Articles | Volume 17, issue 6
https://doi.org/10.5194/essd-17-3089-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-3089-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A high-quality data set for seismological studies in the East Anatolian Fault Zone, Türkiye
Leonardo Colavitti
CORRESPONDING AUTHOR
Department of Earth, Environmental and Life Sciences – DISTAV, University of Genoa, Genoa, Italy
Dino Bindi
German Research Center for Geoscience – GFZ, Potsdam, Germany
Gabriele Tarchini
Department of Earth, Environmental and Life Sciences – DISTAV, University of Genoa, Genoa, Italy
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Davide Scafidi
Department of Earth, Environmental and Life Sciences – DISTAV, University of Genoa, Genoa, Italy
Matteo Picozzi
National Institute of Oceanography and Applied Geophysics – OGS, Trieste, Italy
Physics Department “Ettore Pancini”, University of Naples Federico II, Naples, Italy
Daniele Spallarossa
Department of Earth, Environmental and Life Sciences – DISTAV, University of Genoa, Genoa, Italy
Related authors
No articles found.
Ssu-Ting Lai, Kyaw Moe Oo, Yin Myo Min Htwe, Tin Yi, Htay Htay Than, Oo Than, Zaw Min, Tun Minn Oo, Phyo Maung Maung, Dino Bindi, Fabrice Cotton, Peter L. Evans, Andres Heinloo, Laura Hillmann, Joachim Saul, Christoph Sens-Schönfelder, Angelo Strollo, Frederik Tilmann, Graeme Weatherill, Ming-Hsuan Yen, Riccardo Zaccarelli, Thomas Zieke, and Claus Milkereit
Earth Syst. Sci. Data, 17, 5149–5164, https://doi.org/10.5194/essd-17-5149-2025, https://doi.org/10.5194/essd-17-5149-2025, 2025
Short summary
Short summary
On 28 March 2025, Myanmar was struck by a destructive Mw 7.7 earthquake. We present detailed information on the data and metadata availability for the Naypyitaw station (NPW) in Myanmar, the only local strong-motion station located near the Sagaing Fault that recorded the mainshock without saturation. We also highlight the collaborative effort that made the installation of NPW possible. The high-quality recordings from NPW offer critical insights for seismic hazard assessment in the region.
Marco Massa, Andrea Luca Rizzo, Davide Scafidi, Elisa Ferrari, Sara Lovati, Lucia Luzi, and MUDA working group
Earth Syst. Sci. Data, 16, 4843–4867, https://doi.org/10.5194/essd-16-4843-2024, https://doi.org/10.5194/essd-16-4843-2024, 2024
Short summary
Short summary
MUDA (geophysical and geochemical MUltiparametric DAtabase) is a new infrastructure of the National Institute of Geophysics and Volcanology serving geophysical and geochemical multiparametric data. MUDA collects information from different sensors, such as seismometers, accelerometers, hydrogeochemical sensors, meteorological stations and sensors for the flux of carbon dioxide and radon gas, with the aim of making correlations between seismic phenomena and variations in environmental parameters.
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024, https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Short summary
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated areas to achieve rapid and reliable estimation of exposure maps in Trentino (northeast Italy). These additional data, in conjunction with the automatic monitoring procedure, allow us to obtain dense measurements which only rely on actual recorded data, avoiding the use of ground motion prediction equations. This leads to a more reliable picture of the actual ground shaking.
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024, https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
Short summary
The size of an earthquake is often described by a single number called the magnitude. Among the possible magnitude scales, the seismic moment (Mw) and the radiated energy (Me) scales are based on physical parameters describing the rupture process. Since these two magnitude scales provide complementary information that can be used for seismic hazard assessment and for seismic risk mitigation, we complement the Mw catalog disseminated by the GEOFON Data Centre with Me values.
Simone Barani, Gabriele Ferretti, and Davide Scafidi
Nat. Hazards Earth Syst. Sci., 23, 1685–1698, https://doi.org/10.5194/nhess-23-1685-2023, https://doi.org/10.5194/nhess-23-1685-2023, 2023
Short summary
Short summary
In the present study, we analyze ground-motion hazard maps and hazard disaggregation in order to define areas in Italy where liquefaction triggering due to seismic activity can not be excluded. The final result is a screening map for all of Italy that classifies sites in terms of liquefaction triggering potential according to their seismic hazard level. The map and the associated data are freely accessible at the following web address: www.distav.unige.it/rsni/milq.php.
Cited articles
Abercrombie, R. E.: Investigating uncertainties in empirical Green's function analysis of earthquake source parameters, J. Geophys. Res.-Sol. Ea., 120, 4263–4277, https://doi.org/10.1002/2015JB011984, 2015.
AFAD: Disaster and Emergency Management Presidency. National Seismic Network of Turkey (DDA), International Federation of Digital Seismograph Networks, http://tdvm.afad.gov.tr/ (last access: February 2024), 1990.
Akaike, H.: Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average process, Ann. I. Stat. Math., 26, 363–387, https://doi.org/10.1007/BF02479833, 1974.
Aki, K.: Maximum Likelihood Estimate of b in the Formula and its confidence limits, B. Earthq. Res., 43, 237–239, 1965.
Aki, K. and Richards, P. G.: Quantitative seismology, 2nd edn., Univ. Sci. Books, Sausalito, California, 700 pp., ISBN 0935702962, 2002.
Akkar, S. and Çağnan, Z.: A Local Ground-Motion Predictive Model for Turkey, and Its Comparison with Other Regional and Global Ground-Motion Models, B. Seismol. Soc. Am., 100, 2978–2995, https://doi.org/10.1785/0120090367, 2010.
Ambraseys, N.: Temporary seismic quiescence: SE Turkey, Geophys. J. Int., 96, 11–331, https://doi.org/10.1111/j.1365-246X.1989.tb04453.x., 1989.
An, Q., Feng, G., He, L., Xiong, Z., Lu, H., Wang, X., and Wei, J.: Three-Dimensional Deformation of the 2023 Turkey Mw 7.8 and Mw 7.7 Earthquake Sequence Obtained by Fusing Optical and SAR Images, Remote Sens., 15, 2656, https://doi.org/10.3390/rs15102656, 2023.
Andrews, D. J.: Objective determination of source parameters and similarity of earthquakes of different size, Earthquake Source Mechanics, 37, 259–267, https://doi.org/10.1029/GM037p0259, 1986.
Baltay, A., Abercrombie, R., Chu, S., and Taira, T.: The SCEC/USGS community stress drop validation study using the 2019 Ridgecrest earthquake sequence, Seismica, 3, 1, https://doi.org/10.26443/seismica.v3i1.1009, 2024.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res. Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010.
Bindi, D., Spallarossa, D., Picozzi, M., Scafidi, D., and Cotton, F.: Impact of magnitude selection on Aleatory variability associated with ground-motion prediction equations: Part I – Local, energy, and moment magnitude calibration and stress-drop variability in Central Italy, B. Seismol. Soc. Am., 108, 1427–1442, https://doi.org/10.1785/0120170356, 2018.
Bindi, D., Picozzi, M., Spallarossa, D., Cotton, F., and Kotha, S. R.: Impact of magnitude selection on Aleatory variability associated with ground motion prediction equations: Part II – Analysis of the between-event distribution in central Italy, B. Seismol. Soc. Am., 109, 251–262, https://doi.org/10.1785/0120180239, 2019.
Bindi, D., Zaccarelli, R., and Kotha, S. R.: Local and Moment Magnitude Analysis in the Ridgecrest Region, California: Impact on Interevent Ground-Motion Variability, B. Seismol. Soc. Am., 111, 339–355, https://doi.org/10.1785/0120200227, 2020.
Bindi, D., Zaccarelli, R., Cotton, F., Weatherill, G., and Kotha, S. R.: Source Scaling and Ground Motion Variability along the East Anatolian Fault, Seism. Rec., 34, 311–321, https://doi.org/10.1785/0320230034, 2023a.
Bindi, D., Spallarossa, D., Picozzi, M., Oth, A., Morasca, P., and Mayeda, K.: The Community Stress-Drop Validation Study – Part I: Source, Propagation, and Site Decomposition of Fourier Spectra, Seismol. Res. Lett., 94, 1980–1991, https://doi.org/10.1785/0220230019, 2023b.
Bindi, D., Spallarossa, D., Picozzi, M., Oth, A., Morasca, P., and Mayeda, K.: The Community Stress-Drop Validation Study – Part II: Uncertainties of the Source Parameters and Stress-Drop Analysis, Seismol. Res. Lett., 94, 1992–2002, https://doi.org/10.1785/0220230020, 2023c.
Biro, Y.: Magnitude dependency of spectral decay parameter kappa in East Anatolian Fault related events, 18th World Conference on Earthquake Engineering, 18th World Conference on Earthquake Engineering, Milan, Italy, 30 June–5 July 2024, https://proceedings-wcee.org/view.html?id=23577&conference=18WCEE (last access: 6 March 2025), 2024.
Castro, R. R., Anderson, J. G., and Singh, S. K.: Site response, attenuation and source spectra of S waves along the Guerrero, Mexico, subduction zone, B. Seismol. Soc. Am., 80, 1481–1503, 1990.
Castro, R. R., Colavitti, L., Vidales-Basurto, C. A., Pacor, F., Sgobba, S., and Lanzano, G.: Near-source attenuation and spatial variability of the spectral decay parameter kappa in central Italy, B. Seismol. Soc. Am., 93, 2299–2310, https://doi.org/10.1785/0220210276, 2022a.
Castro, R. R., Spallarossa, D., Pacor, F., Colavitti, L., Lanzano, G., Vidales-Basurto, C. A., and Sgobba, S.: Temporal variation of the spectral decay parameter kappa detected before and after the 2016 main earthquakes in central Italy, B. Seismol. Soc. Am., 112, 3037–3045, https://doi.org/10.1785/0120220107, 2022b.
Castro, R. R., Colavitti, L., Pacor, F., Lanzano, G., Sgobba, S., and Spallarossa, D.: Temporal variation of S-wave attenuation during the 2009 L'Aquila, Central Italy, seismic sequence, Geophys. J. Int., 240, 317–328, https://doi.org/10.1093/gji/ggae380, 2025.
Çıvgın, B. and Scordillis, E. M.: Investigating the consistency of online earthquake catalogs of Turkey and surroundings, J. Seismol., 23, 1255–1278, https://doi.org/10.1007/s10950-019-09863-w, 2019.
Colavitti, L., Bindi, D., Tarchini, G., Scafidi, D., Picozzi, M., and Spallarossa, D.: Data Set of selected strong motion parameters and Fourier Amplitude Spectra for the East Anatolian Fault Zone, Türkiye (January 2019–February 2024), Zenodo [data set], https://doi.org/10.5281/zenodo.13838992, 2024.
Colavitti, L., Bindi, D., Tarchini, G., Scafidi, D., Picozzi, M., and Spallarossa, D.: Code release for: “A high-quality data set for seismological studies in the East Anatolian Fault Zone, Türkiye” (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.15775474, 2025.
Dal Zilio, L. and Ampuero, J. P.: Earthquake doublet in Turkey and Syria, Commun. Earth Environ. 4, 71, https://doi.org/10.1038/s43247-023-00747-z, 2023.
Efron, B.: Bootstrap Methods: Another Look at the jackknife, Ann. Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979.
Gabriel, A. A., Ulrich, T., Merchandon, M., Biemiller, J., and Rekoske, J.: 3D Dynamic Rupture Modeling of the 6 February 2023, Kahramanmaraş, Turkey Mw 7.8 and 7.7 Earthquake Doublet Using Early Observations, Seism. Rec., 3, 342–356, 2023.
Gökalp, H.: Local earthquake tomography of the Erzincan Basin and the surrounding area in Turkey, Ann. Geophys., 50, 707–724, https://doi.org/10.4401/ag-3052, 2007.
Gökalp, H.: Tomographic imaging of the seismic structure beneath the east Anatolian Plateau, eastern Turkey, Pure Appl. Geophys., 169, 1749–1776, https://doi.org/10.1007/s00024-011-0432-x, 2012.
Güvercin, S. E.: A local earthquake tomography on the EAF shows dipping fault structure, Turk. J. Earth Sci., 32, 5, https://doi.org/10.55730/1300-0985.1845, 2023.
Güvercin, S. E., Karabulut, H., Konca, A. O., Doğan, U., and Ergintav, S.: Active seismotectonics of the East Anatolian Fault, Geophys. J. Int., 230, 50–69, https://doi.org/10.1093/gji/ggac045, 2022.
He, L., Feng, G., Xu, W., Wang, Y., Xiong, Z., Gao, H., and Liu, X.: Coseismic kinematics of the 2023 Kahramanmaras, Turkey earthquake sequence from InSAR and optical data, Geophys. Res. Lett., 50, e2023GL104693, https://doi.org/10.1029/2023GL104693, 2023.
Hutton, L. K. and Boore, D. M.: The ML scale in southern California, B. Seismol. Soc. Am., 77, 2074–2094, https://doi.org/10.1785/BSSA0770062074, 1987.
Iwata, T. and Irikura, K.: Source parameters of the 1983 Japan Sea earthquake sequence, J. Phys. Earth, 36, 155–184, https://doi.org/10.4294/jpe1952.36.155, 1988.
Kale, Ö, Akkar, S., Ansari, A., and Hamzehloo, H.: A Ground-Motion Predictive Model for Iran and Turkey for Horizontal PGA, PGV, and 5 % Damped Response Spectrum: Investigation of Possible Regional Effects, B. Seismol. Soc. Am., 105, 963–980, https://doi.org/10.1785/0120140134, 2015.
Karabulut, H., Güvercin, S. E., Hollingsworth, J., and Özgün Konca, A.: Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region, J. Geol. Soc., 180, jgs2023–021, https://doi.org/10.1144/jgs2023-021, 2023.
Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., and Kradolfer, U.: Initial reference models in local earthquake tomography, J. Geophys. Res.-Sol. Ea., 99, 19635–19646, https://doi.org/10.1029/93JB03138, 1994.
KO – Kandilli Observatory and Earthquake Research Institute: Boğaziçi University (KOERI) [Data set], International Federation of Digital Seismograph Networks, https://doi.org/10.7914/SN/KO, 1971.
Konno, K. and Ohmachi, T.: Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, B. Seismol. Soc. Am., 88, 228–241, https://doi.org/10.1785/BSSA0880010228, 1998.
Koulakov, I., Bindi, D., Parolai, S., Grosser, H., and Milkereit, C.: Distribution of Seismic Velocities and Attenuation in the Crust beneath the North Anatolian Fault (Turkey) from Local Earthquake Tomography, B. Seismol. Soc. Am., 100, 207–224, https://doi.org/10.1785/0120090105, 2010.
Kwiatek, G., Martínez-Garzón, P., Becker, D., Dresen, G., Cotton, F., Beroza, G., Acarel, D., Ergintav, S., and Bohnoff, M.: Months-long seismicity transients preceding the 2023 Mw 7.8 Kahramanmaraş, earthquake, Türkiye, Nat. Commun., 14, 7534, https://doi.org/10.1038/s41467-023-42419-8, 2023.
Laporte, M., Letort, J., Bertin, M., and Bollinger, L.: Understanding earthquake location uncertainties using global sensitivity analysis framework, Geophys. J. Int., 237, 1048–1060, https://doi.org/10.1093/gji/ggae093, 2024.
Lienert, B. R. and Havskov, J.: A Computer Program for Locating Earthquakes Both Locally and Globally, Seismol. Res. Lett., 66, 26–36, https://doi.org/10.1785/gssrl.66.5.26, 1995.
Lomax, A., Virieux, J., Volant, P., and Berge-Thierry, C.: Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations, in: Advances in Seismic Event Location – Modern Approaches in Geophysics, edited by: Thurber, C. H. and Rabinowitz, Kluwer Academic Publishers, 101–134, https://doi.org/10.1007/978-94-015-9536-0_5, 2000.
Lomax, A., Satriano, C., and Vassallo, M.: Automatic picker developments and optimization: FilterPicker – a robust, broadband picker for real-time seismic monitoring and earthquake early warning, Seismol. Res. Lett., 83, 531–540, https://doi.org/10.1785/gssrl.83.3.531, 2012.
Luzi, L., Lanzano, G., Felicetta, C., D'Amico, M. C., Russo, E., Sgobba, S., Pacor, F., and ORFEUS Working Group 5: Engineering Strong Motion Database (ESM) (Version 2.0), Istituto Nazionale di Geofisica e Vulcanologia (INGV), https://doi.org/10.13127/ESM.2, 2020.
MathWorks: MATLAB, version 9.15 (R2023b), Natick, Massachusetts: The MathWorks Inc., https://www.mathworks.com (last access: 6 March 2025), 2023
Medved, I., Polat, G., and Koulakov, I.: Crustal Structure of the Eastern Anatolia Region (Turkey) Based on Seismic Tomography, Geoscience, 11, 91, https://doi.org/10.3390/geosciences11020091, 2021.
Melgar, D., Taymaz, T., Ganas, A., Crowell, B. W., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbilen, Valkaniotis, S., Irmak, T. S., Eken, T., Erman, C., Özkan, Doğan, A. H., and Altuntaş, C.: Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye, Seismica, 2, 3, https://doi.org/10.26443/seismica.v2i3.387, 2023.
Morasca, P., Bindi, D., Mayeda, K., Roman-Nieves, J., Barno, J., Walter, W. R., and Spallarossa, D.: Source scaling comparison and validation in Central Italy: data intensive direct S waves versus the sparse data coda envelope methodology, Geophys. J. Int., 231, 1573–1590, https://doi.org/10.1093/gji/ggac268, 2022.
Ozer, C., Ozyazicioglu, M., Gok, E., and Polat, O.: Imaging the Crustal Structure Throughout the East Anatolian Fault Zone, Turkey, by Local Earthquake Tomography, Pure Appl. Geophys., 176, 2235–2261, https://doi.org/10.1007/s00024-018-2076-6, 2019.
Pacor, F., Spallarossa, D., Oth, A., Luzi, L., Puglia, R., Cantore, R., Mercuri, A., D'Amico, M., and Bindi, D.: Spectral models for ground motion prediction in the L'Aquila region (central Italy): Evidence for stress-drop dependence on magnitude and depth, Geophys. J. Int., 204, 697–718, https://doi.org/10.1093/gji/ggv448, 2016.
Palo, M. and Zollo, A.: Small-scale segmented fault rupture along the East Anatolian Fault during the 2023 Kahramanmaraş earthquake, Communications Earth & Environment, 5, 431, https://doi.org/10.1038/s43247-024-01597-z, 2024.
Parolai, S., Bindi, D., and Augliera, P.: Application of the Generalized Inversion Technique (GIT) to a Microzonation Study: Numerical Simulations and Comparison with Different Site-Estimation Techniques, B. Seismol. Soc. Am., 90, 286–297, 2000.
Parolai, S., Bindi, D., Durukal, E., Grosser, H., and Milkereit, C.: Source Parameters and Seismic Moment-Magnitude Scaling for Northwestern Turkey, B. Seismol. Soc. Am., 97, 655–660, https://doi.org/10.1785/0120060180, 2007.
Pennington, C. N., Chen, X., Abercrombie, R. E., and Wu, Q.: Cross validation of stress drop estimates and interpretations for the 2011 Prague, OK, earthquake sequence using multiple methods, J. Geophys. Res.-Sol. Ea., 126, e2020JB020888, https://doi.org/10.1029/2020JB020888, 2021.
Petersen, G. M., Büyükakpinar, P., Vera Sanhueza, F. O., Metz, M., Cesca, S., Akbayram, K., Saul, J., and Dahm, T.: The 2023 Southeast Türkiye Seismic Sequence: Rupture of a Complex Fault Network, Seism. Rec., 3, 134–143, https://doi.org/10.1785/0320230008, 2023.
Picozzi, M., Oth, A., Parolai, S., Bindi, D., De Landro, G., and Amoroso, O.: Accurate estimation of seismic source parameters of induced seismicity by a combined approach of generalized inversion and genetic algorithm: Application to The Geysers geothermal area, California, J. Geophys. Res.-Sol. Ea., 122, 3916–3933, https://doi.org/10.1002/2016JB013690, 2017.
Picozzi, M., Spallarossa, D., Iaccarino, A. G., and Bindi, D.: Temporal evolution of radiated energy to seismic moment scaling during the preparatory phase of the Mw 6.1, 2009 L'Aquila Earthquake (Italy), Geophys. Res. Lett., 49, 7382, e2021GL097382, https://doi.org/10.1029/2021GL097382, 2022.
Picozzi, M., Iaccarino, A. G., Spallarossa, D., and Bindi, D.: On catching the preparatory phase of damaging earthquakes: an example from central Italy, Sci. Rep., 13, 14403, https://doi.org/10.1038/s41598-023-41625-0, 2023a.
Picozzi, M., Iaccarino, A. G., and Spallarossa, D.: The preparatory process of the 2023 Mw 7.8 Türkiye earthquake, Sci. Rep., 13, 17853, https://doi.org/10.1038/s41598-023-45073-8, 2023b.
Picozzi, M., Spallarossa, D., Iaccarino, A. G., and Bindi, D.: Event-specific ground motion anomalies highlight the preparatory phase of earthquakes during the 2016–2017 Italian seismicity, Comm. Earth Environ., 5, 289, https://doi.org/10.1038/s43247-024-01455-y, 2024.
Richter, C.: An instrumental earthquake magnitude scale, B. Seismol. Soc. Am., 25, 1–32, https://doi.org/10.1785/BSSA0250010001,1935.
Robusto, C. C.: The cosine-haversine formula, Am. Math. Mon., 64, 38–40, https://doi.org/10.2307/2309088, 1957.
Rodríguez-Pérez, Q. and Zúñiga, F. R.: Statistical and source characterization of the 2023 Kahramanmaraş Türkiye earthquake sequence, Acta Geophys., 73, 1241–1260, https://doi.org/10.1007/s11600-024-01428-x, 2025.
Sandıkkaya, M. A., Güryuva, B., Kale, Ö., Okçu, O., İçen, A., Yenier, E., and Akkar, S.: An updated strong-motion database of Türkiye (SMD-TR), Earthq. Spectra, 40, 847–870, https://doi.org/10.1177/87552930231208158, 2024.
Savage, M. K. and Anderson, J. G.: A local-magnitude scale for the western great basin-eastern Sierra Nevada from synthetic Wood-Anderson seismograms, B. Seismol. Soc. Am., 85, 1236–1243, https://doi.org/10.1785/BSSA0850041236, 1995.
Sbeinati, M. R., Darawcheh, R., and Mouty, M.: The historical earthquakes of Syria: an analysis of large and moderate earthquakes from 1365 B. C. to 1900 A. D., Ann. Geophys., 48, 347–435, https://doi.org/10.4401/ag-3206, 2005.
Scafidi, D., Spallarossa, D., Tunino, C., Ferretti, G., and Viganò, A.: Automatic P- and S-Wave Local Earthquake Tomography: Testing Performance of the Automatic Phase-Picker Engine “RSNI-Picker”, B. Seismol. Soc. Am., 106, 526–536, https://doi.org/10.1785/0120150084, 2016.
Scafidi, D., Viganò, A., Ferretti, G., and Spallarossa, D.: Robust picking and accurate location with RSNI-Picker2: Real-Time Automatic Monitoring of Earthquakes and Non Tectonic Events, Seism. Res. Lett., 89, 1478–1487, https://doi.org/10.1785/0220170206, 2018.
Scafidi, D., Spallarossa, D., Ferretti, G., Barani, S., Castello, B., and Margheriti, L.: A Complete Automatic Procedure to Compile Reliable Seismic Catalogs and Travel-Time and Strong-Motion Parameters Datasets, Seism. Res. Lett., 90, 1308–1317, https://doi.org/10.1785/0220180257, 2019.
Sertçelik, F.: Estimation of Coda Wave Attenuation in the East Anatolia Fault Zone, Turkey, Pure Appl. Geophys., 169, 1189–1204, https://doi.org/10.1007/s00024-011-0368-1, 2012.
Shible, H., Hollender, F., Bindi, D., Traversa, P., Oth, A., Edwards, B., Klin, P., Kawase, H., Grendas, I., Castro, R. R., Theodoulis, N., and Gueguen, P.: GITEC: A Generalized Inversion Technique Benchmark, B. Seismol. Soc. Am., 112, 850–877, https://doi.org/10.1785/0120210242, 2022.
Spallarossa, D., Bindi, D., Augliera, P., and Cattaneo, M.: An Ml scale in northwestern Italy, B. Seismol. Soc. Am., 92, 2205–2216, https://doi.org/10.1785/0120010201, 2002.
Spallarossa, D., Ferretti, G., Scafidi, D., Turino, C., and Pasta, M.: Performance of the RSNI-Picker, Seismol. Res. Lett., 85, 1243–1254, https://doi.org/10.1785/0220130136, 2014.
Spallarossa, D., Cattaneo, M., Scafidi, D., Michele, M., Chiaraluce, L., Segou, M., and Main, I. G.: An automatically generated high-resolution earthquake catalogue for the 2016–2017 Central Italy seismic sequence, including P and S phase arrival times, Geophys. J. Int., 225, 555–571, https://doi.org/10.1093/gji/ggaa604, 2021a.
Spallarossa, D., Picozzi, M., Scafidi, D., Morasca, P., Turino, C., and Bindi, D.: The RAMONES Service for Rapid Assessment of Seismic Moment and Radiated Energy in Central Italy: Concepts, Capabilities, and Future Perspectives, Seismol. Res. Lett., 92, 1759–1772, https://doi.org/10.1785/0220200348, 2021b.
Spallarossa, D., Colavitti, L., Lanzano, G., Sgobba, S., Pacor, F., and Felicetta, C.: CI-FAS_Flatfile: Parametric table of the Fourier Amplitude Spectra ordinates and associated metadata for the shallow active crustal events in Central Italy (2009–2018), [Data set], Istituto Nazionale di Geofisica e Vulcanologia (INGV), https://doi.org/10.13127/CI_dataset/CI-FAS_flatfile, 2022.
Tan, O., Pabuççu, Z., Tapırdamaz, C. M., İnan S., Ergintav, S., Eyidoğan, H., Aksoy, E., Kuluöztürk, F.: Aftershock study and seismotectonic implications of the 8 March 2010 Kovancılar (Elazığ, Turkey) earthquake (MW=6.1), Geophys. Res. Lett., 38, 4–9, https://doi.org/10.1029/2011GL047702, 2011.
Tarchini, G., Scafidi, D., Parolai, S., Picozzi, M., Bindi, D., and Spallarossa, D.: The Seismic Station and Site Amplification Service: Continuously Updated Information on Italian Seismic Stations, Seismol. Res. Lett., 96, 2027–2038, https://doi.org/10.1785/0220240291, 2025.
Taymaz, T., Ganas, A., Yolsal-Çevikbilen S., Vera, F., Eken, T., Erman, C., Keles, D., Kapetadinis, V., Valkaniotis, S., Karasante, I., Tsironi, V., Gaebler, P., Melgar, D., and Öcalan, T.: Source Mechanism and Rupture Process of the 24 January 2020 Mw 6.7 Doğanyol-Sivrice Earthquake obtained from Seismological Waveform Analysis and Space Geodetic Observations on the East Anatolian Fault Zone (Turkey), Tectonophysics, 804, 228745, https://doi.org/10.1016/j.tecto.2021.228745, 2021.
Taymaz, T., Ganas, A., Berberian, M., Eken, T., Irmak, T., Kapetanidis, V., Yolsal-Çevikbilen, S., Erman, C., Keles, D., Esmaeili, C., Tsironi, V., and Özkan, B.: The 23 February 2020 Qotur-Ravian Earthquake Doublet at the Iranian-Turkish Border: Seismological and InSAR Evidence for Escape Tectonics, Tectonophysics, 838, TECTO15364-229482, https://doi.org/10.1016/j.tecto.2022.229482, 2022.
TK – Disaster and Emergency Management Authority: Turkish National Strong Motion Network [Data set], Department of Earthquake, Disaster and Emergency Management Authority, https://doi.org/10.7914/SN/TK, 1973.
Toker, M. and Şakir, Ş.: Upper- to mid-crustal seismic attenuation structure above the mantle wedge in East Anatolia, Turkey: Imaging crustal scale segmentation and differentiation, Phys. Earth Planet. In., 329–330, 106908, https://doi.org/10.1016/j.pepi.2022.106908, 2022.
Trifunac, M. D., and Brady, A. G.: A study on the duration of strong earthquake ground motion, B. Seismol. Soc. Am., 65, 581–626, 1975.
TU – Disaster and Emergency Management Authority: Turkish National Seismic Network [Data set], Department of Earthquake, Disaster and Emergency Management Authority, https://doi.org/10.7914/SN/TU, 1990.
Uhrhammer, R. A., Hellweg, M., Hutton, K., Lombard, P., Walters, A. W., Hauksson, E., and Oppenheimer, D.: California Integrated Seismic Network (CISN) local magnitude determination in California and vicinity, B. Seismol. Soc. Am., 101, 2685–2693, https://doi.org/10.1785/0120100106, 2011.
van der Elst, N. J.: B-Positive: A Robust Estimator of Aftershock Magnitude Distribution in Transiently Incomplete Catalogs, J. Geophys. Res.-Sol. Ea., 126, e2020JB021027, https://doi.org/10.1029/2020JB021027, 2021.
Wang, B. and Barbot, S.: Rupture segmentation on the East Anatolian fault (Turkey) controlled by along-strike variations in long-term slip rates in a structurally complex fault system, Geology, 52: 779–783, https://doi.org/10.1130/G52403.1, 2024.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic Mapping Tools: Improved Version Released, EOS, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
Zaliapin, I. and Ben-Zion, Y.: A global classification and characterization of earthquake clusters, Geophys. J. Int., 207, 608–634, https://doi.org/10.1093/gji/ggw300, 2016.
Zaliapin, I., Gabrielov, A., Keilis-Borok, V., and Wong, H.: Clustering analysis of seismicity and aftershock identification, Phys. Rev. Lett., 101, 018501, https://doi.org/10.1103/PhysRevLett.101.018501, 2008.
Short summary
This work describes a dataset of 5 years of earthquakes with magnitude range of 2.0–5.5 from January 2019 along the East Anatolian Fault, Türkiye. All events were located using the non-linear location algorithm, providing reliable horizontal locations and depths. The distributed product includes Fourier amplitude spectra, peak ground acceleration and peak ground velocity; we strongly believe that the creation of high-quality open-source datasets is crucial for any seismological investigation.
This work describes a dataset of 5 years of earthquakes with magnitude range of 2.0–5.5 from...
Altmetrics
Final-revised paper
Preprint