinsuren, S., Ariuntuya, N., and Jambaljav, Y.: Interannual and seasonal variations in energy and carbon exchanges over the larch forests on the permafrost in northeastern Mongolia, Polar Sci., 8, 166–182, https://doi.org/10.1016/j.polar.2013.12.004, 2014.
Mizoguchi, Y. and Kitamura, K.: JapanFlux2024 JP-Spp Sapporo forest meteorology research site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121010, 2025.
Mizoguchi, Y., Miyata, A., Ohtani, Y., Hirata, R., and Yuta, S.: A review of tower flux observation sites in Asia, J. Forest Res.-Jpn., 14, 1–9, https://doi.org/10.1007/s10310-008-0101-9, 2009.
Mizoguchi, Y., Ohtani, Y., Takanashi, S., Iwata, H., Yasuda, Y., and Nakai, Y.: Seasonal and interannual variation in net ecosystem production of an evergreen needleleaf forest in Japan, J. Forest Res.-Jpn., 17, 283–295, https://doi.org/10.1007/s10310-011-0307-0, 2012.
Moriwaki, R. and Kanda, M.: Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area, J. Appl. Meteorol., 43, 1700–1710, https://doi.org/10.1175/JAM2153.1, 2004.
Murayama, S., Kondo, H., Ishidoya, S., Maeda, T., Saigusa, N., Yamamoto, S., Kamezaki, K., and Muraoka, H.: Interannual variation and trend of carbon budget observed for more than two decades at Takayama in a cool-temperate deciduous forest in central Japan, J. Geophys. Res.-Biogeo., 129, e2023JG007769, https://doi.org/10.1029/2023JG007769, 2024a.
Murayama, S., Kondo, H., Muraoka, H., Ishidoya, S., and Maeda, T.: JapanFlux2024 JP-Tak Takayama deciduous broadleaf forest site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102221, 2025b.
Nagano, H. and Hasegawa, H.: JapanFlux2024 JP-Mra Muramatsu agricultural field, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102209, 2025.
Nakai, T., van der Molen, M. K., Gash, J. H. C., and Kodama, Y.: Correction of sonic anemometer angle of attack errors, Agr. Forest Meteorol., 136, 19–30, https://doi.org/10.1016/j.agrformet.2006.01.006, 2006.
Nakai, T., Kim, Y., Busey, R. C., Suzuki, R., Nagai, S., Kobayashi, H., Park, H., Sugiura, K., and Ito, A.: Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska, Polar Sci., 7, 136–148, https://doi.org/10.1016/j.polar.2013.03.003, 2013.
Nakai, T., Ohta, T., Kodama, Y., Sumida, A., Toda, M., and Hara, T.: JapanFlux2024 JP-MBF Moshiri Birch Forest Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102207, 2025a.
Nakai, T., Ohta, T., Kodama, Y., Sumida, A., Toda, M., and Hara, T.: JapanFlux2024 JP-MMF Moshiri Mixed Forest Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102208, 2025b.
Nakai, Y., Matsuura, Y., Kajimoto, T., Abaimov, A. P., Yamamoto, S., and Zyryanova, O. A.: Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost in Central Siberia during a growing season, Theor. Appl. Climatol., 93, 133–147, https://doi.org/10.1007/s00704-007-0337-x, 2008.
Nakaji, T.: JapanFlux2024 JP-Tom Tomakomai Experimental Forest, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121015, 2025.
Nakaji, T., Nakamura, M., and Ide, R.: JapanFlux2024 JP-Toc Tomakomai Crane site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121014, 2025.
Nakaya, K., Suzuki, C., Kobayashi, T., Ikeda, H., and Yasuike, S.: Application of a displaced-beam small aperture scintillometer to a deciduous forest under unstable atmospheric conditions, Agr. Forest Meteorol., 136, 45–55, https://doi.org/10.1016/j.agrformet.2005.12.009, 2006.
Nakaya, K., Suzuki, C., Kobayashi, T., Ikeda, H., and Yasuike, S.: JapanFlux2024 JP-Kzw Karuizawa, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102205, 2025.
Nie, D., Demetriades-Shah, T., and Kanemasu, E. T.: Surface energy fluxes on four slope sites during FIFE 1988, J. Geophys. Res.-Atmos., 97, 18641–18649, https://doi.org/10.1029/91JD03043, 1992.
Ohta, T., Maximov, T. C., Dolman, A. J., Nakai, T., van der Molen, M. K., Kononov, A. V., Maximov, A. P., Hiyama, T., Iijima, Y., Moors, E. J., Tanaka, H., Toba, T., and Yabuki, H.: Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006), Agr. Forest Meteorol., 148, 1941–1953, https://doi.org/10.1016/j.agrformet.2008.04.012, 2008.
Ohtaki, E.: Application of an infrared carbon dioxide and humidity instrument to studies of turbulent transport, College of Liberal Art. Sci., 29, 85–107, 1984.
Ohkubo, S., Hirano, T., and Kusin, K.: Assessing the carbon dioxide balance of a degraded tropical peat swamp forest following multiple fire events of different intensities, Agr. Forest Meteorol., 306, 108448, https://doi.org/10.1016/j.agrformet.2021.108448, 2021.
Ono, K.: JapanFlux2024 JP-Mse Mase paddy flux site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121007, 2025.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006.
Pastorello, G., Trotta, C., Canfora, E., et al.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Saigusa, N. and Wang, H.: JapanFlux2024 CN-Lsh Laoshan,1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121006, 2025.
Saigusa, N., Li, S.-G., Kwon, H., Takagi, K., Zhang, L.-M., Ide, R. Ueyama, M., Asanuma, J., Choi, Y.-J., Chun, J. H., Han, S.-J., Hirano, T., Hirata, R., Kang, M., Kato, T., Kim, J., Li, Y.-N., Maeda, T., Miyata, A., Mizoguchi, Y., Murayama, S., Nakai, Y., Ohta, T., Saitoh, T. M., Wang, H.-M., Yu, G.-R., Zhang, Y.-P., and Zhao, F.-H.: Dataset of CarboEastAsia and uncertainties in the CO2 budget evaluation caused by different data processing, J. Forest Res.-Jpn., 18, 41–48, https://doi.org/10.1007/s10310-012-0378-6, 2013.
Saito, M., Miyata, A., Nagai, H., and Yamada, T.: Seasonal variation of carbon dioxide exchange in rice paddy field in Japan, Agr. Forest Meteorol., 135, 93–109, https://https://doi.org/10.1016/j.agrformet.2005.10.007, 2005.
Saitoh, T. M. and Tamagawa, I.: JapanFlux2024 JP-Ta2 Takayama evergreen coniferous forest site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102220, 2025.
Saitoh, T. M., Tamagawa, I., Muraoka, H., Lee, N.-Y. M., Yashiro, Y., and Koizumi, H.: Carbon dioxide exchange in a cool-temperate evergreen coniferous forest over complex topography in Japan during two years with contrasting climates, J. Plant Res., 123, 473–483, https://doi.org/10.1007/s10265-009-0308-7, 2010.
Sakabe, A. and Itoh, M.: JapanFlux2024 JP-Nap Nunoike Agricultural Pond, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121025, 2025.
Shibata, H., Hiura, T., Tanaka, Y., Takagi, K., and Koike, T.: Carbon cycling and budget in a forested basin of southwestern Hokkaido, northern Japan, Ecol. Res., 20, 325–331, https://doi.org/10.1007/s11284-005-0048-7, 2005.
Shimizu, T., Kumagai, T., Kobayashi, M., Tamai, K., Iida, S., Kabeya, N., Ikawa, R., Tateishi, M., Miyazawa, Y., and Shimizu, A.: Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (2): Comparison of eddy covariance, water budget and sap-flow plus interception loss, J. Hydrol., 522, 250–264, https://doi.org/10.1016/j.jhydrol.2014.12.021, 2015.
Shimizu, T., Kabeya, N., Iida, S., Tamai, K., Shimizu, A., Chann, S., and Saing, S.: JapanFlux2024 KH-Kmp Kampong Thom Lowland Dry Evergreen Forest, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102203, 2025a.
Shimizu, T., Iida, S., Kabeya, N., and Iwagami, S.: JapanFlux2024 JP-Tkb Tsukuba Experimental Watershed, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121022, 2025b.
Shimoda, S., Mo, W., and Oikawa, T.: The effects of characteristics of Asian Monsoon climate on interannual CO2 exchange in a humid temperate C3/C4 co-occurring grassland, SOLA, 1, 169–172, https://doi.org/10.2151/sola.2005-044, 2005.
Sugita, M.: JapanFlux2024 JP-KaL Koshin, Lake Kasumigaura, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102230, 2025.
Sugita, M., Ogawa, S., and Kawade, M.: Wind as a main driver of spatial variability of surface energy balance over a shallow 102-km2 scale lake: Lake Kasumigaura, Japan, Water Resour. Res., 56, e2020WR027173, https://doi.org/10.1029/2020WR027173, 2020.
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.: Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product, Remote Sens. Environ., 222, 183–194, https://doi.org/10.1016/j.rse.2018.12.013, 2019.
Takagi, K. and Matsuda, K.: JapanFlux2024 JP-Fmt Field Museum Tama Hills, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121003, 2025.
Takagi, K. and Takahashi, Y.: JapanFlux2024 JP-Tef CC-LaG Teshio Experimental Forest, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121016, 2025.
Takagi, K., Miyata, A., Harazono, Y., Ota, N., Komine, M., and Yoshimoto, M.: An alternative approach to determining zero-plane displacement,and its application to a lotus paddy field, Agr. Forest Meteorol., 115, 173–181, https://doi.org/10.1016/S0168-1923(02)00209-5, 2003.
Takagi, K., Fukuzawa, K., Liang, N., Kayama, M., Nomura, M., Hojo, H., Sugata, S., Shibata, H., Fukuzawa, T., Takahashi, Y., Nakaji, T., Oguma, H., Mano, M., Akibayashi, Y., Murayama, T., Koike, T., Sasa, K., and Fujinuma, Y.: Change in CO2 balance under a series of forestry activities in a cool-temperate mixed forest with dense undergrowth, Glob. Change Biol., 15, 1275–1288, https://doi.org/10.1111/j.1365-2486.2008.01795.x, 2009.
Takahashi, Y., Saigusa, N., Hirata, R., ide, R., Fujinuma, Y., Okano, T., and Arase, T.: Characteristics of temporal variations in ecosystem CO2 exchange in a temperate deciduous needle-leaf forest in the foothills of a high mountain, J. Agric. Meteorol., 71, 302–317, https://doi.org/10.2480/agrmet.D-14-00009, 2015.
Takahashi, Y., Liang, N., Ide, R., Hatsumi, K., Yamao, Y., and Hirose, Y.: JapanFlux2024 JP-Fhk Fuji Hokuroku Flux Observation Site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121002, 2025.
Takamura, N., Hata, Y., Matsumoto, K., Kume, T., Ueyama, M., and Kumagai, T.: El Niño-Southern Oscillation forcing on carbon and water cycling in a Bornean tropical rainforest, P. Natl. Acad. Sci. USA, 120, e2301596120, https://doi.org/10.1073/pnas.2301596120, 2023.
Takanashi, S., Kominami, Y., and Miyama, T.: JapanFlux2024 JP-Fjy Fujiyoshida forest meteorology research site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102202, 2025a.
Takanashi, S., Kominami, Y., and Miyama, T.: JapanFlux2024 JP-Yms Yamashiro forest meteorology research site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102224, 2025b.
Takano, T. and Ueyama, M.: Spatial variations in daytime methane and carbon dioxide emissions in two urban landscapes, Sakai, Japan. Urb. Clim., 36, 100798, https://doi.org/10.1016/j.uclim.2021.100798, 2021.
Takimoto, T. and Iwata, T.: JapanFlux2024 JP-Hc2 Hachihama Experimental Farm, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102249, 2025a.
Takimoto, T. and Iwata, T.: JapanFlux2024 JP-Hc3 Hachihama Experimental Farm: Double Crop, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102228, 2025b.
Takimoto, T., Iwata, T., Yamamoto, S., and Miura, T.: Characteristics of CO2 and CH4 flux at barley-rice double cropping field in southern part of Okayama, J. Agric. Meteorol., 66, 181–191, https://doi.org/10.2480/agrmet.66.3.5, 2010.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol., 103, 279–300, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
Ueyama, M.: JapanFlux2024 JP-Ozm Oizumi Urban Park, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024072201, 2025a.
Ueyama, M.: JapanFlux2024 JP-Om1 B11 building in Osaka Metropolitan University, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024072203, 2025b.
Ueyama, M.: JapanFlux2024 JP-Om2 Farm field in Osaka Metropolitan University, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024072204, 2025c.
Ueyama, M.: JapanFlux2024 JP-Sac Sakai City Office, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102215, 2025d.
Ueyama, M. and Ando, T.: Diurnal, weekly, seasonal, and spatial variabilities in carbon dioxide flux in different urban landscapes in Sakai, Japan, Atmos. Chem. Phys., 16, 14727–14740, https://doi.org/10.5194/acp-16-14727-2016, 2016.
Ueyama, M. and Takano, T.: A decade of CO2 flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan, Environ. Pollut., 304, 119210, https://doi.org/10.1016/j.envpol.2022.119210, 2022.
Ueyama, M., Ichii, K., Kobayashi, H., Kumagai, T., Beringer, J., Merbold, L., Euskirchen, E., Hirano, T., Belelli M. L., Baldocchi, D., Saitoh, T., Mizoguchi, Y., Ono, K., Kim, J., Varlagin, A., Kang, M., Shimizu, T., Kosugi, Y., Bret-Harte, M., Machimura, T., Matsuura, Y., Ohta, T., Takagi, K., Takanashi, S., and Yasuda, Y.: Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model, Environ. Res. Lett., 15, 084009, https://doi.org/10.1088/1748-9326/ab79e5, 2020a.
Ueyama, M., Yamamori, T., Iwata, H., and Harazono, Y.: Cooling and moistening of the planetary boundary layer in interior Alaska due to a postfire change in surface energy exchange, J. Geophys. Res.-Atmos., 125, e2020JD032968, https://doi.org/10.1029/2020JD032968, 2020b.
Ueyama, M., Yazaki, T., Hirano, T., Futakuchi, and Okamura, M.: Environmental controls on methane fluxes in a cool temperate bog, Agr. Forest Meteorol., 281, 107852, https://doi.org/10.1016/j.agrformet.2019.107852, 2020c.
Ueyama, M., Taguchi, A., and Takano, T.: Water vapor emissions from urban landscapes in Sakai, Japan, J. Hydrol., 598, 126384, https://doi.org/10.1016/j.jhydrol.2021.126384, 2021.
Ueyama, M., Knox, S. H., Delwiche, K. B., Bansal, S., Riley, W. J., Baldocchi, D., Hirano, T., McNicol, G., Schafer, K., Windham-Myers, L., Poulter, B., Jackson, R. B., Chang, K.-Y., Chen, J., Chu, H., Desai, A. R., Gogo, S., Iwata, H., Kang, M., Mammarella, I., Peichl, M., Sonnentag, O., Tuittila, E.-S., Ryu, Y., Euskirchen, E. S., Göckede, M., Jacotot, A., Nilsson, M. B., and Sachs, T.: Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions, Glob. Change Biol., 29, 2313–2334, https://doi.org/10.1111/gcb.16594, 2023.
Ueyama, M., Iwata, H., Nagano, H., Kukuu, N., and Harazono, Y.: Anomalous wet summers and rising atmospheric CO2 concentrations increase the CO2 sink in a poorly drained forest on permafrost, P. Natl. Acad. Sci. USA, 121, e2414539121 https://doi.org/10.1073/pnas.2414539121, 2024.
Ueyama, M., Hirano, T., and Kominami, Y.: JapanFlux2024 JP-BBY Bibai bog, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024072202, 2025.
Verma, M., Friedl, M. A., Richardson, A. D., Kiely, G., Cescatti, A., Law, B. E., Wohlfahrt, G., Gielen, B., Roupsard, O., Moors, E. J., Toscano, P., Vaccari, F. P., Gianelle, D., Bohrer, G., Varlagin, A., Buchmann, N., van Gorsel, E., Montagnani, L., and Propastin, P.: Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set, Biogeosciences, 11, 2185–2200, https://doi.org/10.5194/bg-11-2185-2014, 2014.
Virkkala, A.-M., Natali, S. M., Rogers, B. M., Watts, J. D., Savage, K., Connon, S. J., Mauritz, M., Schuur, E. A. G., Peter, D., Minions, C., Nojeim, J., Commane, R., Emmerton, C. A., Goeckede, M., Helbig, M., Holl, D., Iwata, H., Kobayashi, H., Kolari, P., López-Blanco, E., Marushchak, M. E., Mastepanov, M., Merbold, L., Parmentier, F.-J. W., Peichl, M., Sachs, T., Sonnentag, O., Ueyama, M., Voigt, C., Aurela, M., Boike, J., Celis, G., Chae, N., Christensen, T. R., Bret-Harte, M. S., Dengel, S., Dolman, H., Edgar, C. W., Elberling, B., Euskirchen, E., Grelle, A., Hatakka, J., Humphreys, E., Järveoja, J., Kotani, A., Kutzbach, L., Laurila, T., Lohila, A., Mammarella, I., Matsuura, Y., Meyer, G., Nilsson, M. B., Oberbauer, S. F., Park, S.-J., Petrov, R., Prokushkin, A. S., Schulze, C., St. Louis, V. L., Tuittila, E.-S., Tuovinen, J.-P., Quinton, W., Varlagin, A., Zona, D., and Zyryanov, V. I.: The ABCflux database: Arctic–boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems, Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, 2022.
Vuichard, N. and Papale, D.: Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis, Earth Syst. Sci. Data, 7, 157–171, https://doi.org/10.5194/essd-7-157-2015, 2015.
Wang, H., Zu, Y., Saigusa, N., Yamamoto, S., Kondo, H., Yang, F., and Wang, W.: CO2, water vapor and energy fluxes in a larch forest in northeast China, J. Agric. Meteorol., 60, 549–552, https://doi.org/10.2480/agrmet.549, 2005.
Wang, H., Sun, F., Wang, T., and Liu, W.: Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China, Renew. Energ., 126, 226–241, https://doi.org/10.1016/j.renene.2018.03.029, 2018.
Wang, Q., Peng, X., Watanabe, M., Batkhishig, O., Okadera, T., and Saito, Y.: Carbon budget in permafrost and non-permafrost regions and its controlling factors in the grassland ecosystems of Mongolia, Glob. Ecol. Conserv., 41, e02373, https://doi.org/10.1016/j.gecco.2023.e02373, 2023.
Wang, Q., Peng, X., Okadera, T., Watanabe, M., Saito, Y., and Batkhishig, O.: JapanFlux2024 MN-Nkh Nalaikh grassland, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102227, 2025a.
Wang, Q., Peng, X., Okadera, T., Watanabe, M., Saito, Y., and Batkhishig, O.: JapanFlux2024 MN-Hst Hustai grassland, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102226, 2025b.
Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., and Reichstein, M.: Basic and extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 15, 5015–5030, https://doi.org/10.5194/bg-15-5015-2018, 2018.
Yabuki, H., Ishii, Y., and Ohata, T.: Comparison of water and heat balance on grassland and forest in Central Yakutia, East Siberia, in: Proceedings 6th international study Conference on GEWEX in Asia and GAME (GAME CD-ROM Publ. 11), T1HY30Jul04115511, http://www.hyarc.nagoya-u.ac.jp/game/6thconf/html/ (last access: 27 December 2024), 2004.
Yabuki, H., Ishii, Y., and Ohata, T.: JapanFlux2024 RU-Usk Ulakhan Sykkhan Alas, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024121027, 2025.
Yamanoi, K., Mizoguchi, Y., and Utsugi, H.: Effects of a windthrow disturbance on the carbon balance of a broadleaf deciduous forest in Hokkaido, Japan, Biogeosciences, 12, 6837–6851, https://doi.org/10.5194/bg-12-6837-2015, 2015.
Yasuda, Y.: JapanFlux2024 JP-Api Appi forest meteorology research site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102201, 2025a.
Yasuda, Y.: JapanFlux2024 JP-Kwg Kawagoe forest meteorology research site, 1.00, Arctic Data archive System (ADS) [data set], https://doi.org/10.17592/001.2024102204, 2025b.
Yasuda, Y., Watanabe, T., Ohtani, Y., Okano, M., and Nakayama, K.: Seasonal variation of CO2 flux over a broadleaf deciduous forest, J. Japan Soc. Hydrol. & Water Resour., 11, 575–585, https://doi.org/10.3178/jjshwr.11.575, 1998.
Yasuda, Y., Saito, T., Hoshino, D., Ono, K., Ohtani, Y., Mizoguchi, Y., and Morisawa, T.: Carbon balance in a cool–temperate deciduous forest in northern Japan: seasonal and interannual variations, and environmental controls of its annual balance, J. Forest Res.-Jpn., 17, 253–267, https://doi.org/10.1007/s10310-011-0298-x, 2012.
Yu, G.-R., Zhu, X.-J., Fu, Y.-L., He, H.-L., Wang, Q.-F., Wen, X.-F., Li, X.-R., Zhang, L.-M., Zhang, L., Su, W., Li, S.-G., Sun, X.-M., Zhang, Y.-P., Zhang, J.-H., Yan, J.-H., Wang, H.-M., Zhou, G.-S., Jia, B.-R., Xiang, W.-H., Li, Y.-N., Zhao, L., Wang, Y.-F., Shi, P.-L., Chen, S.-P., Xin, X.-P., Zhao, F.-H., Wang, Y.-Y., and Tong, C.-L.: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China, Glob. Change Biol., 19, 798–810, https://doi.org/10.1111/gcb.12079, 2013.
Zhang, Y., Peña-Arancibia1, J. L., McVicar, T. R., Chiew, F. H. S., Vaze1, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G., and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 6, 19124, https://https://doi.org/10.1038/srep19124, 2016.
Short summary
The JapanFlux2024 dataset, created through collaboration across Japan and East Asia, includes eddy covariance data from 83 sites spanning 683 site-years (1990–2023). This comprehensive dataset offers valuable insights into energy, water, and CO2 fluxes, supporting research on land–atmosphere interactions and process models; fosters global collaboration; and advances research in environmental science and regional climate dynamics.
The JapanFlux2024 dataset, created through collaboration across Japan and East Asia, includes...
Altmetrics
Final-revised paper
Preprint