Articles | Volume 17, issue 7
https://doi.org/10.5194/essd-17-3411-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-3411-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
OLIGOTREND, a global database of multi-decadal chlorophyll a and water quality time series for rivers, lakes, and estuaries
Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
Andras Abonyi
MTA-ÖK Lendület Fluvial Ecology Research Group, Karolina Street 29, 1113 Budapest, Hungary
HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Karolina Street 29, 1113 Budapest, Hungary
WasserCluster Lunz – Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293 Lunz am See, Austria
Carles Alcaraz
Marine and Continental Waters Program, Institute of Agrifood Research and Technology (IRTA), 43540 La Ràpita, Catalonia, Spain
Jacob Diamond
Intergovernmental Hydrological Programme, UNESCO, 7 Place de Fontentoy, 75015 Paris, France
Nicholas J. K. Howden
School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol, BS8 1TR, UK
Cabot Institute, University of Bristol, Bristol, BS5 9LT, UK
Michael Rode
Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research – UFZ, 39104 Magdeburg, Germany
Institute of Environmental Science and Geography, University of Potsdam, 14476 Potsdam, Germany
Estela Romero
Global Ecology Unit, Centre for Ecological Research and Forestry Applications (CREAF), Campus UAB, Bellaterra, Spain
Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
Vincent Thieu
Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, 4 place Jussieu, Box 105, 75005 Paris, France
Fred Worrall
Department of Earth Sciences, University of Durham, Durham, UK
Qian Zhang
University of Maryland Center for Environmental Science, US Environmental Protection Agency Chesapeake Bay Program, 1750 Forest Drive, Suite 130, Annapolis, MD 21401, USA
Xavier Benito
Marine and Continental Waters Program, Institute of Agrifood Research and Technology (IRTA), 43540 La Ràpita, Catalonia, Spain
Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
Related authors
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022, https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories and implement a neural network to enable bulk-to-skin temperature conversion.
Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert
Hydrol. Earth Syst. Sci., 26, 1–16, https://doi.org/10.5194/hess-26-1-2022, https://doi.org/10.5194/hess-26-1-2022, 2022
Short summary
Short summary
We investigate the impact of baseflow contribution on concentration–flow (C–Q) relationships across the Australian continent. We developed a novel Bayesian hierarchical model for six water quality variables across 157 catchments that span five climate zones. For sediments and nutrients, the C–Q slope is generally steeper for catchments with a higher median and a greater variability of baseflow contribution, highlighting the key role of variable flow pathways in particulate and solute export.
Stella Guillemot, Ophelie Fovet, Chantal Gascuel-Odoux, Gérard Gruau, Antoine Casquin, Florence Curie, Camille Minaudo, Laurent Strohmenger, and Florentina Moatar
Hydrol. Earth Syst. Sci., 25, 2491–2511, https://doi.org/10.5194/hess-25-2491-2021, https://doi.org/10.5194/hess-25-2491-2021, 2021
Short summary
Short summary
This study investigates the drivers of spatial variations in stream water quality in poorly studied headwater catchments and includes multiple elements involved in major water quality issues, such as eutrophication. We used a regional public dataset of monthly stream water concentrations monitored for 10 years over 185 agricultural catchments. We found a spatial and seasonal opposition between carbon and nitrogen concentrations, while phosphorus concentrations showed another spatial pattern.
Domenico Miglino, Seifeddine Jomaa, Michael Rode, Khim Cathleen Saddi, Francesco Isgrò, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 29, 4133–4151, https://doi.org/10.5194/hess-29-4133-2025, https://doi.org/10.5194/hess-29-4133-2025, 2025
Short summary
Short summary
Turbidity is a key factor for water quality monitoring. Here, an image-based procedure is tested in a full-scale river monitoring experiment using digital cameras. This approach can enhance our understanding of the real-time status of waterbodies, overcoming the spatial and temporal resolution limitations of existing methods. It also facilitates early-warning systems, advances water research through increased data availability and reduces operating costs.
Fred Worrall, Gareth Clay, Catherine Moody, and Catherine Hirst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1469, https://doi.org/10.5194/egusphere-2025-1469, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Understanding global carbon budgets requires a knowledge of the balance between carbon dioxide and oxygen gas fluxes – oxidative ratio (OR). The OR has proved difficult to measure for terrestrial environments. We present a novel method for measuring OR using an ecosystem's carbon budget and organic matter elemental composition. We found an OR of 0.88, significantly lower than the IPCC's assumed 1.1. This lower OR value implies that terrestrial biosphere carbon budgets have been underestimated.
An Truong Nguyen, Gwenaël Abril, Jacob S. Diamond, Raphaël Lamouroux, Cécile Martinet, and Florentina Moatar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1478, https://doi.org/10.5194/egusphere-2025-1478, 2025
Short summary
Short summary
This 32-year study of France’s Loire River shows cleaner water reduced carbon dioxide emissions by 62 %, despite increased contributions from aquatic plant activity. Seasonal emissions were higher in autumn than spring, while long-term declines were driven by reduced external carbon inputs from groundwater and soils. Results highlight how ecosystem changes influence rivers' role in global carbon cycles and climate management.
Jingshui Huang, Dietrich Borchardt, and Michael Rode
EGUsphere, https://doi.org/10.5194/egusphere-2025-656, https://doi.org/10.5194/egusphere-2025-656, 2025
Short summary
Short summary
Climate change is increasing low flows, yet how streams respond remains poorly understood. Using sensors in a German stream during the extreme 2018 drought, we found hotter water, more algae, and lower oxygen and nitrate levels. Daily oxygen swings intensified, and algae on the riverbed boosted gross primary productivity. Nitrate removal got more efficient. These changes highlight risks to water quality and ecosystems as droughts worsen, aiding efforts to protect rivers in a warming world.
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024, https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Short summary
We measured the emission of carbon dioxide (CO2) and methane (CH4) from different sites at the river Elbe in Germany over 3 days to find out what is more important for quantification: small-scale spatial variability or diurnal temporal variability. We found that CO2 emissions were very different between day and night, while CH4 emissions were more different between sites. Dried out river sediments contributed to CO2 emissions, while the side areas of the river were important CH4 sources.
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023, https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Short summary
Agricultural catchments show elevated phosphorus (P) concentrations during summer low flow. In an agricultural stream, we found that phosphorus in groundwater was a major source of stream water phosphorus during low flow, and stream sediments derived from farmland are unlikely to have increased stream phosphorus concentrations during low water. We found no evidence that riparian wetlands contributed to soluble reactive (SR) P loads. Agricultural phosphorus was largely buffered in the soil zone.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022, https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Short summary
In this study, we set up a water quality model using a 5-year paired high-frequency water quality dataset from a large agricultural stream. The simulations were compared with the 15 min interval measurements and showed very good fits. Based on these, we quantified the N uptake pathway rates and efficiencies at daily, seasonal, and yearly scales. This study offers an overarching understanding of N processing in large agricultural streams across different temporal scales.
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022, https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories and implement a neural network to enable bulk-to-skin temperature conversion.
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495, https://doi.org/10.5194/hess-26-3477-2022, https://doi.org/10.5194/hess-26-3477-2022, 2022
Short summary
Short summary
We developed one of the largest stream temperature databases to calculate a simple, ecologically relevant metric – the thermal peak – that captures the magnitude of summer thermal extremes. Using statistical models, we extrapolated the thermal peak to nearly every stream in France, finding the hottest thermal peaks along large rivers without forested riparian zones and groundwater inputs. Air temperature was a poor proxy for the thermal peak, highlighting the need to grow monitoring networks.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
E. Angelats, J. Soriano-González, M. Fernández-Tejedor, and C. Alcaraz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 361–368, https://doi.org/10.5194/isprs-annals-V-3-2022-361-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-361-2022, 2022
Xi Wei, Josette Garnier, Vincent Thieu, Paul Passy, Romain Le Gendre, Gilles Billen, Maia Akopian, and Goulven Gildas Laruelle
Biogeosciences, 19, 931–955, https://doi.org/10.5194/bg-19-931-2022, https://doi.org/10.5194/bg-19-931-2022, 2022
Short summary
Short summary
Estuaries are key reactive ecosystems along the land–ocean aquatic continuum and are often strongly impacted by anthropogenic activities. We calculated nutrient in and out fluxes by using a 1-D transient model for seven estuaries along the French Atlantic coast. Among these, large estuaries with high residence times showed higher retention rates than medium and small ones. All reveal coastal eutrophication due to the excess of diffused nitrogen from intensive agricultural river basins.
Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert
Hydrol. Earth Syst. Sci., 26, 1–16, https://doi.org/10.5194/hess-26-1-2022, https://doi.org/10.5194/hess-26-1-2022, 2022
Short summary
Short summary
We investigate the impact of baseflow contribution on concentration–flow (C–Q) relationships across the Australian continent. We developed a novel Bayesian hierarchical model for six water quality variables across 157 catchments that span five climate zones. For sediments and nutrients, the C–Q slope is generally steeper for catchments with a higher median and a greater variability of baseflow contribution, highlighting the key role of variable flow pathways in particulate and solute export.
Stella Guillemot, Ophelie Fovet, Chantal Gascuel-Odoux, Gérard Gruau, Antoine Casquin, Florence Curie, Camille Minaudo, Laurent Strohmenger, and Florentina Moatar
Hydrol. Earth Syst. Sci., 25, 2491–2511, https://doi.org/10.5194/hess-25-2491-2021, https://doi.org/10.5194/hess-25-2491-2021, 2021
Short summary
Short summary
This study investigates the drivers of spatial variations in stream water quality in poorly studied headwater catchments and includes multiple elements involved in major water quality issues, such as eutrophication. We used a regional public dataset of monthly stream water concentrations monitored for 10 years over 185 agricultural catchments. We found a spatial and seasonal opposition between carbon and nitrogen concentrations, while phosphorus concentrations showed another spatial pattern.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Cited articles
Abonyi, A., Ács, É., Hidas, A., Grigorszky, I., Várbíró, G., Borics, G., and Kiss, K. T.: Functional diversity of phytoplankton highlights long-term gradual regime shift in the middle section of the Danube River due to global warming, human impacts and oligotrophication, Freshwater Biol., 63, 456–472, https://doi.org/10.1111/fwb.13084, 2018.
Anneville, O., Chang, C., Dur, G., Souissi, S., Rimet, F., and Hsieh, C.: The paradox of re-oligotrophication: the role of bottom–up versus top–down controls on the phytoplankton community, Oikos, 128, 1666–1677, https://doi.org/10.1111/oik.06399, 2019.
Barquín, J., Benda, L. E., Villa, F., Brown, L. E., Bonada, N., Vieites, D. R., Battin, T. J., Olden, J. D., Hughes, S. J., Gray, C., and Woodward, G.: Coupling virtual watersheds with ecosystem services assessment: a 21st century platform to support river research and management, WIREs Water, 2, 609–621, https://doi.org/10.1002/WAT2.1106, 2015.
Bennion, H., Simpson, G. L., and Goldsmith, B. J.: Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record, Front. Ecol. Evol., 3, 148732, https://doi.org/10.3389/FEVO.2015.00094, 2015.
Bhattacharya, R., Lin, S. G. M., and Basu, N. B.: Windows into the past: lake sediment phosphorus trajectories act as integrated archives of watershed disturbance legacies over centennial scales, Environ. Res. Lett., 17, 34005, https://doi.org/10.1088/1748-9326/ac4cf3, 2022.
Brehob, M. M., Pennino, M. J., Handler, A. M., Compton, J. E., Lee, S. S., and Sabo, R. D.: Estimates of Lake Nitrogen, Phosphorus, and Chlorophyll-a Concentrations to Characterize Harmful Algal Bloom Risk Across the United States, Earths Future, 12, e2024EF004493, https://doi.org/10.1029/2024EF004493, 2024.
Carstensen, J., Sánchez-Camacho, M., Duarte, C. M., Krause-Jensen, D., and Marbà, N.: Connecting the Dots: Responses of Coastal Ecosystems to Changing Nutrient Concentrations, Environ. Sci. Technol., 45, 9122, https://doi.org/10.1021/es202351y, 2011.
Casquin, A., Silvestre, M., and Thieu, V.: nuts-STeauRY dataset: hydrochemical and catchment characteristics dataset for large sample studies of Carbon, Nitrogen, Phosphorus and Silicon in french watercourses, Zenodo [data set], https://doi.org/10.5281/ZENODO.10830852, 2024.
Comte, L., Carvajal-Quintero, J., Tedesco, P. A., Giam, X., Brose, U., Erős, T., Filipe, A. F., Fortin, M., Irving, K., Jacquet, C., Larsen, S., Sharma, S., Ruhi, A., Becker, F. G., Casatti, L., Castaldelli, G., Dala-Corte, R. B., Davenport, S. R., Franssen, N. R., García-Berthou, E., Gavioli, A., Gido, K. B., Jimenez-Segura, L., Leitão, R. P., McLarney, B., Meador, J., Milardi, M., Moffatt, D. B., Occhi, T. V. T., Pompeu, P. S., Propst, D. L., Pyron, M., Salvador, G. N., Stefferud, J. A., Sutela, T., Taylor, C., Terui, A., Urabe, H., Vehanen, T., Vitule, J. R. S., Zeni, J. O., and Olden, J. D.: RivFishTIME: A global database of fish time-series to study global change ecology in riverine systems, Global Ecol. Biogeogr., 30, 38–50, https://doi.org/10.1111/geb.13210, 2021.
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., and Likens, G. E.: Controlling Eutrophication: Nitrogen and Phosphorus, Science (1979), 323, 1014–1015, https://doi.org/10.1126/science.1167755, 2009.
Dakos, V., Carpenter, S. R., van Nes, E. H., and Scheffer, M.: Resilience indicators: prospects and limitations for early warnings of regime shifts, Philos. T. R. Soc. B, 370, 1–10, https://doi.org/10.1098/RSTB.2013.0263, 2015.
Davies, R. B.: Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 74, 33–43, https://doi.org/10.1093/biomet/74.1.33, 1987.
Diamond, J. S., Moatar, F., Cohen, M. J., Poirel, A., Martinet, C., Maire, A., and Pinay, G.: Metabolic regime shifts and ecosystem state changes are decoupled in a large river, Limnol. Oceanogr., 67, S54–S70, https://doi.org/10.1002/lno.11789, 2021.
Dong, X., Bennion, H., Maberly, S. C., Sayer, C. D., Simpson, G. L., and Battarbee, R. W.: Nutrients exert a stronger control than climate on recent diatom communities in Esthwaite Water: evidence from monitoring and palaeolimnological records, Freshwater Biol., 57, 2044–2056, https://doi.org/10.1111/J.1365-2427.2011.02670.X, 2012.
Donis, D., Mantzouki, E., McGinnis, D. F., Vachon, D., Gallego, I., Grossart, H., Senerpont Domis, L. N., Teurlincx, S., Seelen, L., Lürling, M., Verstijnen, Y., Maliaka, V., Fonvielle, J., Visser, P. M., Verspagen, J., Herk, M., Antoniou, M. G., Tsiarta, N., McCarthy, V., Perello, V. C., Machado-Vieira, D., Oliveira, A. G., Maronić, D. Š., Stević, F., Pfeiffer, T. Ž., Vucelić, I. B., Žutinić, P., Udovič, M. G., Plenković-Moraj, A., Bláha, L., Geriš, R., Fránková, M., Christoffersen, K. S., Warming, T. P., Feldmann, T., Laas, A., Panksep, K., Tuvikene, L., Kangro, K., Koreivienė, J., Karosienė, J., Kasperovičienė, J., Savadova-Ratkus, K., Vitonytė, I., Häggqvist, K., Salmi, P., Arvola, L., Rothhaupt, K., Avagianos, C., Kaloudis, T., Gkelis, S., Panou, M., Triantis, T., Zervou, S., Hiskia, A., Obertegger, U., Boscaini, A., Flaim, G., Salmaso, N., Cerasino, L., Haande, S., Skjelbred, B., Grabowska, M., Karpowicz, M., Chmura, D., Nawrocka, L., Kobos, J., Mazur-Marzec, H., Alcaraz-Párraga, P., Wilk-Woźniak, E., Krztoń, W., Walusiak, E., Gagala-Borowska, I., Mankiewicz-Boczek, J., Toporowska, M., Pawlik-Skowronska, B., Niedźwiecki, M., Pęczuła, W., Napiórkowska-Krzebietke, A., Dunalska, J., Sieńska, J., Szymański, D., Kruk, M., Budzyńska, A., Goldyn, R., Kozak, A., Rosińska, J., Szeląg-Wasielewska, E., Domek, P., Jakubowska-Krepska, N., Kwasizur, K., Messyasz, B., Pełechata, A., Pełechaty, M., Kokocinski, M., Madrecka-Witkowska, B., Kostrzewska-Szlakowska, I., Frąk, M., Bańkowska-Sobczak, A., et al.: Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer, Limnol. Oceanogr., 66, 4314–4333, https://doi.org/10.1002/lno.11963, 2021.
Duarte, C. M., Conley, D. J., Carstensen, J., and Sánchez-Camacho, M.: Return to Neverland: Shifting Baselines Affect Eutrophication Restoration Targets, Estuar. Coast., 32, 29–36, https://doi.org/10.1007/s12237-008-9111-2, 2009.
Ehrhardt, S., Ebeling, P., Dupas, R., Kumar, R., Fleckenstein, J. H., and Musolff, A.: Nitrate Transport and Retention in Western European Catchments Are Shaped by Hydroclimate and Subsurface Properties, Water Resour. Res., 57, e2020WR029469, https://doi.org/10.1029/2020WR029469, 2021.
Elliott, M. and Quintino, V.: The Estuarine Quality Paradox, Environmental Homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas, Mar. Pollut. Bull., 54, 640–645, https://doi.org/10.1016/J.MARPOLBUL.2007.02.003, 2007.
Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith, J. E.: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10, 1135–1142, https://doi.org/10.1111/j.1461-0248.2007.01113.x, 2007.
Fasola, S., Muggeo, V. M. R., and Küchenhoff, H.: A heuristic, iterative algorithm for change-point detection in abrupt change models, Comput. Stat., 33, 997–1015, https://doi.org/10.1007/S00180-017-0740-4, 2018.
Filazzola, A., Mahdiyan, O., Shuvo, A., Ewins, C., Moslenko, L., Sadid, T., Blagrave, K., Imrit, M. A., Gray, D. K., Quinlan, R., O'Reilly, C. M., and Sharma, S.: A database of chlorophyll and water chemistry in freshwater lakes, Sci. Data, 7, 310, https://doi.org/10.1038/s41597-020-00648-2, 2020.
Filstrup, C. T., King, K. B. S., and McCullough, I. M.: Evenness effects mask richness effects on ecosystem functioning at macro-scales in lakes, Ecol. Lett., 22, 2120–2129, https://doi.org/10.1111/ele.13407, 2019.
Food and Agriculture Organization of the United Nations and FAO Land and Water Division: Major hydrological basins of the world, AQUASTAT (FAO) [data set], https://data.apps.fao.org/catalog//iso/7707086d-af3c-41cc-8aa5-323d8609b2d1 (last access: 28 January 2025), 2011.
Gilarranz, L. J., Narwani, A., Odermatt, D., Siber, R., and Dakos, V.: Regime shifts, trends, and variability of lake productivity at a global scale, P. Natl. Acad. Sci. USA, 119, e2116413119, https://doi.org/10.1073/pnas.2116413119, 2022.
Greening, H. and Janicki, A.: Toward reversal of eutrophic conditions in a subtropical estuary: Water quality and seagrass response to nitrogen loading reductions in Tampa Bay, Florida, USA, Environ. Manage., 38, 163–178, https://doi.org/10.1007/S00267-005-0079-4, 2006.
Greening, H., Janicki, A., Sherwood, E. T., Pribble, R., and Johansson, J. O. R.: Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA, Estuar. Coast. Shelf S., 151, A1–A16, https://doi.org/10.1016/J.ECSS.2014.10.003, 2014.
Harding, L. W., Mallonee, M. E., Perry, E. S., Miller, W. D., Adolf, J. E., Gallegos, C. L., and Paerl, H. W.: Long-term trends, current status, and transitions of water quality in Chesapeake Bay, Sci. Rep.-UK, 9, 6709, https://doi.org/10.1038/s41598-019-43036-6, 2019.
Hilt, S., Köhler, J., Kozerski, H.-P., van Nes, E. H., and Scheffer, M.: Abrupt regime shifts in space and time along rivers and connected lake systems, Oikos, 120, 766–775, https://doi.org/10.1111/j.1600-0706.2010.18553.x, 2011.
Hobbs, R. J., Higgs, E., and Harris, J. A.: Novel ecosystems: implications for conservation and restoration, Trends Ecol. Evol., 24, 599–605, https://doi.org/10.1016/j.tree.2009.05.012, 2009.
Hoyer, M. V, Frazer, T. K., Notestein, S. K., and Canfield Jr., D. E.: Nutrient, chlorophyll, and water clarity relationships in Florida's nearshore coastal waters with comparisons to freshwater lakes, Can. J. Fish. Aquat. Sci., 59, 1024–1031, https://doi.org/10.1139/f02-077, 2002.
Ibáñez, C. and Peñuelas, J.: Changing nutrients, changing rivers, Science, 365, 637–638, https://doi.org/10.1126/science.aay2723, 2019.
Ibáñez, C., Alcaraz, C., Caiola, N., Rovira, A., Trobajo, R., Alonso, M., Duran, C., Jiménez, P. J., Munné, A., and Prat, N.: Regime shift from phytoplankton to macrophyte dominance in a large river: Top-down versus bottom-up effects, Sci. Total Environ., 416, 314–322, https://doi.org/10.1016/j.scitotenv.2011.11.059, 2012.
Jarvie, H. P., Sharpley, A. N., Scott, J. T., Haggard, B. E., Bowes, M. J., and Massey, L. B.: Within-River Phosphorus Retention: Accounting for a Missing Piece in the Watershed Phosphorus Puzzle, Environ. Sci. Technol., 46, 13284–13292, https://doi.org/10.1021/es303562y, 2012.
Jeppesen, E., Søndergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., Coveney, M. F., Deneke, R., Dokulil, M. T., Foy, B., Gerdeaux, D., Hampton, S. E., Hilt, S., Kangur, K., Köhler, J., Lammens, E. H. h. r., Lauridsen, T. L., Manca, M., Miracle, M. R., Moss, B., Nõges, P., Persson, G., Phillips, G., Portielje, R., Romo, S., Schelske, C. L., Straile, D., Tatrai, I., Willén, E., and Winder, M.: Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies, Freshwater Biol., 50, 1747–1771, https://doi.org/10.1111/j.1365-2427.2005.01415.x, 2005.
Jochimsen, M. C., Kümmerlin, R., and Straile, D.: Compensatory dynamics and the stability of phytoplankton biomass during four decades of eutrophication and oligotrophication, Ecol. Lett., 16, 81–89, https://doi.org/10.1111/ele.12018, 2013.
Kemp, W. M., Boynton, W. R., Adolf, J. E., Boesch, D. F., Boicourt, W. C., Brush, G., Cornwell, J. C., Fisher, T. R., Glibert, P. M., Hagy, J. D., Harding, L. W., Houde, E. D., Kimmel, D. G., Miller, W. D., Newell, R. I. E., Roman, M. R., Smith, E. M., and Stevenson, J. C.: Eutrophication of Chesapeake Bay: historical trends and ecological interactions, Mar. Ecol.-Prog. Ser., 303, 1–29, https://doi.org/10.3354/meps303001, 2005.
Krishna, S., Ulloa, H. N., Kerimoglu, O., Minaudo, C., Anneville, O., and Wüest, A.: Model-based data analysis of the effect of winter mixing on primary production in a lake under reoligotrophication, Ecol. Modell., 440, 109401, https://doi.org/10.1016/j.ecolmodel.2020.109401, 2021.
Kronvang, B., Jeppesen, E., Conley, D. J., Søndergaard, M., Larsen, S. E., Ovesen, N. B., and Carstensen, J.: Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters, J. Hydrol. (Amst), 304, 274–288, https://doi.org/10.1016/j.jhydrol.2004.07.035, 2005.
Lehner, B., Messager, M. L., Korver, M. C., and Linke, S.: Global hydro-environmental lake characteristics at high spatial resolution, Sci. Data, 9, 1–19, https://doi.org/10.1038/s41597-022-01425-z, 2022.
Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., Moatar, F., Pannard, A., Souchu, P., Lefebvre, A., and Pinay, G.: Eutrophication: A new wine in an old bottle?, Sci. Total Environ., 651, 1–11, https://doi.org/10.1016/j.scitotenv.2018.09.139, 2019.
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and Thieme, M.: Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution, Sci. Data, 6, 283, https://doi.org/10.1038/s41597-019-0300-6, 2019.
Liu, M., Raymond, P. A., Lauerwald, R., Zhang, Q., Trapp-Müller, G., Davis, K. L., Moosdorf, N., Xiao, C., Middelburg, J. J., Bouwman, A. F., Beusen, A. H. W., Peng, C., Lacroix, F., Tian, H., Wang, J., Li, M., Zhu, Q., Cohen, S., van Hoek, W. J., Li, Y., Li, Y., Yao, Y., and Regnier, P.: Global riverine land-to-ocean carbon export constrained by observations and multi-model assessment, Nat. Geosci., 17, 896–904, https://doi.org/10.1038/s41561-024-01524-z, 2024.
Minaudo, C. and Benito, X.: OLIGOTREND, a global database of multi-decadal timeseries of chlorophyll-a and nutrient concentrations in inland and transitional waters, 1986–2023 ver 3, Environmental Data Initiative, https://doi.org/10.6073/pasta/a7ad060a4dbc4e7dfcb763a794506524, 2024.
Minaudo, C. and Benito, X.: OLIGOTREND GitLab repository, GitLab [code], https://gitlab.com/oligotrend/wp1-unify (last access: 14 July 2025), 2025.
Minaudo, C., Meybeck, M., Moatar, F., Gassama, N., and Curie, F.: Eutrophication mitigation in rivers: 30 years of trends in spatial and seasonal patterns of biogeochemistry of the Loire River (1980–2012), Biogeosciences, 12, 2549–2563, https://doi.org/10.5194/bg-12-2549-2015, 2015.
Minaudo, C., Abonyi, A., Leitão, M., Lançon, A. M., Floury, M., Descy, J.-P., and Moatar, F.: Long-term impacts of nutrient control, climate change, and invasive clams on phytoplankton and cyanobacteria biomass in a large temperate river, Sci. Total Environ., 756, 144074, https://doi.org/10.1016/j.scitotenv.2020.144074, 2021.
Murphy, R. R., Keisman, J., Harcum, J., Karrh, R. R., Lane, M., Perry, E. S., and Zhang, Q.: Nutrient Improvements in Chesapeake Bay: Direct Effect of Load Reductions and Implications for Coastal Management, Environ. Sci. Technol., 56, 260–270, https://doi.org/10.1021/acs.est.1c05388, 2022.
Naderian, D., Noori, R., Heggy, E., Bateni, S. M., Bhattarai, R., Nohegar, A., and Sharma, S.: A water quality database for global lakes, Resour. Conserv. Recy., 202, 107401, https://doi.org/10.1016/j.resconrec.2023.107401, 2024.
Némery, J. and Garnier, J.: The fate of phosphorus, Nat. Geosci., 9, 343–344, https://doi.org/10.1038/ngeo2702, 2016.
Nilsson, J. L., Camiolo, S., Huser, B., Agstam-Norlin, O., and Futter, M.: Widespread and persistent oligotrophication of northern rivers, Sci. Total Environ., 955, 177261, https://doi.org/10.1016/j.scitotenv.2024.177261, 2024.
Paerl, H. W., Scott, J. T., McCarthy, M. J., Newell, S. E., Gardner, W. S., Havens, K. E., Hoffman, D. K., Wilhelm, S. W., and Wurtsbaugh, W. A.: It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems, Environ. Sci. Technol., 50, 10805–10813, https://doi.org/10.1021/acs.est.6b02575, 2016.
Pinay, G., Gascuel, C., Menesguen, A., Souchon, Y., Le Moal, M., Levain, A., Etrillard, C., Moatar, F., Pannard, A., and Souchu, P.: L'eutrophisation: manifestations, causes, conséquences et prédictibilité. Editions Quae, Matière à Débattre et Décider, p. 175, ISBN 978-2-7592-2756-3, https://hal.science/hal-01789485v1 (last access: 16 June 2025), 2018.
Pohlert, T.: trend: Non-Parametric Trend Tests and Change-Point Detection, https://CRAN.R-project.org/package=trend (last access: 15 January 2025), 2023.
Powers, S. M. and Hampton, S. E.: Open science, reproducibility, and transparency in ecology, Ecol. Appl., 29, e01822, https://doi.org/10.1002/eap.1822, 2019.
Ptacnik, R., Solimini, A. G., Andersen, T., Tamminen, T., Brettum, P., Lepistö, L., Willén, E., and Rekolainen, S.: Diversity predicts stability and resource use efficiency in natural phytoplankton communities, P. Natl. Acad. Sci. USA, 105, 5134–5138, https://doi.org/10.1073/pnas.0708328105, 2008.
Reynolds, C. S.: The ecology of phytoplankton, edited by: Usher, M., Saunders, D., Peet, R., and Dobson, A., Cambridge University Press, Cambridge, ISBN 9780511542145, https://doi.org/10.1017/CBO9780511542145, 2006.
Romero, E., Garnier, J., Lassaletta, L., Billen, G., Le Gendre, R., Riou, P., and Cugier, P.: Large-scale patterns of river inputs in southwestern Europe: Seasonal and interannual variations and potential eutrophication effects at the coastal zone, Biogeochemistry, 113, 481–505, https://doi.org/10.1007/S10533-012-9778-0, 2013.
Ross, M. R. V., Topp, S. N., Appling, A. P., Yang, X., Kuhn, C., Butman, D., Simard, M., and Pavelsky, T.: AquaSat: a dataset to enable remote sensing of water quality for inland waters, Water Resour. Res., 55, 10012–10025, https://doi.org/10.1029/2019wr024883, 2019.
Sabel, M., Eckmann, R., Jeppesen, E., Rösch, R., and Straile, D.: Long-term changes in littoral fish community structure and resilience of total catch to re-oligotrophication in a large, peri-alpine European lake, Freshwater Biol., 65, 1325–1336, https://doi.org/10.1111/fwb.13501, 2020.
Scheffer, M. and Carpenter, S. R.: Catastrophic regime shifts in ecosystems: linking theory to observation, Trends Ecol. Evol., 18, 648–656, https://doi.org/10.1016/J.TREE.2003.09.002, 2003.
Selmeczy, G. B., Abonyi, A., Krienitz, L., Kasprzak, P., Casper, P., Telcs, A., Somogyvári, Z., and Padisák, J.: Old sins have long shadows: climate change weakens efficiency of trophic coupling of phyto- and zooplankton in a deep oligo-mesotrophic lowland lake (Stechlin, Germany)—a causality analysis, Hydrobiologia, 831, 101–117, https://doi.org/10.1007/s10750-018-3793-7, 2019.
Spaulding, S. A., Platt, L. R. C., Murphy, J. C., Covert, A., and Harvey, J. W.: Chlorophyll a in lakes and streams of the United States (2005–2022), Sci. Data, 11, 611, https://doi.org/10.1038/s41597-024-03453-3, 2024.
Stackpoole, S. M., Stets, E. G., and Sprague, L. A.: Variable impacts of contemporary versus legacy agricultural phosphorus on US river water quality, P. Natl. Acad. Sci. USA, 116, 20562–20567, https://doi.org/10.1073/pnas.1903226116, 2019.
Van Meter, K. J., McLeod, M. M., Liu, J., Tenkouano, G. T., Hall, R. I., Van Cappellen, P., and Basu, N. B.: Beyond the Mass Balance: Watershed Phosphorus Legacies and the Evolution of the Current Water Quality Policy Challenge, Water Resour. Res., 57, e2020WR029316, https://doi.org/10.1029/2020WR029316, 2021.
van Vliet, M. T. H., Thorslund, J., Strokal, M., Hofstra, N., Flörke, M., Ehalt Macedo, H., Nkwasa, A., Tang, T., Kaushal, S. S., Kumar, R., van Griensven, A., Bouwman, L., and Mosley, L. M.: Global river water quality under climate change and hydroclimatic extremes, Nature Reviews Earth & Environment, 4, 687–702, https://doi.org/10.1038/S43017-023-00472-3, 2023.
Verdonschot, P. F. M., Spears, B. M., Feld, C. K., Brucet, S., Keizer-Vlek, H., Borja, A., Elliott, M., Kernan, M., and Johnson, R. K.: A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters, Hydrobiologia, 704, 453–474, https://doi.org/10.1007/s10750-012-1294-7, 2013.
Virro, H., Amatulli, G., Kmoch, A., Shen, L., and Uuemaa, E.: GRQA: Global River Water Quality Archive, Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, 2021.
Wachholz, A., Jawitz, J. W., and Borchardt, D.: From Iron Curtain to green belt: shift from heterotrophic to autotrophic nitrogen retention in the Elbe River over 35 years of passive restoration, Biogeosciences, 21, 3537–3550, https://doi.org/10.5194/bg-21-3537-2024, 2024.
Welti, E. A. R., Bowler, D. E., Sinclair, J. S., Altermatt, F., Álvarez-Cabria, M., Amatulli, G., Angeler, D. G., Archambaud, G., Arrate Jorrín, I., Aspin, T., Azpiroz, I., Baker, N. J., Bañares, I., Barquín Ortiz, J., Bodin, C. L., Bonacina, L., Bonada, N., Bottarin, R., Cañedo-Argüelles, M., Csabai, Z., Datry, T., de Eyto, E., Dohet, A., Domisch, S., Dörflinger, G., Drohan, E., Eikland, K. A., England, J., Eriksen, T. E., Evtimova, V., Feio, M. J., Ferréol, M., Floury, M., Forcellini, M., Forio, M. A. E., Fornaroli, R., Friberg, N., Fruget, J.-F., Garcia Marquez, J. R., Georgieva, G., Goethals, P., Graça, M. A. S., House, A., Huttunen, K.-L., Jensen, T. C., Johnson, R. K., Jones, J. I., Kiesel, J., Larrañaga, A., Leitner, P., L'Hoste, L., Lizée, M.-H., Lorenz, A. W., Maire, A., Manzanos Arnaiz, J. A., Mckie, B., Millán, A., Muotka, T., Murphy, J. F., Ozolins, D., Paavola, R., Paril, P., Peñas Silva, F. J., Polasek, M., Rasmussen, J., Rubio, M., Sánchez Fernández, D., Sandin, L., Schäfer, R. B., Schmidt-Kloiber, A., Scotti, A., Shen, L. Q., Skuja, A., Stoll, S., Straka, M., Stubbington, R., Timm, H., Tyufekchieva, V. G., Tziortzis, I., Uzunov, Y., van der Lee, G. !H., Vannevel, R., Varadinova, E., Várbíró, G., Velle, G., Verdonschot, P. F. M., Verdonschot, R. C. M., Vidinova, Y., Wiberg-Larsen, P., and Haase, P.: Time series of freshwater macroinvertebrate abundances and site characteristics of European streams and rivers, Sci. Data, 11, 601, https://doi.org/10.1038/s41597-024-03445-3, 2024.
Zeng, L., Ji, J., Xu, S., Cao, Y., and Chen, X.: Decoupling of nitrogen, phosphorus and biogenic silica in floodplain sediments in response to land use change and hydrological alterations, J. Hydrol. (Amst), 623, 129833, https://doi.org/10.1016/j.jhydrol.2023.129833, 2023.
Short summary
Many waterbodies undergo nutrient decline, called oligotrophication, globally, but a comprehensive dataset to understand ecosystem responses is lacking. The OLIGOTREND database comprises multi-decadal chlorophyll a and nutrient time series from rivers, lakes, and estuaries with 4.3 million observations from 1894 unique measurement locations. The database provides empirical evidence for oligotrophication responses with a spatial and temporal coverage that exceeds previous efforts.
Many waterbodies undergo nutrient decline, called oligotrophication, globally, but a...
Altmetrics
Final-revised paper
Preprint