Articles | Volume 17, issue 7
https://doi.org/10.5194/essd-17-3541-2025
https://doi.org/10.5194/essd-17-3541-2025
Data description paper
 | 
24 Jul 2025
Data description paper |  | 24 Jul 2025

A high-resolution divergence and vorticity dataset in Beijing derived from radar wind profiler mesonet measurements

Xiaoran Guo, Jianping Guo, Deli Meng, Yuping Sun, Zhen Zhang, Hui Xu, Liping Zeng, Juan Chen, Ning Li, and Tianmeng Chen

Related authors

Low-level atmospheric turbulence dataset in China generated by combining radar wind profiler and radiosonde observations
Deli Meng, Jianping Guo, Juan Chen, Xiaoran Guo, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Hui Xu, Tianmeng Chen, Rongfang Yang, and Jiajia Hua
Earth Syst. Sci. Data, 17, 4023–4037, https://doi.org/10.5194/essd-17-4023-2025,https://doi.org/10.5194/essd-17-4023-2025, 2025
Short summary
Elucidating the boundary layer turbulence dissipation rate using high-resolution measurements from a radar wind profiler network over the Tibetan Plateau
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
Atmos. Chem. Phys., 24, 8703–8720, https://doi.org/10.5194/acp-24-8703-2024,https://doi.org/10.5194/acp-24-8703-2024, 2024
Short summary
Revisiting the evolution of downhill thunderstorms over Beijing: a new perspective from a radar wind profiler mesonet
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
Atmos. Chem. Phys., 24, 8067–8083, https://doi.org/10.5194/acp-24-8067-2024,https://doi.org/10.5194/acp-24-8067-2024, 2024
Short summary
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024,https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements
Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen
Atmos. Chem. Phys., 23, 15011–15038, https://doi.org/10.5194/acp-23-15011-2023,https://doi.org/10.5194/acp-23-15011-2023, 2023
Short summary

Cited articles

Adler, B. and Kalthoff, N.: Multi-scale transport processes observed in the boundary layer over a mountainous island, Bound.-Lay. Meteorol., 153, 515–537, https://doi.org/10.1007/s10546-014-9957-8, 2014. 
Angevine, W. M.: Errors in mean vertical velocities measured by boundary layer wind profilers, J. Atmos. Ocean. Tech., 14, 565, https://doi.org/10.1175/15200426(1997)014$<$0565:EIMVVM, 1996. 
Bai, L., Meng, Z., Huang, Y., Zhang, Y., Niu, S., and Su, T.: Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts: A case study, J. Geophys. Res.-Atmos., 124, 2379–2396, https://doi.org/10.1029/2018JD029832, 2019. 
Bellamy, J. C.: Objective calculations of divergence, vertical velocity and vorticity, B. Am. Meteorol. Soc., 30, 45–49, https://doi.org/10.1175/1520-0477-30.2.45, 1949. 
Bony, S. and Stevens, B.: Measuring area-averaged vertical motions with dropsondes, J. Atmos. Sci., 76, 767–783, https://doi.org/10.1175/JAS-D-18-0141.1, 2019. 
Download
Short summary
Optimal atmospheric dynamic conditions are essential for convective storms. This study generates a dataset of high-resolution divergence and vorticity profiles using the measurements of a radar wind profiler mesonet in Beijing. The negative divergence and positive vorticity are present ahead of rainfall events. This suggests that this dataset can help improve our understanding of the pre-storm environment and has the potential to be applied in weather forecasting. 
Share
Altmetrics
Final-revised paper
Preprint